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These notes, updated as the course progresses, are a record of the prepared text of
the lectures, with a little more detail added, but they cannot cover much of the oral
component of the lectures.

Summary of contents

Many of the concepts and theorems of group theory become much easier in the special
case of abelian groups. In this file, we shall be studying that comparatively easy special
case.

In most of abstract group theory, a multiplicative notation is conventionally used.
Yet, in many applications, abelian groups are expressed using additive notation. By
first learning the material in the case of abelian groups, we shall have an opportunity
to become familiar with notation that is often employed when abelian groups appear in
other areas of mathematics.

We shall be discussing:

• the notion of an abelian group,
• Cayley tables for finite abelian groups,
• isomorphisms of abelian groups,
• subgroups of abelian groups,
• Lagrange’s Theorem in the case of finite abelian groups,
• cyclic groups
• direct products of abelian groups,
• quotients for abelian groups,
• homomorphisms of abelian groups,
• the three isomorphism theorems in the case of abelian groups,
• The Chinese Remainder Theorem.
• Sylow’s Theorem in the case of finite abelian groups.

Homework 1 is at the end of this file.

The notion of an abelian group: We define an abelian group to be a pair
(A, ∗), where A is a set and ∗ is a binary operation on A such that the following three
conditions hold:

Associativity Axiom: For all a, b, c ∈ A, we have (a ∗ b) ∗ c = a ∗ (b ∗ c). So we can
write a ∗ b ∗ c unambiguously.

Identity Axiom: There is an element e ∈ A such that, for all a ∈ A, we have e∗a = a.
We call e an identity element of A.
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Inversion Axiom: For all a ∈ A, there exists b ∈ A such that a ∗ b = e.

Commutativity Axiom: For all a, b ∈ A, we have a ∗ b = b ∗ a.

For an abelian group (A, ∗), the set A is called the underlying set of (A, ∗). The
function ∗ is called the operation of (A, ∗).

A comment: Later, when we define the general notion of a group, we shall drop the
Commutativity Axiom. Thus, the definition of a group is simpler than the definition of
an abelian group. However, abelian groups tend to be much easier to work with.

Another comment: In older texts, another axiomatic condition seems to appear,
called closure. The presentation tends to go something like: “For each a, b ∈ A, there
is a thing a ∗ b.” [Wait! What kind of thing is it? Might it be a rabbit?] “Closure
Axiom: For all a, b ∈ A, the thing a∗ b is an element of A∗A.” [Oh, so it is not a rabbit,
after all.] From a modern point of view, the ”closure axiom” is obsolete. Its content has
been absorbed into the definition of a function. However, that little item of history is
illuminating, because some closure properties do persist in one of the standard modern
definitions of a subgroup, as below.

Example: Let A be a singleton set, that is to say, a set with size 1. Write A = {a}.
Then we can make A become an abelian group with operation ∗ such that a+ a = a. An
abelian group with only a single element is called a trivial group.

Example: These are, arguably, the most important examples of all: The pair (Z,+) is
an abelian group. For any positive integer n, the pair (Z/n,+) is an abelian group.

Example: These, too, are of very widespread importance: For any positive integer n,
the pair ((Z/n)×, .) is an abelian group, where the dot indicates multiplication as defined
in Part 1.

Remark 3.1: Let (A, ∗) be an abelian group. The A has a unique identity element.

Proof: Let e, f ∈ A such that e ∗ a = a and f ∗ a = a for all a ∈ A. Then f = e + f =
f + e = e. ut

Thanks to the above remark, it makes sense to speak of the identity element of A.

Remark 3.2: Let (A, ∗) be an abelian group and a ∈ A. Then there exists a unique
element b such that a ∗ b = e.

Proof: This existence is clear. Suppose a ∗ b = a ∗ c = e with b, c ∈ A. Then b ∗ a = e,
hence

b = b ∗ e = b ∗ a ∗ c = e ∗ c = c . 2

Often, in the jargon, instead of speaking of an abelian group (A, ∗), we speak of the
abelian group A, equipped with the operation ∗.

For instance, we may speak of the abelian group Z/n, equipped with addition. We
may speak of the abelian group (Z/n)×, equipped with multiplication.

The jargon is very useful because, normally, when considering many different groups,
we do not employ many different symbols for their binary operations.
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In fact, we normally employ one of the following two notations.

Additive notation: Consider an abelian group A. Let us write the operation as
addition. Thus, instead of writing a ∗ b we write a+ b. In that case:

• An element e, as above is called an zero element of A, and is written as 0A or
just 0.

