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Abstract

The pointed fusion system of a block is a structure consisting of the fusions and
relative multiplicities between the local pointed groups associated with a maximal
Brauer pair. We show that the pointed fusion system is preserved by splendid
Morita equivalences and part of the pointed fusion system is preserved by splendid
stable equivalences of Morita type.
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1 Introduction

The pointed fusion system of a block, defined precisely in Section 2, is an invariant that can
be viewed as a refinement of the fusion system of a block. Roughly, the pointed fusion system
is a package of data consisting of some local pointed groups, the fusions between the local
pointed groups and the relative multiplicities between the local pointed groups. The structure
of the pointed fusion system includes the structure of a category and the structure of a poset,
together with a labelling of the inclusions by the relative multiplicities.

We mention that a category with at least some resemblance to the pointed fusion system
was introduced by Puig in [7] and was named the Puig category in Thévenaz [8, Section 47].
We do not know whether the pointed fusion system, as a category, coincides with the Puig
category. We shall discuss the relationship between the two categories in Section 3.

One of our three main results, Theorem 3.3, says that, up to isomorphism, the pointed
fusion system of block can be constructed from the source algebra of the block. A second main
result, Theorem 5.6, describes how a splendid Morita equivalence between blocks gives rise to
an isomorphism of pointed fusion systems. The third main result, Theorem 5.7, describes how
a splendid stable equivalence of Morita type gives rise to an isomorphism between the stable
parts of the pointed fusion systems.
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In view of the first two of those theorems, it makes sense to view the pointed fusion system
as a local invariant. A consideration of the 2-blocks of the non-trivial semidirect product of C3

over Q8 shows that the fusion system does not determine the number of isomorphism classes of
simple modules of a block algebra. As we shall note in Remark 2.1, the pointed fusion system
does determine that number.

We shall assume familiarity with block theory, the theory of Brauer pairs and the theory
of pointed groups, all of which are discussed in Linckelmann [6].

After defining, in Section 2, the notion of a pointed fusion system and its stable part, we
shall show, in Section 3, that the pointed fusion system of a block is determined by a source
algebra.

We shall explain, in Section 4, how the pointed fusion system of a block yields a connection
between the Weak Donovan Conjecture and a weak version of Puig’s Conjecture.

In Section 5, we shall consider two block algebras of group algebras. We shall show, in
Theorems 5.6 and 5.7, how two kinds of equivalences between the two block algebras each give
rise to appropriate isomorphisms between the structures under consideration.

We shall give some examples. In Section 5, for blocks with Klein-four defect group, we
shall decribe the three possible underlying multiposets of the pointed fusion system. We shall
find that there is only one possibility for the underlying multiposet of the stable part of the
pointed fusion system.

2 Pointed fusion systems and their stable parts

In the three theorems mentioned in Section 1, and also in our pair of equivalent definitions of the
notion of a pointed fusion system, we shall be making use of suitable notions of isomorphism.
Formulating those notions of isomorphism will require some abstraction.

We define a poset category to be a category C equipped with:

• a partial ordering ≤ on the set of C-objects,
• a family of monomorphisms P incQ : P ← Q, called the C-inclusions, defined for all C-objects
P and Q satisfying P ≥ Q,

such that the following three conditions hold:

Strictness of inclusions: For all C-objects P ≥ Q, the inclusion P incQ is an isomorphism if
and only if P = Q, furthermore, P incP = idP .

Composability of inclusions: For all C-objects P ≥ Q ≥ R, we have P incQ.QincR = P incR.

Factorization of morphisms: For all C-morphisms ϕ : P ← Q and C-objects R ≤ Q,
there exists a unique C-object ϕ(R) and a unique C-isomorphism ψ : ϕ(R) ← R such that
ϕ.QincR = P incϕ(R).ψ. We call ψ the isomorphism with domain R restricted from ϕ.

