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Abstract

A pointed p-group is a pointed group Pγ such that P is a p-group. We parame-
terize the pointed p-groups on a group algebra or on a block algebra of a group
algebra. The parameterization involves p-subgroups and irreducible characters of
centralizers of p-subgroups.

2020 Mathematics Subject Classification: 20C20.

Keywords: Puig category; relative multiplicity; pointed p-group; generalized piece.

1 Introduction

For a block of a group algebra, Puig [Pui86] introduced a refinement of the fusion system which
Thévenaz [The95, Section 47] called the Puig category of the block. Let F be an algebraically
closed field of prime characteristic p, let G be a finite group and let b be a block of the group
algebra FG. Let Dλ be a maximal local pointed group on the block algebra FGb. Recall
that the Puig category L of FGb associated with Dλ is defined as follows. The objects of
L are the local pointed subgroups of Dλ. For local pointed subgroups Pγ and Qδ of Dλ, the
L-morphisms Pγ ← Qδ are the conjugation monomorphisms P ∋ gy 7→y ∈ Q where g ∈ G
satisfies Pγ ≥ g(Qδ). The composition is the usual composition of group monomorphisms.
Since Dλ is determined by FGb up to G-conjugacy, the category L is determined by FGb up
to isomorphism of categories.

To explicitly specify a local pointed group Pγ on FGb, or more generally on FG, we make
use of Brauer characters. We understand an FG-character to be a Brauer character of FG,
defined by means of a fixed embedding of the torsion unit group of F in the torsion unit group
of some algebraically closed field of characteristic 0. A well-known result of Puig, recorded as
Theorem 2.1 below, expresses, for any p-subgroup P of G, a bijective correspondence between
the local points of P on FG and the irreducible FCG(P )-characters. However, the Puig category
is hard to determine explicitly because the inclusion relation between the local pointed groups
on FG is difficult to describe in terms of the corresponding irreducible characters.
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We shall assume familiarity with the theory of G-algebras. For accounts of the topic,
see Linckelmann [Lin18], Thévenaz [The95]. For any pointed groups Wω and Uµ on FG with
W ≤ U , write m(Wω, Uµ) to denote the relative multiplicity of Wω in Uµ. Recall that Wω ≤ Uµ

if and only if m(Wω, Uµ) ̸= 0. It is easy to see that, given W ≤ V ≤ U , then we have a matrix
relation

m(Wω, Uµ) =
∑
ν

m(Wω, Vν)m(Vν , Uµ)

where ν runs over the points of V on FG. That matrix relation cannot, in general, be confined
to local pointed groups. Indeed, supposing that Wω and Uµ are local pointed groups on FG,
whereupon W , V , U must be p-groups, evaluation of the sum still requires us to consider all
the points ν of V on FG, not just the local points of V on FG. We call a pointed group Uµ

on FG a pointed p-group when U is a p-group. In order to make use of the above matrix
relation, as was done in the proof of [BG22, 5.2] for instance, it may be necessary to consider
all the pointed p-groups on FG or on FGb.

The main aim of this paper is to parameterize the pointed p-groups on FG and, in particular,
on FGb. That is to say, we shall put the pointed p-groups in a bijective correspondence with
the elements of a set that can be explicitly determined.

In Section 2, we shall recall a result of Puig which establishes a bijective correspondence
between the local pointed groups on FG and some pairs which we call the pieces of FG. We
shall define the notion of a piece in Section 2. For now, let us just say that, if one is armed
with an explicit description of the poset of p-subgroups of G and the modular character tables
of the centralizers of the p-subgroups of G, then one knows explicitly what the pieces of FG
are. Towards a parameterization of the pointed p-subgroups on FG, we shall introduce the
notion of a generalized piece of FG. Again, granted an explicit description of the poset of p-
subgroups and the modular character tables, one knows explicitly what the generalized pieces
of FG are. Each pointed p-group on FG is associated with a unique generalized piece of FG.
The question to be answered, then, is as to which of the generalized pieces are associated
with local pointed groups. We shall introduce the notion of a substantive generalized piece.
The defining condition for substantivity involves involves a simple module constructed for a
semidirect product CG(Q)⋊(NP (Q)/Q), where Q ≤ P are p-subgroups of G. Proposition 2.3
allows the condition to be reformulated in terms of a Clifford-theoretic construction.

Our main result, Theorem 2.8, stated in Section 2, describes a bijective correspondence
between the pointed p-groups on FG and the substantive generalized pieces of FG. Corollary
2.9 describes how the bijective correspondence is compatible with blocks.

The proof of Theorem 2.8 will be given in Section 3, where we shall introduce the notion
of the absolute multiplicity of a generalised piece. The substantive generalized pieces are
those generalized pieces whose absolute multiplicity is nonzero. Proposition 3.12 says that
the bijective correspondence between the local pointed groups and the substantive generalized
pieces preserves absolute multiplicity.

To illustrate the theory, we shall present two examples in Section 4. For the principal 2-
blocks of the symmetric groups S4 and S5, we shall calculate the relative multiplicities between
the substantive generalized pieces. That will yield, in particular, the relative multiplicities be-
tween the pieces of the blocks, in other words, the relative multiplicities between the local
pointed groups. The method is to first determine which generalized pieces are substantive
(in effect, classifying the pointed p-groups on the block algebras), then determining the ab-
solute multiplicities of the substantive generalized pieces (in effect, determining the absolute
multiplicities of the pointed p-groups).
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2 Qualitative results

In this section, we shall define the notions of a piece of FG, a generalized piece of FG and a sub-
stantive generalized piece of FG. In Theorem 2.8, we shall describe a bijective correspondence
between the pointed p-groups on FG and the substantive generalized pieces of FG. Three of
the results in this section, Propositions 2.3, 2.7 and Theorem 2.8, are expressed in a qualitative
way, and their proofs, which rely on some formulas for multiplicities, will be deferred to the
next section.