• Given a ∈ A then, by Remark 3.2, there exists a unique element b ∈ A such that
a+ b = 0. We write −a = b, and we call −a the negative of a. Note that a is the
negative of −a. That is, −(−a) = a.

Multiplicative notation: Again, consider an abelian group A. Let us write the op-
eration as addition. Thus, instead of writing a ∗ b we write a.b or just ab. In that
case:

• The identity element e, as above is also called an unity element of A, and it is
written as 1A or just 1.

• Given a ∈ A then, by Remark 3.2, there exists a unique b ∈ A such that ab = 1.
We write b = a−1, and we call b the inverse of a. Note, a is the inverse of b. Thus,
(a−1)−1.

A few examples of abelian groups: Consider an abelian group (A, ∗). When
the underlying set A is finite, we say that (A, ∗) is finite. In that case, we define the
order of (A, ∗) to be the size |A| of the underlying set A. In other words, the order of
the group (A, ∗) is the number of elements of the set A. When the underlying set A is
infinite, we say that the abelian group (A, ∗) is infinite.

The term order is a misnomer. When (A, ∗) is infinite, it would make sense to speak
of the cardinality of (A, ∗), meaning the infinite cardinal number |A|. There are such
things as infinite ordinal numbers, but they only apply to sets equipped with a relation
called a well-ordering. Usually, when infinite abelian groups arise in mathematics, they
do not come equipped with a well-ordering. So, notions of the order of an infinite abelian
group rarely arise.

Sometimes, avoiding that misnomer, the order |A| of a finite abelian group (A, ∗) is
called the size of A.

Let us first give some examples of infinite abelian groups

• The abelian group (Z,+).

Let Q denote the field of rational numbers. Let R and C denote the field of real
numbers and the field of complex numbers, respectively.

• The abelian groups (Q,+) and (R,+) and (C,+) are infinite.

Let Q×, R×, C× denote the sets of nonzero rational, real, complex numbers, respec-
tively. Thus, Q× = Q− {0}, and similarly for R× and C×.
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• Writing a dot to indicate multiplication, the abelian groups (Q×, .) and (R×, .) and
(C×, .) are infinite.

The pair (Z − {0}, .) is not a group. For instance, the element 2 has no inverse in
Z− {0}. However, consistently with general notation in ring theory, let us define

Z× = {−1, 1}

as a subset of Z. Then (Z×, .) is a finite abelian group with order 2. In Chapter 2, we
already saw some other examples of finite abelian groups. Let us review them.

• For a positive integer n, the finite abelian group (Z/n,+) has order |Z/n| = n.

For any integer n such that n ≥ 2, the pair (Z/n, .) is not an abelian group, since
the element [0] does not have an inverse.

• The finite abelian group ((Z/n)×, .) has order φ(n), where φ denotes the Euler totient
function. For a brief commentary on φ, see Homework 1 at the end of this section.

Cayley tables for finite abelian groups: Consider a finite abelian group A,
with operation ∗. One very explicit way of specifying A is to write down a table, where
the rows and columns are indexed by the elements of A and, for a, b ∈ A, the entry in
row a and column b is the element a ∗ b = b ∗ a.

Note that, although we often casually speak of the Cayley table, one cannot write
down a Cayley table on paper or screen without choosing a total ordering of the elements.

The additive group Z/4, we mean, the group (Z/4,+), has the following Cayley table.
The operation being addition, the Cayley table could also be called the addition table.

(Z/4,+) [0] [1] [2] [3]

[0] [0] [1] [2] [3]
[1] [1] [2] [3] [0]
[2] [2] [3] [0] [1]
[3] [3] [0] [1] [2]

The multiplicative group (Z/5)× has the following Cayley table. We could also call
it the multiplication table.

((Z/5)×, .) [1] [2] [3] [4]

[1] [1] [2] [3] [4]
[2] [2] [4] [1] [3]
[3] [3] [1] [4] [2]
[4] [4] [3] [2] [1]

The two tables may appear to have little in common. However, changing the ordering
of the rows and columns of the second table, then putting the two tables side-by-side,
we see that they do have the same pattern. Indeed, the elements [0], [1], [2], [3] of Z/4,
appearing in the left-hand table, behave exactly like the elements, in respective order,
[1], [2], [4], [3] of (Z/5)×, appearing in the right-hand table.
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Z/4 [0] [1] [2] [3] (Z/5)× [1] [2] [4] [3]

[0] [0] [1] [2] [3] [1] [1] [2] [4] [3]
[1] [1] [2] [3] [0] [2] [2] [4] [3] [1]
[2] [2] [3] [0] [1] [4] [4] [3] [1] [2]
[3] [3] [0] [1] [2] [3] [3] [1] [2] [4]

On the other hand, the abelian group (Z/8)×, though also of order 4, has a quite
different Cayley table, as follows. There is no way of changing the ordering of the
elements of (Z/8)× to make its Cayley table look like those of the additive group Z/4
and the additive group (Z/5)×.