We define a multiposet to be a posetM equipped with a function mM : N ←M×M,
such that, given x, y ∈ M, then x ≤ y if and only if mM(x, y) ̸= 0. Thus, a multiposet is an
enrichment of a poset where each inclusion is labelled with a positive integer.

Let C be a poset category. We define a pointed refinement of C to be a structure with
the following three constituents satisfying the subsequent four conditions.

• For each P ∈ C, there is a set PP whose elements are called the P-points of P . Given
x ∈ PP , we write Px = (P, x) and we call Px a P-object.

• For any C-morphism ϕ with domain P , there is a bijection Pϕ(P ) ← PP , written ϕx 7→x,
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which depends only on the isomorphism with domain P restricted from ϕ. For Q ≤ P and
y ∈ PQ, we define ϕy = ψy where ψ is the isomorphism with domain Q restricted from ϕ. We
also write ϕ(Qy) = ϕ(Q)ϕy. Note that ϕ(Qy) =

ψ(Qy).

• For any P-objectsQy and Px, there is a natural numbermP(Qy, Px) called the P-multiplicity
of Qy in Px.

Bijection composition condition: Given C-morphisms ψ and ϕ such that the composite
ψϕ is defined, letting P be the domain of ϕ and x ∈ PP , then ψϕx = ψ(ϕx).

Multiposet condition: The set of P-objects, equipped with the functionmP , is a multiposet.

Refinement condition: Given P-objects Qy and Px such that Qy ≤ Px, then Q ≤ P ,
furthermore, if Q = P then y = x

Compatibility condition: Given a C-morphism ϕ with domain P , a C-object Q ≤ P and
points x ∈ PP and y ∈ PQ, then m(ϕ(Qy),

ϕ(Px)) = m(Qy, Px).

Let C be a poset category and let P ′ and P be pointed refinements of C. We define a
C-identical isomorphism ι : P ′ ← P to be a family of bijections ιP : P ′

P ← PP such that P
runs over the C-objects and the following two conditions hold:

Preservation of morphisms: For all C-morphisms ϕ with domain P and P-points x of P,
we have

ϕ(ιP (x)) = ιϕ(P )(
ϕx) .

Preservation of multiplicities: For all C-objects Qy and Px, we have

m(QιQ(y), PιP (x)) = m(Qy, Px) .

Throughout the rest of this paper, we let O be a complete local Noetherian ring with an
algebraically closed residue field F of prime characteristic p. We let G be a finite group, we
let b a block of OG with defect group D and we let B a source D-algebra of the block algebra
B = OGb. We let F be the fusion system on D associated with B. Recall, Linckelmann [Lin18,
8.7.1] tells us that F is determined by the interior D-algebra structure of B and, in fact, by
the interior OD-OD-module structure of B.

Given any p-subgroup P of G, we write brP : FCG(P )← (OG)P for the P -relative Brauer
map. Let γ be a local point of P on B and let e be a block of FCG(P )brP (b). Consider the local
pointed group Pγ and the Brauer pair (P, e). We write Pγ ∈ (P, e) when brP (γ) ⊂ FCG(P )e.
Given Q ≤ D, we write eQ for the unique block of FCG(Q) such that brQ(1B) ∈ FCG(Q)eQ.
For any local pointed group Pγ on FGb, we say that Pγ is overshadowed by B provided
P ≤ D and Pγ ∈ (P, eP ).

Given a group R and a monomorphism θ with domain R, we define

∆(θ) = {(θ(z), z) : z ∈ R}

as a subgroup of ϕ(R)×R. We define the pointed fusion system LP(B) of B associated
with B to be the pointed refinement of F characterized as follows. Given P ≤ D, then the
LP(B)-points of P are those local points γ of P on B such that Pγ is overshadowed by B. Thus,
the LP(B)-objects are the pointed groups on B overshadowed by B. Given an LP(B)-object
Pγ and an F-morphism ϕ with domain P , we define ϕγ to be the point of ϕ(P ) on B such
that, letting i ∈ γ and letting u be a unit in B∆(ϕ), then ui ∈ ϕγ. Given another LP(B)-object
Qδ, then the LP(B)-multiplicity m(Qδ, Pγ) is 0 unless Q ≤ P , in which case m(Qδ, Pγ) is the
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relative multiplicity of Qδ in Pγ , we mean, the number of elements of δ that appear when an
element of γ is expressed as a sum of mutually orthogonal primitive idempotents of AQ.