We let Irr(FG) denote the set of irreducible FG-characters. Given ξ ∈ Irr(FG), we write
V (ξ) to denote a simple FG-module with modular character ξ. We write E(ξ) to denote an
indecomposable projective FG-module with a quotient isomorphic to V (ξ). Of course, V (ξ)
and E(ξ) are well-defined up to isomorphism.

For a p-subgroup P of G, we write the P -relative Brauer map as brP : FCG(P )← (FG)P .
We define a piece of FG to be a pair (P, θ), usually written as Pθ, where P is a p-subgroup of
G and θ ∈ Irr(FCG(P )). We allow G to permute the pieces of FG by defining g(Pθ) = (gP )gθ
for g ∈ G. In Theorem 2.8 below, we shall be extending the following fundamental theorem,
which can be found in Thévenaz [The95, 37.6].

Theorem 2.1. (Puig.) There is a G-equivariant bijective correspondence between:

• the local pointed groups Pγ on FG,

• the pieces P ′
θ of FG,

such that Pγ ↔ P ′
θ if and only if P = P ′ and E(θ) ∼= FCG(P )brP (i) where i ∈ γ. The condition

is independent of the choice of i.

To generalize that theorem, we shall need to generalize the notion of a piece. Consider the
pairs (P,Qϕ) where P is a p-subgroup of G and Qϕ is a piece of FG such that P ≥ Q. Two
such pairs (P,Qϕ) and (P ′, Q′

ϕ′) are to be deemed equivalent provided P = P ′ and the pieces
Qϕ and Q′

ϕ′ are P -conjugate. We write P↑Qϕ to denote the equivalence class of (P,Qϕ). We
call P↑Qϕ a generalized piece of FG. We allow G to permute the generalized pieces of FG
by defining g(P↑Qϕ) = (gP )↑g(Qϕ) for g ∈ G. We identify any piece Pθ with the generalized
piece P↑Pθ.

To define the substantivity condition on generalized pieces, we shall be needing the following
abstract lemma.

Lemma 2.2. Let K�G such that G/K is a p-group. Given ξ ∈ Irr(FG) and η ∈ Irr(FK), then
E(ξ) ∼= GIndK(E(η)) if and only if KResG(V (ξ)) is a direct sum of mutually non-isomorphic
G-conjugates of V (η). Furthermore, those equivalent conditions characterize a bijective corre-
spondence ξ ↔ [η]G between the irreducible FG-characters ξ and the G-conjugacy classes [η]G
of irreducible FK-characters η.

Proof. A special case of Linckelmann [Lin18, 5.12.10] asserts that any primitive idempotent
of FK remains primitive in FG. So there is a function Irr(FK) ∋ η 7→ ξ ∈ Irr(FG) such
that, letting i be a primitive idempotent of FK satisfying E(η) ∼= FKi, then E(ξ) ∼= FGi ∼=
GIndK(E(η)). By Mackey decomposition, the restriction KResG(E(ξ)) is a sum ofG-conjugates
of E(η). So the condition E(ξ) ∼= GIndK(E(η)) characterizes a bijection [η]G ↔ ξ.

Suppose [η]G ↔ ξ. Since V (η) and V (ξ), respectively, are the unique simple modules of
FK and FG not annihilated by i, Clifford’s Theorem implies that KResG(V (ξ)) is a direct
sum of G-conjugates of V (η). Since i is primitive in FG, we have dimF(iV (ξ)) = 1, so each
G-conjugate of V (ξ) occurs in KResG(V (η)) with multiplicity 1.
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We shall be applying the lemma in the following special case. Let S be a finite p-group
acting as automorphisms on a finite group K. Via the canonical isomorphism K ∼= K⋊1, we
embed K in the semidirect product K⋊S. Given η ∈ Irr(FK), we write η⋊S to denote the
irreducible F(K⋊S)-character such that η⋊S corresponds to the S-orbit of η.

Let P↑Qϕ be a generalized piece of FG. Now P↑Qϕ determines Qϕ only up to P -conjugacy,
but let us make a choice of Qϕ and write P = NP (Q)/Q. Via the conjugation action of NP (Q)
on CG(Q), we allow P to act as automorphisms on CG(Q) and we form the semidirect product
CG(Q)⋊P . Via the canonical isomorphism P ∼= 1⋊P , we embed P in CG(Q)⋊P . We call
P↑Qϕ substantive when the simple F(CG(Q)⋊P )-module V (ϕ⋊P ) restricts to an FP -module
with a nonzero free direct summand. That condition is clearly independent of the choice of
Qϕ. Observe that any piece of FG is a substantive generalized piece of FG.

The following criterion for substantivity will be proved, in a stronger quantitative form, in
Proposition 3.2 below.

Proposition 2.3. Let P↑Qϕ be a generalized piece of FG. Write NP (Q) = NP (Q)/Q. Write
NP (Qϕ) for the stabilizer of Qϕ in P and write NP (Qϕ) = NP (Qϕ)/Q. Let NP (Qϕ) ≤ S ≤
NP (Q). Then P↑Qϕ is substantive if and only if the simple F(CG(Q)⋊S)-module V (ϕ⋊S)
restricts to an FS-module with a nonzero free direct summand.