((Z/8)×, .) [1] [3] [5] [7]

[1] [1] [3] [5] [7]
[3] [3] [1] [7] [5]
[5] [5] [7] [1] [3]
[7] [7] [5] [3] [1]

Thus, in some abstract sense, the additive abelian group Z/4 and the multiplicative
abelian group (Z/5)× are essentially the same as each other, whereas the multiplicative
group (Z/8)× is essentially different from them.

The notion introduced in the next section captures that sense of essential sameness.

Isomorphisms of abelian groups: In this and the subsequent sections of this
file, we shall mainly be discussing theory of abelian groups, in abstract. Let us employ
the additive notation.

Let A and B be abelian groups, we mean to say, let (A,+) and (B,+) be abelian
groups. We define an isomorphism θ : A← B to be a bijection A← B such that, for
all b, b′ ∈ B, we have

θ(b+ b′) = θ(b) + θ(b′) .

When there exists an isomorphism A ← B, we say that A is isomorphic to B and we
write A ∼= B.

Remark 3.3: Given abelian groups A and B and C, then:
(1) we have A ∼= A,
(2) if A ∼= B, then B ∼= A,
(3) if A ∼= B and B ∼= C then A ∼= C.

Proof: Part (1) holds because the identity function idA is an isomorphism A← A. Part
(2) holds because, given an isomorphism θ : A← B, then the inverse θ−1 : B ← A is an
isomorphism. Part (3) holds because, given isomorphisms θ as before and φ : B ← C,
then the composite θ ◦ φ : A← C is an isomorphism. ut

Thus, isomorphism of abelian groups satisfies the reflexivity, symmetry and transitiv-
ity conditions characteristic of equivalence relations. We hesitate to call it an equivalence
relation, though, because the class of abelian groups is a proper class, not a set. Recall,
equivalence relations are defined on sets. In the jargon, we say that the relation ∼= on
abelian groups is a formal equivalence relation.
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Subgroups of abelian groups: Recall, given sets A′ ⊆ A and B′ ⊆ B and
functions f : A ← B and f ′ : A′ ← B′ such that f(b′) = f ′(b′) for all b′ ∈ B′, then we
say that f restricts to f ′ and we call f ′ a restriction of f .

The next remark is obvious.

Remark 3.4: Let B be an abelian group and C ⊆ B. Then the following three conditions
are equivalent:
(a) The group operation + : B ← B ×B restricts to a group operation C ← C×C.
(b) For all c, c′ ∈ C, we have c+ c′ ∈ C and −c ∈ C.
(c) For all c, c′ ∈ C, we have c− c′ ∈ C.

When those three equivalent conditions hold, we write C ≤ B, we call C a subgroup
of B, and we regard C as an abelian group whose operation + restricted from the
operation + on B.

As examples, the abelian group Z/4 has exactly 3 subgroups, namely, {[0]} and
{[0], [2]} and Z/4. The abelian group (Z/8)× has exactly 5 subgroups, namely:

{[1]} , {[1], [3]} , {[1], [5]} , {[1], [7]} , (Z/8)× .

For any abelian group A, two of the subgroups are {0} and A. The subgroup {0} is
called the trivial subgroup of A.

Lagrange’s Theorem for finite abelian groups: Lagrange did have an
input into the following theorem, in his work on symmetries of polynomial functions.
But that work long preceeded the formulation of the notion of a group.

Given an abelian group B, a subgroup C ≤ B and an element b ∈ B, then the set

b+ C = {b+ c : c ∈ C} = {c+ b : c ∈ C}

is called a coset of C in B..

Theorem 3.5: (Lagrange’s Theorem, in the case of finite abelian groups.) Let C be a
subgroup of an abelian group B. Then |C| divides |B|.

Proof: Let ≡ be the relation on B such that, given f, g ∈ B, then f ≡ g if and only
if f − g ∈ C. We shall show that ≡ is an equivalence relation. Let f, g, h ∈ C. Since
f − f = 0 ∈ C, we have f ≡ f . If f − g ∈ C, then g − f = −(f − g) ∈ C, so g ≡ f .
If f − g ∈ C and g − h ∈ C then f − h = (f − g) + (g − h) ∈ C, so f ≡ h. We have
confirmed that ≡ is an equivalence relation.