We understand algebras and modules to be finitely generated over their coefficient rings.
For an algebra Λ over O, we let ℓ(Λ) denote the number of isomorphism classes of simple
Λ-modules.

Remark 2.1. The number ℓ(B) is equal to the number of minimal objects of LP(B) as a poset.

Proof. Since B and B are Morita equivalent, the condition τ ′ ⊆ τ characterizes a bijective
correspondence between the points τ ′ on B and the points τ on the algebra CG(1)e1 = B. So
every pointed group on B having the form 1τ is overshadowed by B.

To construct pointed fusion systems explicitly in particular cases, it is convenient to work
with an isomorphic copy P(B) of LP(B) defined as follows. We make use of Brauer characters
of FG-modules, which we understand to be K-valued, where K is a sufficiently large field of
characteristic 0 whose group of p′-roots of unity is indentified with the group of torsion units
of F. Some notation will be needed. Given an algebra Λ over O and Λ-modules L and M with
L indecomposable, we write m(L,M) to denote the multiplicity of L as a direct summand of
M . Given a subalgebra Γ ≤ Λ, we write ΓResΛ to denote the restriction functor to Γ-modules
from Λ-modules.

For P ≤ D, we define the P(B)-points of P to be the irreducible Brauer characters of
FCG(P )eP . Given a P(B)-point ξ of P and an F-morphism ϕ with domain P , we define a
ϕ(P )-point ϕξ = gξ where g ∈ G and ϕ is conjugation by g. Let V (ξ) be simple FCG(P )eP -
module with Brauer character ξ. We define the diagonal module

Dia(Pξ) = OGi

as an F(G×P )-module, where i is a primitive idempotent of (OG)P such that brP (i) does
not annihilate V (ξ), and the actions of G and P on OGi are by left and right translation,
respectively. Plainly, Dia(Pξ) is well-defined up to isomorphism, independently of the choice of
i. The primitivity of i ensures that Dia(Pξ) is indecomposable. Given Q ≤ P and a P(B)-point
η of Q, we define the P(B)-multiplicity of Qη in Pξ to be

m(Qη, Pξ) = m(Dia(Qη),G×QResG×P (Dia(Pη))) .

Thus, we have defined P(B) as a pointed refinement of F . The following remark is clear.

Remark 2.2. There is an F-identical isomorphism ι : LP(B) ← P(B) such that, given a
P(B)-point Pξ, then ιP (ξ) = γ, where γ is the local point of P on B such that brP (γ) does not
annihilate V (ξ).

Although the pointed fusion system LP(B) ∼= P(B) of B does depend on B, the uniqueness
of D and B up to G-conjugacy implies that, as a category and as a poset, LP(B) is well-defined
up to isomorphism as an invariant of B. To avoid clutter, we have refrained from writing out the
evident definitions of isomorphism for poset categories and multiposets. We have also refrained
from writing out the evident general definition of isomorphism for pointed refinements of poset
categories. But it is easy to see that, with those notions of isomorphism understood, LP(B)
is well-defined up to isomorphism of pointed refinements of fusion systems, independently of
the choices of D and B.
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As an aside, we make some brief comments about another pointed refinement of F which,
again, can be described, up to F-identical isomorphism, in two ways. Let LP |(B) be the
pointed refinement of F defined as follows. For P ≤ D, we define the LP |(B)-points of P to be
those points α of P on B such that a maximal local pointed subgroup of Pα is overshadowed by
B. Given an F-morphism ϕ with domain P , we define ϕα as above. The LP |(B)-multiplicities
are, again, the usual relative multiplicities between pointed groups. In analogy with P(B), we
let P |(B) be the following pointed refinement of F . Employing some notation and terminology
from [1], we take the P |(B)-points of P to be the substantive generalized pieces having the
form P↑Qη where Qη is a P(B)-point of P . The action of an F-morphism ϕ with domain P
is given by ϕ(P↑Qη) = (gP )↑g(Qη) where g is as before. Each P |(B)-point P↑Qη is associated
with an indecomposable G×P -bimodule Dia(P↑Qη) as defined in [1] and, given a P |(B)-point
S↑Tτ with S ≤ P , the P |(B)-multiplicity of S↑Tτ in P↑Qη is defined to be