The proposition gives the following means of determining whether a given generalized piece
P↑Qϕ is substantive. Let T = NP (Qϕ). In the evident way, FCG(Q) becomes a T -algebra.
Via the representation of V (ϕ), we regard EndF(V (ϕ)) as a T -algebra. Since the cohomology
groups H1(S,F×) and H2(S,F×) are trivial, the T -algebra structure of EndF(V (ϕ)) enriches,
in a unique way, to an interior T -algebra structure. Thus, V (ϕ) becomes an FT -module. The
generalized piece P↑Qϕ is substantive if and only if, regarding V (ϕ) as an FT -module, the
regular FT -module occurs as a direct summand of V (ϕ).

We note an immediate corollary of the proposition.

Corollary 2.4. Let P↑Qϕ be a generalized piece of FG and let Q ≤ P ′ ≤ P .

(1) If P↑Qϕ is substantive, then P ′↑Qϕ is substantive.

(2) If NP (Qϕ) ≤ P ′ and P ′↑Qϕ is substantive, then P↑Qϕ is substantive.

For any piece P↑Qϕ of FG, we now construct an F(G×P )-module DiaG(P↑Qϕ), called the
diagonal module of P↑Qϕ. Still working with a choice of Qϕ, let

N = NG×P (∆(Q)) = (CG(Q)×1)∆(NP (Q)) , N = NG×P (∆(Q)) ∼= CG(Q)⋊P .

Via the canonical isomorphism CG(Q) ∼= (CG(Q)×1)∆(Q)/∆(Q), we embed CG(Q) in N and
form the induced FN -module

Dia
0
G(P↑Qϕ) = N IndCG(Q)(E(ϕ)) ∼= N IsoCG(Q)⋊P (E(ϕ⋊P ))

which is indecompoable and projective. We define the inflated FN -module

Dia0G(P↑Qϕ) = N InfN (Dia
0
G(P↑Qϕ))

which is indecomposable with vertex ∆(Q). We define DiaG(P↑Qϕ) to be the indecomposable
F(G×P )-module with vertex ∆(Q) in Green correspondence with Dia0G(P↑Qϕ). It is easy
to check that, given a P -conjugate Q′

ϕ′ of Qϕ, then DiaG(P↑Qϕ) ∼= DiaG(P↑Q′
ϕ′). Thus,

DiaG(P↑Qϕ) is determined by P↑Qϕ up to isomorphism, independently of the choice of Qϕ.
The next result tells us that, in fact, DiaG(P↑Qϕ) is uniquely determined by P↑Qϕ.
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Lemma 2.5. Let P be a p-subgroup of G and let Qϕ and Q′
ϕ′ be pieces of FG such that P ≥ Q

and P ≥ Q′. Then DiaG(P↑Qϕ) ∼= DiaG(P↑Q′
ϕ′) if and only if P↑Qϕ = P↑Q′

ϕ′.

Proof. The conclusion in one direction has been observed already. For the converse, suppose
DiaG(P↑Qϕ) ∼= DiaG(P↑Q′

ϕ′). By considering vertices, ∆(Q) and ∆(Q′) are G×P -conjugate,
hence Q and Q′ are P -conjugate and we may assume that Q = Q′. By considering Green
correspondents, E(ϕ⋊P )

∼= E(ϕ′
⋊P

). By Lemma 2.2, ϕ and ϕ′ lie in the same P -orbit of

Irr(FCG(Q)), hence Qϕ and Qϕ′ are P -conjugate.

We shall be making use of the following characterization of the diagonal module Dia(P↑Qϕ).

Lemma 2.6. Given a generalized piece P↑Qϕ on FG, then

DiaG(P↑Qϕ) ∼= G×P IndG×Q(DiaG(Qϕ)) .

Proof. By its definition, DiaG(P↑Qϕ) is the isomorphically unique indecomposable F(G×P )-
module with vertex ∆(Q) that appears as a direct summand of the F(G×P )-module

L = G×P IndNG×P (∆(Q))InfNG×P (∆(Q))IndCG(Q)(E(ϕ)) .

As a special case, DiaG(Qϕ) is the isomorphically unique indecomposable F(G×Q)-module
with vertex ∆(Q) that appears as a direct summand of

M = G×QIndNG×Q(∆(Q))InfCG(Q)(E(Q))

where the inflation is via the canonical epimorphism NG×Q(∆(Q))→ NG×Q(∆(Q)) ∼= CG(Q).
Using the Mackey formula for bisets in Bouc [Bou10, 2.3.24], we obtain an equality of bisets

NG×P (∆(Q))InfNG×P (∆(Q))IndCG(Q)
∼= NG×P (∆(Q))IndNG×Q(∆(Q))InfCG(Q) .

Hence, L ∼= G×P IndG×Q(M). Therefore, writing D = G×P IndG×Q(DiaG(Qϕ)), then D is a
direct summand of L. By Green’s Indecomposability Criterion, D is indecomposable with
vertex ∆(Q). By the uniqueness of DiaG(P↑Qϕ), we have DiaG(P↑Qϕ) ∼= D.