The equivalence class of f under ≡ is the coset f+C. So the cosets of C are mutually
disjoint. The function f + C ← C given by f + c 7→c is bijective, indeed, the inverse is
given by g 7→ g − f . So all the cosets of C have size |C|. We have shown that |B|/|C|
is the number of cosets of C. ut

As an example, we saw above that the multiplicative group (Z/8)× has exactly 1
subgroup with order 1, it has exactly 3 subgroups with order 2, it has no subgroups
with order 3, it has 1 subgroup with order 4. Evidently, the order of every subgroup of
(Z/8)× divides the order |(Z/8)×| = 4.
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Cyclic groups and cyclic subgroups: Let A be an abelian group. Given
a ∈ A, we write 2a = a+ a and 3a = a+ a+ a and so on. Generally, for any integer m,
we define ma to be the element of A such that (m+1)a = ma+a and 0.a = 0, we mean,
0Z.a = 0A, where 0Z is the integer zero and 0A is the zero element of A. Thus, for instance,
2m = m+m and 3m = m+m+m. We have (−2)a = (−a)+(−a) = −(a+a) = −(2a),
so we can write −2a unambiguously. Similarly, we can write −ma unambiguously.

We define a cyclic group to be an abelian group C such that, for some element
g ∈ C, we have

C = {mg : m ∈ Z} .

We call g a generator of C and we write C = 〈g〉.
For any abelian group A and a ∈ A, the set

〈a〉 = {ma : m ∈ Z}

is a subgroup of A. We mean to say, the set 〈a〉 becomes a subgroup when we equip it
with the restriction of the operation on A. Furthermore, 〈a〉 is plainly a cyclic group.
We call 〈a〉 the cyclic subgroup of A generated by a. When 〈a〉 is finite, we say
that a has finite order and we call |〈a〉| the order of a. Thus, when a has finite order,
the order |〈a〉| is the smallest positive integer m such that ma = 0. When 〈a〉 is infinite,
we say that a has infinite order.

Lagrange’s Theorem for finite abelian groups has the following immediate corollary.

Corollary 3.6: Let a be an element of a finite abelian group A. Then a has finite order.
Furthermore, |〈a〉| divides |A|.

To illustrate the corollary, we note that the elements [0], [1], [2], [3], [4], [5] of the
abelian group Z/6 have orders 1, 6, 3, 2, 3, 1, respectively.

The infinite abelian group Z is cyclic. In fact, Z has precisely 2 generators, namely 1
and −1. For each positive integer n, the finite group Z/n is cyclic and has generator [1],
we mean, [1]n. The next result says that, up to isomorphism, there are no other cyclic
groups.

Proposition 3.7: Let A be a cyclic group. If A is infinite, then A ∼= Z. If A is finite
with order n, then A ∼= Z/n.

Proof: Let g be a generator for A. If, as s runs over the integers, the elements sg are
mutually distinct, then A is infinite and there is an isomorphism A↔ Z given by sg = s.

Now suppose that the elements sg are not mutually distinct. Given integers s and
t such that sg = tg, then (s − t)g = 0 = (t − s)g. So there exists a positive integer
n such that ng = 0, moreover, taking n to be the smallest such positive integer, then
A = {0, g, ..., (n−1)g} and the elements 0, g, 2g, ..., (n−1)g are mutually distinct. It is
now clear that A is finite, in fact, |A| = n and there is an isomorphism A↔ Z/n given
by mg ↔ [mg]n. ut

Thus, any two infinite cyclic groups are isomorphic to each other. Also, any two
finite cyclic groups with the same order are isomorphic to each other.
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The subgroups of a cyclic group: We shall describe the subgroups of any
given cyclic group.

Proposition 3.8: Let A be a cyclic group. Then every subgroup of A is cyclic.

Proof: Let B ≤ A. If B = {0} then B = 〈0〉. Now suppose B 6= {0}. Then mg ∈ B
for some integer m. Since −mg ∈ B, we may assume m to be positive. Let n be any
integer such that ng = 0. Then n = km + r for some integers k and r with 0 ≤ r < m.
But rg = (n − km)g ∈ B. By the minimality of m, we have r = 0. So m divides n.
Therefore, B = 〈mg〉. ut

For any finite cyclic group, we have the following classification of the subgroups.

Proposition 3.9: Let A be a finite cyclic group. Then there is a bijective correspondence
between the divisors d of |A| and the subgroups B of Z/n such that d ↔ B provided
B ∼= Z/d.