m(S↑Tτ , P↑Qη) = m(Dia(S↑Tτ ),G×SResG×P (Dia(P↑Qη))) .

It is not hard to show that there is an F-identical isomorphism

LP |(B) ∼= P |(B) .

An advantage of LP |(B) over LP(B), useful when calculating multiplicties for particular cases,
is that, as explained in [1], the LP |(B)-multiplicities satisfy a matrix relation, and it follows
that all the multiplicties are determined by those multiplicities m(S↑Tτ , P↑Qη) for which |P :
S| = p. We omit fuller details because we shall not be discussing LP |(B) any further in this
paper.

We define the stable part of F , denoted F , to be the poset category obtained from F by
removing the trivial subgroup of D from the set of objects. Of course, F and F determine each
other. The reason for considering F is that it allows us to make the following definition. We
define the stable part of LP(B), denoted LP(B), to be the pointed refinement of F obtained
from LP(B) by removing the minimal objects. Thus, the LP(B)-objects are the local pointed
groups Pγ on B such that 1 < P ≤ D and Pγ is overshadowed by B.

3 Determination by the source algebra

We continue to work with the block algebra B = OGb, the source D-algebra B and the
fusion system F introduced in the previous section. We consider the pointed fusion system
LP = LP(B). Theorem 3.3, below, says that LP is determined by B.

The Puig category of B associated with B, which we write as L = L(B), was introduced
by Puig [7]. See also Thévenaz [8, Section 47]. We define L as follows. The L-objects are the
local pointed groups on the D-algebra B. Given L-objects Pγ and Qδ, then the L-morphisms
Pγ ← Qδ are those group monomorphisms ϕ : P ← Q such that, choosing i ∈ γ and j ∈ δ, then
there exists a unit u ∈ B∆(ϕ) satisfying uj ≤ i, where ≤ denotes the usual partial ordering of
idempotents. It is easy to check that the existence condition is independent of the choices of i
and j.

We shall be making use of an isomorphic copy L′ of L defined as follows. Let λ be the
point of D on B such that 1B ∈ λ. In other words, λ is the unique point of D on B such
that Dλ ∈ (D, eD). The L′-objects are the local pointed subgroups of Dλ. Given L′-objects
Pγ′ and Qδ′ , then the L-morphisms Pγ′ ← Qδ′ are the conjugation maps gy 7→y where g ∈ G
satisfying Pγ′ ≥ g(Qδ′). A theorem of Puig [7, 3.6], also in Thévenaz [8, 47.10], asserts that
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there is an isomorphism of categories L′ ← L acting as the identity on morphisms and sending
each L-object Pγ to the L′-object Pγ′ such that γ′ ⊇ γ.

Observe that L′ is a full subcategory of LP. We do not know whether L′ = LP as categories.
We mention that the conjecture [2, 1.5] implies that L′ = LP. We do not have an explicit
parameterization of the L′-objects or, equivalently, the L-objects. The next result, part of
Linckelmann [6, 8.7.3], implies that the inclusion of L′ in LP is an equivalence of categories.
So we do have an explicit parameterization of the isomorphism classes of L-objects in terms
of irreducible Brauer characters, indeed, writing P = P(B) then, via the chain of functors
P ∼= LP ←↩ L′ ∼= L, the isomorphism classes of L-objects are in a bijective correspondence
with the P-objects.