When we write an F(G×P )-module in the form GMP , we are indicating that the actions
of G×1 and 1×P are by left translation and right translation, respectively. Given FG-modules
L and M , we write L |M when L is isomorphic to a direct summand of M . A stronger
quantitative version of the next result will appear below as Proposition 3.5

Proposition 2.7. A generalized piece P↑Qϕ on FG is substantive if and only if

DiaG(P↑Qϕ) |GFGP .

Our main result is the following classification of the pointed p-groups on FG. We shall
prove it in the next section.

Theorem 2.8. There is a G-equivariant bijective correspondence between:

• the pointed p-groups Pα on FG,

• the substantive generalized pieces P ′↑Qϕ,

such that Pα ↔ P ′↑Qϕ if and only if P = P ′ and, letting Qδ be the local pointed group on FG
corresponding to the piece Qϕ, also letting i ∈ α, the following two equivalent conditions hold:

(a) Qδ is a maximal local pointed subgroup of Pα,

(b) we have DiaG(P↑Qϕ) ∼= G(FGi)P .
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The bijective correspondences in Theorems 2.1 and 2.8 are compatible with blocks in the
following ways. Let b be a block of FG. A piece Pθ of FG is called a piece of FGb provided
brP (b) acts as the identity on the FCG(P )-module E(θ). Obviously, letting Pγ be the local
pointed group on FG corresponding to Pθ, then Pθ is a piece of FGb if and only if Pγ is a local
pointed group on FGb. A generalized piece P↑Qϕ of FG is called a generalized piece of FGb
provided Qϕ is a piece of FGb. Theorem 2.8 has the following immediate corollary.

Corollary 2.9. Let b be a block of FG. Let Pα be a pointed p-group on FG. Let P↑Qϕ be the
substantive generalized piece of FG corresponding to Pα. Then the following three conditions
are equivalent:

(a) Pα is a pointed p-group on FGb,

(b) P↑Qϕ is a piece of FGb,

(c) we have DiaG(P↑Qϕ) |G(FGb)P .

3 Stronger quantitative results

We shall define the absolute multiplicity of a generalized piece. That will enable us to prove
stronger quantitative versions of Propositions 2.3, 2.7 and Theorem 2.8.

For any pointed group Uµ, we write m(Uµ) to denote the absolute multiplicity of Uµ, we
mean to say, the maximal size of a set of mutually orthogonal elements of µ. Given a piece Pθ

of FG, we define the absolute multiplicity of Pθ to be

m(Pθ) = θ(1) = dimF(V (θ)) .

The next remark says that the bijective correspondence in Theorem 2.1 preserves absolute
multiplicities.

Remark 3.1. Given a local pointed group Pγ on FG with corresponding piece Pθ on FG, then
m(Pγ) = m(Pθ).

Proof. Letting i ∈ γ, then m(Pγ) and m(Pθ) are both equal to the multiplicity of the projective
indecomposable FCG(P )-module FCG(P )brP (i) as a direct summand of the regular FCG(P )-
module.

To prove the results in the previous section, we shall need to extend the notion of absolute
multiplicity to generalized pieces. Given FG-modules L and M with L indecomposable, we
write m(L,M) to denote the multiplicity of L as a direct summand of M .

Let P↑Qϕ be a generalized piece on FG. As before, we make a choice of Qϕ. Again, we
write P = NP (Q) and we consider the simple F(CG(Q)⋊P )-module V (ϕ⋊P ). We define the
absolute multiplicity of P↑Qϕ to be the natural number

m(P↑Qϕ) = m(FP , PResCG(Q)⋊P (V (ϕ⋊P )))

where FP denotes the regular FP -module. Plainly, m(P↑Qϕ) is well-defined, independently
of the choice of Qϕ. Observe that, for a piece Pθ of FG, the absolute multiplicity m(Pθ) =
m(P↑Pθ) is unambiguous. The generalized piece P↑Qϕ is substantive if and only if m(Pθ) ̸= 0.

The next result is a stronger quantitative version of Proposition 2.3.
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Proposition 3.2. Let P↑Qϕ be a generalized piece on FG. Let NP (Qϕ) ≤ S ≤ NP (Q). Then

m(P↑Qϕ) = m(FS, SResCG(Q)⋊S(V (ϕ⋊S))) .

Proof. Write C = CG(Q) and T = NP (Qϕ). Define mS = m(FS, SResCG(Q)⋊S(V (ϕ⋊S))). By

considering the case where S = NP (Q), we see that it suffices to show that mT = mS . We
have CResC⋊T (V (ϕ⋊T )) ∼= V (ϕ) and

CResC⋊S(V (ϕ⋊S)) ∼=
⊕
sT⊆S

sV (ϕ) .

So dimF(V (ϕ⋊S)) = |S : T | dimF(V (ϕ⋊T )).
Since C⋊T is subnormal in C⋊S, Clifford’s Theorem implies that C⋊TResC⋊S(V (ϕ⋊S)) is

semisimple. But V (ϕ) occurs in the semisimple FC-module CResC⋊S(V (ϕ⋊S)) and V (ϕ⋊T )
is the isomorphically unique simple F(C⋊T )-module such that V (ϕ) occurs in the semisimple
F(C⋊T )-module CResC⋊T (V (ϕ⋊T )). Therefore, V (ϕ⋊T ) occurs in the semisimple F(C⋊T )-
module C⋊TResC⋊S(V (ϕ⋊S)). By Frobenius reciprocity, V (ϕ⋊S) is isomorphic to a submodule
of C⋊SIndC⋊T (V (ϕ⋊T )). A consideration of dimensions yields

V (ϕ⋊S) ∼= C⋊SIndC⋊T (V (ϕ⋊T )) .