Proof: Let n = |A|. By Proposition 3.7, A ∼= Z/n. So we may assume that A = Z/n.
Plainly, for each divisor d of n, the subgroup Bd = 〈[n/d]〉 is isomorphic to Z/d. It
remains only to show that A has no other subgroups. Let B ≤ A. Let m be the smallest
positive integer such that [m] ∈ B. Define k = gcd(m,n). By the Greatest Common
Divisor Theorem, there exist integers x and y such that k = xm+ yn. Then [k] = x[m],
so [k] ∈ B. But k ≤ m, so the minimality of m implies that k = m. Therefore, m
divides n, moreover, [m] is a generator of B. We conclude that B = Bn/m. ut

For example, the subgroups of the cyclic Z/6 = {[0], [1], [2], [3], [4], [5]} are

〈[0]〉 = {[0]} , 〈[3]〉 = {[0], [3]} , 〈[2]〉 = 〈4〉 = {[0], [2], [4]} , 〈[1]〉 = 〈5〉 = Z/6

The respective orders of those subgroups are 1, 2, 3, 6, which are precisely the divisors
of 6.

Classification of the subgroups of an infinite cyclic group is easier, and can be found
in Exercise 2.A.

Direct products of abelian groups: Recall, given sets X and Y , we define
the direct product X × Y to be the set of pairs (x, y) with x ∈ X and y ∈ Y .

Now consider abelian groups A and B. We make the direct product

A×B = {(a, b) : a ∈ A, b ∈ B}

become an abelian group with operation + given by

(a, b) + (a′, b′) = (a+ a′, b+ b′)

for a, a′ ∈ A and b, b′ ∈ B. It is easy to check that (A×B,+) is indeed an abelian group,
the zero element being (0, 0), the negative of (a, b) being −(a, b) = (−a,−b).

Observe that there is an isomorphism (Z/8)× ← Z/2× Z/2 given by

[1] 7→([0], [0]) , [3] 7→([0], [1]) , [5] 7→([1], [0]) , [7] 7→([1], [1]) .
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Thus, up to isomorphism, (Z/8)× can be described in terms of cyclic groups,

(Z/8)× ∼= Z/2× Z/2 .

Further examples of cyclic subgroups: Consider an abelian group (A,+),
we mean to say, an abelian group A with operation written as addition. Recall, the
order |〈a〉| of an element a ∈ A is the smallest positive integer m such that ma = 0,
unless ma 6= 0 for all positive integers m, in which case we write |〈a〉| =∞.

We have already given some examples of that, but let us now give one more. The
orders of the 6 elements [0], [1], [2], [3], [4], [5] of Z/6 are 1, 6, 3, 2, 3, 5 respectively.

When we write the operation as multiplication instead of addition, nothing changes,
except for the notation. Consider, now, an abelian group (A, .), we mean, an abelian
group A with operation written as addition. Thus, we are now writing, for instance, a−2

and a−1 and 1 and a3 in place of ..., −2a and −a and 1 and 3a, respectively. For a ∈ A,
the order |〈a〉| is the smallest positive integer m such that am = 1, except when am 6= 1
for all positive integers m.

The next table shows the powers of the 6 elements of (Z/7)×.

m
am [1] [2] [3] [4] [5] [6]

a [1] [1] [1] [1] [1] [1] [1]
[2] [2] [4] [1] [2] [4] [1]
[3] [3] [2] [6] [4] [5] [1]
[4] [4] [2] [1] [4] [2] [1]
[5] [5] [4] [6] [2] [3] [1]
[6] [6] [1] [6] [1] [6] [1]

Thus, for instance, [2]1 = [2] 6= [1] and [2]2 = [4] 6= [1] but [2]3 = [1]. So the smallest
positive integer m satisfying [2]m = [1] is 3. In other words, the element [2] of (Z/7)×

has order 3. From the table, we see that the elements [1], [2], [3], [4], [5], [6] have orders
1, 3, 6, 3, 6, 2, respectively.

Evidently, the abelian groups (Z/6,+) and ((Z/7)×, .) have something in common.
They both have exactly 1 element with order 1, exactly 1 element with order 2, exactly
2 elements with order 3, exactly 2 with order 6.

Since |(Z/7)×| = 6 = |〈[3]〉|, we have

(Z/7)× = 〈[3]〉 .

In particular, (Z/7)× is cyclic. So, by Proposition 3.7,

(Z/7)× ∼= Z/6 .

From the row labelled [3] in the latest table, we see that there is an isomorphism
(Z/7)× ← Z/6 given by [3]7 7→[1]6. Then [3]2 7→[2] and [3]3 7→[3] and so on. Thus,

[3] 7→[1] , [2] 7→[2] , [6] 7→[3] , [4] 7→[4] , [5] 7→[5] . [1] 7→[0] .
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To see that isomorphism in a very tangible way, let us compare the Cayley tables,
but with the elements of (Z/7)× arranged in a suitable order. First, the Cayley table
for Z/6 is very easy to write down.