Theorem 3.1. (Linckelmann.) Let Pγ be a local pointed group on B overshadowed by B.
Suppose P is fully F-centralized. Then Pγ ≤ Dλ, in other words, B ∩ γ is a local point of P
on B.

In view of the isomorphism between L and the full subcategory L′ of LP, the latest theorem
has the following corollary.

Corollary 3.2. Let Pγ be a local pointed group on B such that P is fully F-centralized. Let ϕ
be an F-automorphism of P . Then there exists a local point ϕγ of P on B such that ϕ is an
L-isomorphism Pϕγ ← Pγ.

Theorem 3.3. The pointed fusion system LP is determined up to F-identical isomorphism
by the interior D-algebra structure of B.

Proof. From B, we shall construct a pointed refinement P̂ of F and an F-identical isomorphism
ι : P̂ ← LP. Let F̃ be a set of fully F-centralized subgroups of D such that F̃ is a set of
representatives of the F-isomorphism classes. For each R ∈ F̃ , let LR denote the set of points
of R on B. For each P ≤ D, let P̃ be the unique element of F̃ such that P ∼=F P̃ . We choose
and fix an F-isomorphism θP : P ← P̃ and a set P̂P together with a bijection ΘP : P̂P ← LP̃ .
For each γ̂ ∈ P̂P , we define

γ̃ = Θ−1
P (γ̂) .

For each F-morphism ϕ with domain P , we define

ϕ̃ = θ−1
ϕ(P )ϕθP .

Since ϕ̃ is an F-automorphism of the fully F-centralized subgroup P̃ , Corollary 3.2 ensures

that we can form the local point ϕ̃γ̃ of P̂ on B. We define

ϕγ̂ = Θϕ(P )(
ϕ̃γ̃) .

Let Q ≤ D and δ̂ ∈ P̂Q. When Q ̸≤ P , we let mP̂(Qδ̂, Pγ̂) = 0. Now suppose Q ≤ P . Put

θ = θ−1
P θQ as an isomorphism with domain Q̃. We define

mP̂(Qδ̂, Pγ̂) = m(θ(Q̃
δ̃
), P̃γ̃)

when θ appears as an L-isomorphism with domain Q̃
δ̃
, otherwise mP̂(Qδ̂, Pγ̂) = 0. Thus far,

we have specified all the data determining P̂, but we have not yet shown that P̂ is a pointed
refinement of F .
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For any P ≤ D, when γ denotes an element of LPP , it is to be understood that

γ̃ = B ∩ θ−1
P γ

which, by Theorem 3.1, is a point of P̃ on B. For such γ, it is also to be understood that

γ̂ = ΘP (γ̃) .

We let ι be the family of bijections ιP : P̂P ← LPP such that ιP (γ) = γ̂.
Simultaneously, we shall show that P̂ is a pointed refinement of F and that ι is an F-

identical isomorphism P̂ ← LP. We are to show preservation of morphisms and multiplicities.
That is to say, we are to show that, for all F-morphisms ϕ with domain P and γ ∈ LPP , we
have ϕγ̂ = ϕ̂γ, and we are also to show that, for all LP-objects Qδ and Pγ with Q ≤ P , we
have mP̂(Qδ̂, Pγ̂) = m(Qδ, Pγ).

Given ϕ and Pγ as specified, then

ϕ̃γ = B ∩ θ−1
ϕ(P )

ϕ
γ = B ∩ ϕ̃ θ−1

P γ = ϕ̃γ̃ = ϕ̃Θ−1
P (γ̂) .

So ϕ̂γ = Θϕ(P )(ϕ̃γ) =
ϕγ̂. We have established preservation of morphisms.

Given an LP-object Qδ with Q ≤ P , then

m(Qδ, Pγ) = m(θ
−1
P (Qδ),

θ−1
P (Pγ)) .