By Mackey decomposition,

SResC⋊S(V (ϕ⋊S)) ∼= SIndTResC⋊T (V (ϕ⋊T )) .

The required equality mT = mS follows because, given any indecomposable direct summand
M of TResC⋊T (V (ϕ⋊T )), then M is free if and only if SIndT (M) is free.

We shall be needing the following result of Broué [Bro85, 3.2]. Given a p-subgroup S of
G and an FG-module M , we define the FNG(S)-module M(S) to be the quotient of MS by
the sum of the images of the trace maps trST : MT → MS , running over the strict subgroups
T < S.

Proposition 3.3. (Broué.) Let S be a p-subgroup of G, let E be an indecomposable pro-
jective FNG(S)-module, and let F be the indecomposable FG-module with vertex S in Green
correspondence with the inflated FNG(S)-module NG(S)InfNG(S)(E). Let M be a p-permutation

FG-module. Then m(F,M) = m(E,M(S)).

Another necessary ingredient is the following result of Robinson [Rob89, Proposition 1].

Proposition 3.4. (Robinson.) Given ξ ∈ Irr(FG) and a p-subgroup S of G, then

m(E(ξ),FG/S) = m(FS, SResG(V (ξ))) .

The next result implies Proposition 2.7 and, more precisely, it characterises the multiplicity
of a generalized piece in terms of the associated diagonal module.

Proposition 3.5. Given a generalized piece P↑Qϕ on FG, then

m(P↑Qϕ) = m(DiaG(P↑Q),GFGP ) .
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Proof. Let m = m(DiaG(P↑Q),GFGP ). By Proposition 3.3,

m(DiaG(P↑Qϕ),M) = m(Dia
0
G(P↑Qϕ),M(∆(Q)))

for any p-permutation F(G×P )-module M . Put M = GFGP . Let N and N be as in Section
2. Define L = NResG×P (M). Then M(∆(Q)) = L(∆(Q)) and

m = m(Dia
0
G(P↑Qϕ), L(∆(Q))) .

Let Γ ⊆ G such that 1 ∈ Γ and {(g, 1) : g ∈ Γ} is a set of representatives of the double cosets
N\(G×P )/∆(P ). For each g ∈ Γ, we define a permutation FN -module Lg = FN/Hg where
Hg = N ∩ g∆(P ). Since M ∼= F(G× P )/∆(P ), Mackey decomposition yields

L(∆(Q)) ∼=
⊕
g∈Γ

Lg(∆(Q)) .

Fix g ∈ Γ such that Lg(∆(Q)) ̸= 0. Then ∆(Q) ≤ Hg ≤ g∆(P ), hence g ∈ CG(Q) and
(g, 1) ∈ N . The condition 1 ∈ Γ implies that g = 1. Therefore, L(∆(Q)) ∼= L1(∆(Q)). Since
H1 = ∆(NP (Q)), we have L(∆(Q)) ∼= FN/P . We have shown that

m = m(N IndCG(Q)(E(ϕ)),FN/P ) .

In view of the isomorphism N ∼= CG(Q)⋊P , Lemma 2.2 yields

m = m(E(ϕ⋊P ),F(CG(Q)⋊P )/P ) .

Lemma 3.4 now implies that m = m(P↑Qϕ).

We shall be needing two abstract lemmas. We write ≤ to denote the usual partial ordering
on the idempotents of a ring.

Lemma 3.6. For any local pointed group Pγ on FG, there exists i ∈ γ such that i ≤ brP (i).

Proof. Let i0 ∈ γ. Then brP (i0brP (i0)) = brP (i0) ̸∈ J(FCG(P )). So i0brP (i0) ̸∈ J((FG)P ).
It follows that i ≤ brP (i0) for some i ∈ γ. We have brP (i) ≤ brP (brP (i0)) = brP (i0). But
brP (i0) is a primitive idempotent of FCG(P ). Therefore, brP (i) = brP (i0).

We point out that the proof of the lemma yields a stronger result, namely, that for all
i0 ∈ γ, there exists i ∈ γ satisfying i ≤ brP (i) = brP (i0).

Lemma 3.7. Let Pα be a pointed p-group on FG. Given i ∈ α, then the F(G×P )-module

G(FGi)P is indecomposable. Given Q ≤ P , then Q is a defect group of Pα if and only if ∆(Q)
is a vertex of G(FGi)P .

Proof. Writing ◦ to indicate an opposite algebra, there is an interior P -algebra isomorphism

EndF(G×1)(FGi) ∼= (iFGi)◦

such that, given r ∈ EndF(G×1)(FGi) and a ∈ iFGi, then r ↔ a◦ provided r(x) = xa for

all x ∈ FGi. Hence EndF(G×P )(FGi) ∼= ((iFGi)P )◦, which is a local algebra. Therefore,

G(FGi)P is indecomposable. Since G(FGi)P is a direct summand of the F(G×P )-module

GFGP
∼= F(G×P )/∆(P ), some vertex of G(FGi)P is contained in ∆(P ).
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Suppose Q is a defect group of Pα. Let a ∈ (iFGi)Q such that i = trPQ(a). Let r ∈
EndF(G×Q)(FGi) such that r ↔ a◦. Then trG×P

G×Q(r) = tr
∆(P )
∆(Q)(r) = idFGi. So G×Q contains a

vertex S of FGi. But S ≤ (g,u)∆(P ) for some (g, u) ∈ G×P . So the vertex (ug−1,1)S of FGi is
contained in the subgroup (G×Q) ∩∆(P ) = ∆(Q).