Z/6 [0] [1] [2] [3] [4] [5]

[0] [0] [1] [2] [3] [4] [5]
[1] [1] [2] [3] [4] [5] [0]
[2] [2] [3] [4] [5] [0] [1]
[3] [3] [4] [5] [0] [1] [2]
[4] [4] [5] [0] [1] [2] [3]
[5] [5] [0] [1] [2] [3] [4]

Now let us write out the Cayley table for (Z/7)×, but with the rows and columns
ordered as dictated by the above isomorphism.

(Z/7)× [1] [3] [2] [6] [4] [5]

[1] [1] [3] [2] [6] [4] [5]
[3] [3] [2] [6] [4] [5] [1]
[2] [2] [6] [4] [5] [1] [3]
[6] [6] [4] [5] [1] [3] [2]
[4] [4] [5] [1] [3] [2] [6]
[5] [5] [1] [3] [2] [6] [4]

As a smaller example, consider the abelian groups (Z/8)× and Z/2 × Z/2. In the
previous section, we noted that those two abelian groups are isomorphic to each other.
Thus, from an abstract point of view, those two abelian groups are essentially the same.
The abelian group (Z/8)× ∼= Z/2×Z/2 is not cyclic, and all 3 of its non-identity elements
have order 2.

Quotients for abelian groups: Let B be an abelian group and let C ≤ B. We
write the set of cosets of C in B as

B/C = {b+ C : b ∈ b} .

We make B/C become an abelian group by defining the operation + to be such that

(b1 + C) + (b2 + C) = b1 + b2 + C

for b, b′ ∈ B. We must check, first of all, that the function + : B/C ← B/C × B/C is
well-defined. Then we must check that the pair (B/C,+) is an abelian group.

For well-definedness, let b′1, b
′
2 ∈ B such that b′1 + C = b1 + C and b′2 + C = b2 + C.

We are required to show that

b′1 + b′2 + C = b1 + b2 + C .

Since b′1 ∈ b1 + C, there exists c1 ∈ C such that b′1 = b1 + C. Similarly, there exists
c2 ∈ C such that b′2 = b2 + c2. Hence,

b′1 + b′2 + C = b1 + c1 + b2 + c2 + C .
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But c1 + c2 ∈ C, so c1 + c2 + C = C. The required equality follows, and the well-
definedness is confirmed.

Now let us check the axioms, one by one. The associativity for B/C follows from the
associativity for B, since

((b1 + C) + (b2 + C)) + b3 + C = b1 + b2 + b3 + C = (b1 + C) + ((b2 + C) + (b3 + C))

for b1, b2, b3 ∈ B. The Identity Axiom holds for B/C because the element 0 + C = C is
plainly the zero element of B/C. The Inversion Axiom holds because

(−b+ C) + (b+ C) = −b+ b+ C = C = b− b+ C = (b+ C) + (−b+ C)

for all b ∈ B. The commutativity for B/C is inherited from the commutativity for B,
indeed,

(b1 + C) + (b2 + C) = b1 + b2 + C = b2 + b1 + C = (b2 + C) + (b1 + C)

for all b1, b2 ∈ B. We have confirmed that the definition of B/C makes sense.
The group B/C is called the quotient of B by C.
Our first example is an infinite one. For any positive integer n, let nZ denote the

subset of Z consisting of those integers that are divisible by n. Thus, nZ = {nx : x ∈ Z}.
It is not hard to see that nZ is a subgroup of Z. We have already been discussing the
quotient of Z by nZ, though we have been employing a customized notation for it,

Z/n = Z/nZ .

The rationale for the customized notation is that the expression Z/n can be viewed as
an abbreviation of Z/nZ. For each x ∈ Z, the coset of nZ owning x is

[x]n = x+ Z/n .

Homomorphisms of abelian groups Let A and B be abelian groups. The
following definition is similar to the definition we gave for the notion of an isomorphism.
We define a homomorphism A← B to be a function θ : A← B such that

θ(b1 + b2) = θ(b1) + θ(b2)

for all b1, b2 ∈ B. Thus, the isomorphisms of abelian groups are precisely the bijective
homomorphisms.

Remark 3.10: Let A and B be abelian groups. Let θ : A ← B be a homomorphism.
Then θ(0B) = 0A. Also, for any b ∈ B, we have θ(−b) = −θ(b) and, more generally,
θ(mb) = mθ(b) for all m ∈ Z.