Let θ be as above. If θ appears as an L-isomorphism with domain Q̃
δ̃
, then

m(θ
−1
P (Qδ),

θ−1
P (Pγ)) = m(θ(Q̃

δ̃
), P̃γ̃) = mP̂(Qδ̂, Pγ̂) .

Now suppose θ does not appear as an L-isomorphism with domain Q̃
δ̃
. Then mP̂(Qδ̂, Pγ̂) = 0.

Since Q̃ is fully F-centralized, Theorem 3.1 implies that θQ(Qδ) ≤ Dλ. Hence, by the hypothesis

on θ, we have θ−1
P (Qδ) ̸≤ Dλ. Perforce, θ

−1
P (Qδ) ̸≤ θ−1

P (Pγ). So Qδ ̸≤ Pγ , in other words,
m(Qδ, Pγ) = 0. We have established preservation of multiplicities.

4 Conjectures on bounds

Let G, D, B, B be as introduced in Section 2. We continue to work with the pointed fusion
system LP = LP(B). We shall discuss three related conjectures concerning bounds in terms
of the defect group D.

A statement of Puig’s Conjecture can be found in Thévenaz [8, 38.5]. Confirmation of
an assertion stated without proof in [8, 38.6] would imply that the following conjecture is
equivalent to Puig’s Conjecture. For a finitely generated algebra Λ over O, we define FΛ =
F⊗O Λ as an algebra over F.

Conjecture 4.1. (Weak Puig Conjecture.) Fixing D, there is a bound on the dimension of
the source D-algebra FB of the block algebra FB.

The next conjecture was raised in Eaton–Kessar–Külshammer–Sambale [5, 9.1].

Conjecture 4.2. (Weak Donovan Conjecture.) Fixing D, then there is a bound on the Cartan
invariants of the block algebra FB.
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Conjecture 4.3. (Bounded Multiplicities Conjecture.) Fixing D, then there is a bound on
the multiplicities of the pointed fusion system LP of B.

Proposition 4.4. Fixing D, then the Weak Puig Conjecture holds for D if and only if the
Weak Donovan Conjecture and the Bounded Multiplicities Conjecture hold for D.

Proof. Fix B and B. Let c be the maximum of the Cartan invariants of B. Let m be the
maximum of the LP-multiplicities. We shall show that c ≤ dimF(FB) ≥ m and

dimF(FB) ≤ cm2|D|4 .

Since FB and FB are Morita equivalent, they have the same Cartan invariants and c ≤
dimF(FB). Given LP-objects Qδ and Pγ with Q ≤ P then, for all Q ≤ R ≤ P , we have

m(Qδ, Pγ) ≥
∑

ϵ∈LPR

m(Qδ, Rϵ)m(Rϵ, Pγ) .

Therefore, m = m(1τ , Dλ) for some point τ on B. Letting W be a simple B-module not
annihilated by the point B ∩ τ on B, then m = dimF(W ) ≤ dimF(FB).

By the above Morita equivalence, the number ℓ of isomorphism classes of simple B-modules
is equal to the number of isomorphism classes of simple B-modules. A theorem of Brauer and
Feit in Linckelmann [6, 6.12.1] asserts that ℓ ≤ |D|2/4 + 1. If D is trivial, then ℓ = 1. So
ℓ ≤ |D|2. We have

dimF(FB) =
∑
V

dimF(V ) dimF(LV )

where V runs over the simple FB-modules up to isomorphism and LV denotes the projective
cover of V . Each dimF(V ) ≤ m and dimF(LV ) ≤ cmℓ. Therefore, dimF(FB) ≤ cm2ℓ2.

In the case where p = 2 and D is abelian, the Weak Donovan Conjecture was proved in [5,
9.2]. Hence we obtain the following corollary.

Corollary 4.5. Fixing D and supposing p = 2 and D is abelian, then the Weak Puig Conjecture
holds for D if and only if the Bounded Multiplicities Conjecture holds for D.