For the reverse inclusion, suppose ∆(Q) is a vertex of FGi. Let r ∈ EndF(G×Q)(FGi) such

that trG×P
G×Q(r) = idFGi. Let a ∈ (iFGi)Q such that r ↔ a◦. Then i = trPQ(a). We deduce that

Q contains a defect group of Pα.

Proposition 3.8. Let Pγ be a local pointed group on FG. Let Pθ be the piece of FG corre-
sponding to Pγ. Let i ∈ γ. Then DiaG(Pθ) ∼= G(FGi)P .

Proof. It is easy to check that the isomorphism class of the F(G×P )-module G(FGi)P is deter-
mined by Pγ , independently of i. So, in view of Lemma 3.6, we may assume that i ≤ brP (i).
Let brP (i) = i+

∑
k k be a primitive idempotent decomposition in (FG)P . By Lemma 3.7,

G(FGbrP (i))P = G(FGi)P ⊕
⊕
k

G(FGk)P

as a direct sum of indecomposable F(G×P )-modules. Each k has a defect group Qk strictly
contained in P . By the same lemma, G(FGi)P has vertex ∆(P ) while each G(FGk)P has vertex
∆(Qk). Inflating via the canonical epimorphism NG×P (∆(P ))→ CG(P ), we have

FCG(P )brP (i) ∼= NG×P (∆(P )InfCG(P )(E(θ)) ∼= Dia0G(Pθ) .

As a direct sum of FNG×P (∆(P ))-modules,

FGbrP (i) = FCG(P )brP (i)⊕ F(G− CG(P ))brP (i) .

The conjugation action of P on G − CG(P ) has no fixed points, so each indecomposable
direct summand of F(G−CG(P ))brP (i) has a vertex strictly contained in ∆(P ). The required
isomorphism now follows from the Green Correspondence Theorem.

The next result is a theorem of Puig that can be found in Linckelmann [Lin18, 5.12.20] or
Thévenaz [The95, 18.3].

Theorem 3.9. (Puig.) Let Qδ be a local pointed group on a G-algebra A over F. Let Pα be
be a pointed group on A such that Q ≤ P . Let i ∈ α. Then Qδ is a maximal local pointed
subgroup of Pα if and only if there exists j ∈ δ such that i = trPQ(j) and {xj : xQ ⊆ P} is a set
of mutually orthogonal idempotents.

We shall also be using the following result of [BG22, 3.1].

Theorem 3.10. Let Qδ be a local pointed group on a G-algebra A over F. Let P be a p-
subgroup of G such that Q ≤ P . Then there exists at most one point α of P on A such that
Qδ is a maximal local pointed subgroup of Pα.

Lemma 3.11. Let P be a p-subgroup of G, let α and α′ be points of P on FG and let i ∈ α
and i′ ∈ α′. Then G(FGi)P ∼= G(FGi′)P if and only if α = α′.
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Proof. If α = α′, then the isomorphism is clear. Conversely, assume the isomorphism. Lemma
3.7 implies that Pα and Pα′ have a common defect group Q. Let δ and δ′ be local points of Q
on FG such that Qδ and Qδ′ are maximal local pointed subgroups of Pα and Pα′ , respectively.
By Theorem 3.9, there exist j ∈ δ and j′ ∈ δ′ such that i = trQ(j) as a sum of |P : Q| mutually
orthogonal idempotents and similarly for i′ and j′. We have

G(FGi)P ∼= G×P IndG×Q(FGj) .

Restricting to G×Q and then applying Mackey decomposition,

(FGi)(∆(Q)) ∼= (G×QResG×P IndG×Q(FGj))(∆(Q)) ∼=
⊕

xQ⊆NP (Q)

FCG(Q) brQ(
xj)

and similarly for i′ and j′. Therefore, FCG(Q) brQ(j
′) ∼= FCG(Q) brQ(

xj) for some x ∈ NP (Q).
Hence, δ′ = xδ. So we may assume that δ′ = δ. By Theorem 3.10, α = α′.

We now prove Theorem 2.8. For each p-subgroup P of G, Lemmas 2.5 and 3.11 imply that
the isomorphism classes of DiaG(P↑Qϕ) and G(FGi)P determine P↑Qϕ and Pα, respectively.
So Propositions 3.5 and 3.8 imply that condition (b) characterizes a bijective correspondence
Pα ↔ P↑Qϕ.

It remains only to show that the conditions (a) and (b) are equivalent. Let Qδ be the local
pointed group corresponding to Qϕ. Let j ∈ δ. By Proposition 3.8, DiaG(Qϕ) ∼= G(FGj)Q. So
by Lemma 2.6,

DiaG(P↑Qϕ) ∼= G×P IndG×Q(FGj) .

If (a) holds then, by Theorem 3.9, we can take the choice of j to be such that i = trPQ(j) as a
sum of |P : Q| mutually orthogonal idempotents. We deduce (b).

Conversely, assume (b). By Lemma 3.7, Pγ has defect group Q. Let δ′ be a point of Q on
FG such that Pγ has maximal local pointed subgroup Qδ′ . By what we have already shown,
DiaG(P↑Qδ′) ∼= DiaG(P↑Qδ). By Lemma 2.5, P↑Qδ′ = P↑Qδ. So Qδ′ and Qδ are P -conjugate,
and (a) holds. The proof of Theorem 2.8 is complete.