Proof: Since 0B + 0B = 0B, we have θ(0B) + θ(0B) = θ(0B). Adding −θ(0B) to both
sides, we deduce that θ(0B) = 0A.
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We have b + (−b) = 0B. So θ(b) + θ(−b) = 0A = θ(b) + (−θ(b)). Adding −θ(b) to
both sides, we deduce that θ(−b) = −θ(b). An easy inductive argument now yields the
more general equality. ut

Proposition 3.11: Let A and B be abelian groups. Let θ : A← B be a homomorphism.
Writing the image as

im(θ) = {θ(b) : b ∈ B}
then im(θ) ≤ A. Defining

ker(θ) = {b ∈ B : θ(b) = 0}

then ker(θ) ≤ B.

Proof: Given a, a′ ∈ im(θ), then a = θ(b) and a′ = θ(b′) for some b, b′ ∈ B. We have
a − a′ = θ(b) − θ(b′) = θ(b − b′) ∈ im(θ). Applying condition (c) of Remark 3.4, we
deduce that im(θ) ≤ A.

Given c, c′ ∈ ker(θ), then θ(c− c′) = θ(c)− θ(c′) = 0− 0 = 0, hence c− c′ ∈ ker(θ).
Arguing as before, we deduce that ker(θ) ≤ B. ut

The subgroup ker(θ) of B is called the kernel of θ. For any abelian group B,
every subgroup C ≤ B is the kernel of a homomorphism. Indeed, the homomorphism
B/C ← B given by bC 7→b has kernel C.

Theorem 3.12: (First Isomorphism Theorem for Abelian Groups:) Let A and B be
abelian groups and θ : A← B a homomorphism. Then

im(θ) ∼= B/ ker(θ) .

In fact, there is a group isomorphism Θ : im(θ) ← B/ ker(θ) such that, for all b ∈ B,
we have Θ(b+ ker(θ)) = θ(b).

Proof: Let K = ker(θ). We first show that Θ is well-defined. Given b, b′ ∈ B such that
b+K = b′ +K, then b = b′ + k for some k ∈ K. Hence, θ(b) = θ(b′) + θ(k) = θ(b′). So
Θ is well-defined.

Given b1, b2 ∈ B, then

Θ(b1 +K) + Θ(b2 +K) = θ(b1) + θ(b2) = θ(b1 + b2)

= Θ(b1 + b2 +K) = Θ((b1 +K) + (b2 +K)) .

So Θ is a homomorphism.
Plainly, Θ is surjective. Let b, b′ ∈ B such that Θ(b + K) = Θ(b′ + K). Thus,

θ(b) = θ(b′). So θ(b − b′) = θ(b) − θ(b′) = 0. Therefore, b − b′ ∈ K, in other words,
b + K = b′ + K. We have shown that Θ is injective. The bijectivity of Θ is now
demonstrated, and we conclude that Θ is an isomorphism. ut

Theorem 3.13: (Second Isomorphism Theorem for Abelian Groups:) Let H ≤ G ≥ K
be abelian groups. Then K ≤ H +K ≤ G and H ∩K ≤ H, furthermore,

(H +K)/K ∼= H/(K ∩H) .
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In fact, there is an isomorphism (H+K)/K ← H/(H∩K) given by h+K 7→h+H∩K
for h ∈ H.

Proof: Plainly, K ≤ H + K ≤ G and H ∩ K ≤ H. Let φ : (H + K)/K ← H be
the function such that φ(h) = h + K. Plainly, φ is a surjective homomorphism and
ker(φ) = H ∩ K. The required conclusion now follows from the First Isomorphism
Theorem. ut

To illustrate the theorem, let k and h be positive integers. Then, as subgroups of Z,
we have kZ + hZ = aZ and kZ ∩ hZ = bZ where a = gcd(k, h) and b = lcm(k, h).

Theorem 3.14: (Third Isomorphism Theorem for Abelian Groups:) Let E ≤ F ≤ G
be abelian groups. Then F/E ≤ G/E and

G/F ∼= (G/E)/(F/E) .

In fact, there is a group isomorphism (G/F ) ← (G/E)/(F/E) given by g + F 7→(g +
E) + (F/E) for g ∈ G.

Proof: Let ψ : G/F ← (G/E)/(F/E) be the function such that ψ(g + E) = g + F .
Plainly ψ is a well-defined surjective homomorphism and ker(Φ) = F/E. ut

As an illustration, let e, f , g be positive integers such that e is divisible by f , also f
is divisible by g. Then eZ ≤ fZ ≤ gZ. We have

gZ/fZ ∼= (f/g)Z = (gZ/eZ)/(fZ/eZ) .