5 Isomorphisms induced by equivalences

Let G, b, D, B, B be as in Section 2. In Theorem 5.6, we shall describe how a splendid
Morita equivalence from B gives rise to an isomorphism of pointed fusion systems. In Theorem
5.7, we shall describe how a splendid stable equivalence of Morita type from B gives rise to
isomorphisms between stable parts of pointed fusion systems.

Given a group R, we define ∆(R) = {(z, z) : z ∈ R} as a subgroup of R×R. Recall, given
a p-subgroup P of G and an OG-module M , the Brauer construction of M at P is defined
to be the FNG(P )/P -module

M(P ) =MP /
∑
Q≤P

trPQ(M
Q)

where trPQ denotes the transfer map MP ← MQ. A theorem of Broué [3, 3.2] implies that if
M has vertex P , then M(P ) is projective and indecomposable.
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Lemma 5.1. Let E be a finite p-group and let M be a permutation OE-OE-bimodule that is
free as a left OE-module and as a right OE-module. Let P ≤ E and let N be a permutation
OE-OP -bimodule that is free as a left OE-module and as a right OP -module. Suppose

(M ⊗OE N)(∆(P )) ̸= 0 .

Then there exists a monomorphism ϕ : E ← P such that N(∆(ϕ)) ̸= 0.

Proof. Let S be an E-E-stable basis for M . Let T be an E-P -stable basis for N . The
hypothesis implies that there exists (s, t) ∈ S×T such that xs ⊗ tx−1 = s ⊗ t for all x ∈ P .
There is a monomorphism ϕ : E ← P given by (xsϕ(x)−1, ϕ(x)tx−1) = (s, t).

Again, let P be a p-subgroup of G. In view of the equality

NG×P (∆(P )) = (CG(P )×1)∆(P )

we have an evident isomorphism

NG×P (∆(P ))/∆(P ) ∼= CG(P ) .

Via that isomorphism, given an O(G×P )-module M , we can regard M(∆(P )) as an FCG(P )-
module.

Adapting a definition in Section 2, for any pointed group Pµ on OG, choosing i ∈ µ, we
define the diagonal module

Dia(Pµ) = OGi

as an O(G×P )-module. Again, it is clear that Dia(Pµ) is well-defined independently of the
choice of i. Again, the primitivity of i implies that Dia(Pµ) is indecomposable. We claim that
the point µ of P is local if and only if Dia(Pµ) has vertex ∆(P ). Since Dia(Pµ) is a direct
summand of the permutation O(G×P )-module OG ∼= O(G×P )/∆(P ), some vertex of Dia(Pµ)
is contained in ∆(P ). There is an O-linear isomorphism

EndO(G×1)(OGi) ∼= OGi

given by σ ↔ σ(i) for an O(G×1)-endomorphism σ of OGi. Given Q ≤ P , then tr
∆(P )
∆(Q)(σ) =

idOGi if and only if tr
∆(P )
∆(Q)(σ(i)) = i. The claim follows. We mention that diagonal modules

are discussed more systematically in [1], but our present use of them is independent of the
material there.

Let Pγ be a local pointed group on B. Then Pγ is a pointed group on OG and we can
form the diagonal module M = Dia(Pγ), which is indecomposable with vertex ∆(P ). Since
bM = M , we can regard M as a B-P-bimodule. We have brP (b)M(∆(P )) = M(∆(P )). So
M(∆(P )) is a projective indecomposable FCG(P )brP (b)-module.

Proposition 5.2. Let P ≤ D. Then the condition Dia(Pγ) ∼= M characterizes a bijective
correspondence γ ↔ [M ] between:

(a) the local points γ of P on B such that Pγ is overshadowed by B,

(b) the isomorphism classes [M ] of indecomposable B-OP -bimodules M with vertex ∆(P ) such
that M | B and ePM(∆(P )) =M(∆(P )).
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Proof. By comments above, the specified condition characterizes a bijective correspondence
between the local points γ of P on B and the isomorphism classes [M ] of indecomposable B-
OP -bimodules M with vertex ∆(P ) such that M | B. For such γ and M , supposing γ ↔ [M ],
then Pγ is overshadowed by B if and only if ePM(∆(P )) =M(∆(P )).