Let us note that the bijective correspondence in that theorem preserves absolute multiplic-
ities in the following sense.

Proposition 3.12. Let Pα be a pointed p-group on FG. Let P↑Qϕ be the substantive general-
ized piece on FG corresponding to Pα. Then m(Pα) = m(P↑Qϕ).

Proof. This follows immediately from Proposition 3.5

4 The principal 2-blocks of S4 and S5

By a method that involves calculation of the absolute multiplicities, we shall determine the
relative multiplicities between the substantive generalized pieces for the principal 2-blocks of
S4 and S5. The method is based on the following immediate implication of Theorem 2.8,
Corollary 2.9, Proposition 3.12.

Corollary 4.1. Given a p-subgroup P of G, then we have an F(G×P )-isomorphism

GFGP
∼=

⊕
Qϕ

m(P↑Qϕ)G(FGiQϕ
)P

10



where Qϕ runs over the P -conjugacy classes of pieces of FG such that the generalized piece
P↑Qϕ is substantive, and iQϕ

is an element of the point α of P on FG such that Pα is the local
pointed group on FG corresponding to P↑Qϕ. Furthermore, given a block b of FG, then

G(FGb)P ∼=
⊕
Qϕ

m(P↑Qϕ)G(FGiQϕ
)P

where Qϕ now runs over the P -conjugacy classes of pieces of FGb such that P↑Qϕ is substantive.

Consider a block b of FG. Let us make some comments on some combinatorial structures
possessed by the set P(FGb) of pieces of FGb and the set P |(FGb) of substantive generalized
pieces of FGb. We understand a multiposet to be a poset such that each inclusion x′ ≤ x
is associated with a natural number m(x′, x) called the multiplicity of x′ in x. We regard
P |(FGb) as a poset such that, given P ′↑Q′

ϕ′ , P↑Qϕ ∈ P |(FGb), then P ′↑Q′
ϕ′ ≤ P↑Qϕ provided

P ′ ≤ P and the relative multiplicity m(P ′↑Q′
ϕ′ , P↑Qϕ) is nonzero. We regard P |(FGb) as a

multiposet whose multiplicities are the relative multiplicities. In an evident sense, P(FGb) is
a submultiposet of P |(FGb).

By the matrix relation for relative multiplicities in Section 1, the whole family of relative
multiplicities m(P ′↑Q′

ϕ′ , P↑Qϕ) is determined by those relative multiplicities such that P ′ ≤ P

and |P : P ′| = p. The Hasse diagram for P |(FGb) as a poset has an upwards line from P ′↑Q′
ϕ′

to P↑Qϕ if and only if that condition on P ′ and P holds. So the structure of P |(FGb) is
determined by an enriched Hasse diagram where any upwards line from an element P ′↑Q′

ϕ′ to
an element P↑Qϕ is labled with m(P ′↑Q′

ϕ′ , P↑Qϕ).
Put p = 2. Let H = S4. The principal block of FH is the unique block of FH. Let D be a

Sylow 2-subgroup of H. We have D ∼= D8, the dihedral group of order 8. Let

S = {1, C2, C
′
2, Z, C4, V4, V

′
4 , D}

be a set of representatives of the D-conjugacy classes of subgroups of D, named according
to the isomorphism classes and such that Z =G C2 < V4. Let PH be the submultiposet of
P |(FH) consisting of those substantive generalized pieces on FH that have the form P↑Qϕ

where P,Q ∈ S. The elements of PH comprise a set of representatives for the D-conjugacy
classes of substantive generalized pieces of FH having the form P↑Qϕ where P ≤ D. So a Hasse
diagram for PH , labelled with the relative multiplicities, will supply a complete description of
the multiposet P |(FH).

Determining the pieces in PH will be straightforward. To find the other elements of PH , we
shall use the Clifford-theoretic criterion for substantivity of a generalized piece. That criterion
was presented above immediately following the statement of Proposition 2.3.

Let us set up some conventions of notation for expressing pieces of FH concisely. For
any subgroup L ≤ H, we write Irr(FL) = {θL1 , θL2 , ...}, enumerated such that θL1 is the trivial
FL-character. For any p-subgroup P ≤ H, we write Pi = PθCi

where C = CH(P ). We

have Irr(FH) = {θH1 , θH2 }. For all P ∈ S − {1}, the centralizer CH(P ) is a p-group, so

Irr(FCG(P )) = {θCH(P )
1 }. Therefore, the pieces in PH are

11, 12, (C2)1, (C
′
2)1, Z1, (C4)1, (V4)1, (V

′
4)1, D1.

We claim that the only other element of PH is C ′
2↑12. To demonstrate the claim, we first

note that, for all Q ∈ S, we have θ
CH(Q)
1 (1) = 1, so there is no element P↑Q1 ∈ PH with
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P > Q. The kernel of V (θH2 ) is V4. So, given P ∈ S, then PResH(V (θH2 )) has a nonzero free
direct summand if and only if P ∈ {{1, C ′

2}. The claim is established.
Recall, the absolute multiplicity of a piece is the degree of the associated irreducible char-

acter. For the sole element of PH that is not a piece, we have C′
2
ResH(V (θH2 )) ∼= FC ′

2 and the
absolute multiplicity ism(C ′

2↑12) = 1. Applying Corollary 4.1, HFG1
∼= DiaH(11)⊕2DiaH(12).