Incidental Exercise: Interpret the Three Isomorphism Theorems for finite-dimensional
vector spaces. Note, given a field F and a subspace U of an F -vector space V , the
quotient space U/V is defined to be the quotent U/V , as above, with the evident
vector space structure.

The Chinese Remainder Theorem: We shall present two results, which
we shall call the Additive Chinese Remainder Theorem and the Multiplicative Chinese
Remainder Theorem. They can both be viewed as parts of a result called the Chinese
Remainder Theorem, which is best expressed in the context of ring theory.

Theorem 3.14: (Additive Chinese Remainder Theorem.) Let m and n be coprime
positive integers. Then there is an isomorphism

Z/m× Z/n← Z/mn

given by ([z]m, [z]n) 7→[z]mn for z ∈ Z.

Proof: Let θ : Z/n× Z/m← Z/nm be the specified function. Plainly, θ is well-defined.
For x, y ∈ Z, we have

θ([x]mn + [y]mn) = θ([x+ y]mn) = ([x+ y]m, [x+ y]n)

= ([x]m, [x]n) + ([y]m, [y]n) = θ([x]mn, [y]mn) = θ([x]mn) + θ([y]mn) .
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So θ is a homomorphism.
It remains only to show that θ is bijective. Since |Z/m × Z/n| = mn = |Z/mn|, it

suffices to show that θ is injective. Given [x]mn ∈ ker(θ), then x ∈ mZ ∩ nZ = mnZ
because m and n are coprime. Hence [x]mn = 1. We have shown that ker(θ) is the
trivial subgroup of Z/mn. It now follows from the First Isomorphism Theorem that θ
is injective, as required. ut

Theorem 3.15: (Multiplicative Chinese Remainder Theorem.) Let m and n be coprime
positive integers. Then there is an isomorphism

(Z/m)× × (Z/n)× ← (Z/mn)×

given by ([z]m, [z]n) 7→[z]mn where z is an integer coprime to mn.

Proof: Let z be any integer. Then z is coprime to mn if and only if z is coprime to both
m and n. So, by the previous theorem, there exists a bijection φ(Z/m)× × (Z/n)× ←
(Z/mn)× given by ([z]m, [z]n) 7→[z]mn. Now let x and y be integers coprime to mn.
Then

φ([x]mn[y]mn) = θ([xy]mn) = ([xy]m, [xy]n)

= ([x]m, [x]n)([y]m, [y]n) = φ([x]mn, [y]mn) = φ([x]mn)φ([y]mn) .

So the bijection φ is an isomorphism. ut
Let us combine the latest two theorems, and express the conclusions in a form that

is sometimes convenient.

Theorem 3.16: (Chinese Remainder Theorem, group-theoretic version.) Let n1, ..., nr
be mutually coprime positive integers. Then:
(1) There is an isomorphism of abelian groups

Z/n1 × ...× Z/nr ← Z/n1...nr

given by ([z]n1 , [z]nr) 7→[z]n1...nr for z ∈ Z.
(2) There is an isomorphism of abelian groups

(Z/n1)
× × ...× (Z/nr)× ← (Z/n1...nr)

×

given by ([z]n1 , [z]nr) 7→[z]n1...nr for z ∈ Z such that n1..., nr and z are coprime.

Proof: This holds by repeated application of the previous two theorems. ut

Sylow’s Theorem for finite abelian groups: In this section, we shall be
discussing a special case of the theorem, called Sylow’s Theorem, which will be presented
in full generality in Chapter 7.

For a prime p, an element a of an abelian group A is called a p-element provided a
has finite order and |〈a〉| is a power of p.

Theorem 2.X: (Sylow’s Theorem in the case of finite abelian groups.) Let A be a finite
abelian group. Write

|A| = pα1
1 ...p

αr
m
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where p1, ..., pr are mutually distinct primes and α1, ..., αr are natural numbers. For
each integer i in the range 1 ≤ i ≤ r, let Ai be the set of pi-elements of A. Then Ai is
a subgroup of A and

A ∼= A1 × ...× Ar .

Proof: It is clear that each Ai is a subgroup of A. Let a ∈ A. Define n = |〈a〉|. By the
Additive Chinese Remainder Theorem,

〈a〉 ∼= Z/n ∼= Z/n1 × ...× Z/nr

where ni is the largest power of pi dividing n. Therefore, a can uniquely be expressed
in the form a = a1...ar where each ai is a pi-element. The uniqueness condition, here, is
that if a = a′1...a

′
r where each a′i is a pi-element, then each ai = a′i. ut
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