Also, HFHC′
2

∼= DiaH((C ′
2)1) ⊕ DiaH(C ′

2↑12) and HFHR
∼= DiaH(R1) for R ∈ S − {1, C ′

2}.
By Lemma 2.6 and Mackey decomposition, H×1ResH×C′

2
(DiaH(C ′

2↑12)) ∼= 2DiaH(12). So

H×1ResH×C′
2
(DiaH((C ′

2)1)
∼= DiaH(11). Therefore, the multiposet PH has the following Hasse

diagram, where single and double lines indicate relative multiplicities 1 and 2, respectively.

11 12

(C2)1 Z1 (C ′
2)1 C ′

2↑12

(V4)1 (C4)1 (V ′
4)1

D1
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Still putting p = 2, now put G = S5. Let b be the principal block of FG. We embed H
in G and take D and S to be the same as before. Let Pb be the multiposet of substantive
generalized pieces of FGb having the form P↑Qϕ where P,Q ∈ S. The elements of Pb comprise
a set of representatives for the D-conjugacy classes of substantive generalized pieces of FGb
having the form P↑Qϕ where P ≤ D. So, as before, to specify the poset P |(FGb), it will be
enough to display a Hasse diagram for Pb, labelled with the relative multiplicities.

Replacing H with G, we retain the above convention for expressing pieces and generalized
pieces concisely. We can choose the enumeration Irr(FG) = {θG1 , θG2 , θG3 } such that θG3 is
not in b. The irreducible FG-characters θG2 and θG3 both have degree 4. The local pointed
group corresponding to the piece 13 is not on FGb, so 13 is not a piece of FGb. Writing
C = CG(C

′
2), then C ∼= C2×S3. We have Irr(FCbC) = {θC1 , θC2 }. As before, the local pointed

group corresponding to (C ′
2)2 is not on the principal block algebra of FC, so (C ′

2)2 is not a
piece of FGb. Given R ∈ S− {1, C ′

2}, then CG(R) is a p-group. So the pieces in Pb are 12 and
P1 with P ∈ S.

We claim that the other elements of Pb are P↑12, where P ∈ {C2, C
′
2, Z, C4, V

′
4}. To prove

the claim, we shall consider, for each P ∈ S, the restriction to P of the simple FG-module
V = V (θG2 ). Let Ω be the G-set of Sylow 5-subgroups of G. Observe that, as a D-set by
restriction,

Ω ∼= D/C4 ⊔D/C2 .

Enumerate Ω = {L1, ..., L6}. Let A = {
∑

iλiLi ∈ FΩ :
∑

i λi = 0} and B = F
∑

i Li. The
FG-modules FΩ/A and B are trivial and the Brauer character of FΩ is easily shown to be
2θG1 + θG2 . Therefore, A/B

∼= V . We have

m(P↑12) = dimF(P
+.V ) = dimF((P

+.A+B)/B)

where P+ denotes the sum of the elements of P .
If P = C ′

2, then we can choose the enumeration L1, ... such that the P -orbits are {L1, L2},
{L3, L4}, {L5, L6}, whereupon

P+.A = spanF{L1 + L2 + L5 + L6, L3 + L4 + L5 + L6}
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while B ∩ P+.A = {0}, hence m(P↑12) = 2. If P ∈ {C2,W}, then we can choose the
enumeration such that the P -orbits are {L1, L2}, {L3, L4}, {L5}, {L6}, whereupon

P+.A = spanF{L1 + L2, L3 + L4}

and again B ∩ P+.A = {0}, hence m(P↑12) = 2. If P ∈ {C4, V
′
4}, then we can choose the

enumeration such that {L1, L2, L3, L4} is a P -orbit, whereupon

P+.A = spanF{L1 + L2 + L3 + L4}

and yet again B ∩ P+.A = {0}, hence m(P↑12) = 1. Finally, when P ∈ {V4, D}, the whole
of FΩ is annihilated by P+, hence m(P↑12) = 0. The claim is established and moreover, the
absolute multiplicities of the pieces in Pb having been clear already, we have now determined
the absolute multiplicities of all the elements of Pb.

By Corollary 4.1,

G(FGb)P =


DiaG(11)⊕ 4DiaG(12) if P = 1,
DiaG(P1)⊕ 2Dia(P↑12) if |P | = 2,
DiaG(P1)⊕Dia(P↑12) if P ∈ {C4, V

′
4},

DiaG(P1) if P ∈ {V4, D}.

Given any element of Pb having the form P↑12, Mackey decomposition yields

G×1ResG×P (DiaG(P↑12)) ∼= |P |DiaG(12) .

It follows that, for any element of Pb having the form P1, we have

G×1ResG×P (DiaG(P1)) =

{
DiaG(11)⊕ 4DiaG(12) if P ∈ {V4, D},
DiaG(11) otherwise.

Therefore, the multiposet Pb has the following Hasse diagram, the single and double lines again
indicating relative multiplicities 1 and 2, respectively.

11 12

(C ′
2)1 Z1 (C2)1 C2↑12 Z↑12 C ′

2↑12

(V ′
4)1 (C4)1 (V4)1 C4↑12 V ′

4↑12

D1
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.....................................................................................................................................................................................................................................................................................................

Comparing the two Hasse diagrams that we have produced, it may be of interest to note
that, confining attention to the pieces, we see that the poset of local pointed groups on a source
algebra of FH is not isomorphic to the poset of local pointed groups on a source algebra of
FGb.
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