We shall be needing two lemmas describing how isomorphisms between LP(B)-objects
induce isomorphisms between diagonal modules and how multiplicities between LP(B)-objects
can be expressed in terms of diagonal modules.

Lemma 5.3. Given an LP(B)-object Pγ and an F-morphism ϕ with domain P , then

Dia(ϕ(Pγ)) ∼= Dia(Pγ)⊗OP (P×ϕ(P ))/∆(ϕ−1) .

Proof. Let i ∈ γ and let u be a unit in B∆(ϕ). Then ui ∈ ϕγ. We have OG.ui = OGiu−1 and
u−1 ∈ B∆(ϕ−1).

Lemma 5.4. Given LP(B)-objects Pγ and Qδ with Q ≤ P , then

m(Qδ, Pγ) = m(Dia(Qδ),G×QResG×P (Pγ)) = m(Dia(Qδ),Dia(Pγ)⊗OP (P×Q)/∆(Q)) .

Proof. The first equality is clear. The functor – ⊗OP (P×Q)/∆(Q) is the restriction functor
to right OQ-modules from right OP -modules.

We shall also be needing the following part of Linckelmann [6, 8.7.1].

Theorem 5.5. (Linckelmann.) Given P,Q ≤ D, then every indecomposable direct summand
of B, as an OP -OQ-bimodule, is isomorphic to O(P×Q)/∆(ψ) for some F-isomorphism ψ to
a subgroup of P from a subgroup of Q.

We now introduce another block with the same defect group D. Let F be a finite group, let
a be a block of OF with defect group D and let A be a source D-algebra of the block algebra
A = OFa.

An A-B-bimodule M is said to induce a splendid Morita equivalence to A from B with
respect to A and B provided the following two conditions hold:

• M and the dual M∗ induce a Morita equivalence between A and B,
• M is an indecomposable direct summand of OF1A ⊗OD 1BOG.
A theorem of Puig and Scott in [6, 9.7.4] asserts that there is a splendid Morita equivalence to
A from B with respect to A and B if and only if there is an interior D-algebra isomorphism
A ∼= B. We mention that the hypothesis on the coefficient ring in [6] is slightly different, but
the proof in [6] carries over, without change, to the case of arbitrary O. Note that, when the
two equivalent conditions hold, the fusion system F associated with B is also the fusion system
associated with A.

Theorem 5.6. Suppose there is an A-B-bimodule M inducing a splendid Morita equivalence
to A from B with respect to A and B. Then an F-identical isomorphism ι : LP(A)← LP(B)
is given by Dia(PιP (γ)) ∼=M ⊗B Dia(Pγ) for any LP(B)-object Pγ.

Proof. Fix an LP(B)-object Pγ and let

L =M ⊗B Dia(Pγ)
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as an A-OP -bimodule. We shall show that there exists a point α of P on A such that Pα is a
LP(A)-object and L ∼= Dia(Pα). Since Dia(Pγ) ∼=M∗⊗AL, it will then follow, by Proposition
5.2, that the function Pα 7→Pγ is a bijection to the set of LP(A)-objects from the set of
LP(B)-objects.

The functor M ⊗B – is a Morita equivalence to A⊗O OP from B⊗O OP , so L is indecom-
posable. Letting i ∈ γ, we have Dia(Pγ) ∼= OGi, hence L ∼=Mi. So L | OF1A⊗ODW for some
indecomposable direct summand W of the OD-OP -bimodule 1BOGi. Therefore,

Dia(Pγ) ∼=M∗ ⊗A L |M∗1A ⊗OD W .

Since Dia(Pγ) has vertex ∆(P ), we have Dia(Pγ)(∆(P )) ̸= 0, so (M∗1A⊗ODW )(∆(P )) ̸= 0. By
Lemma 5.1, W (∆(ψ)) ̸= 0 for some monomorphism ψ : D ← P . Since W is indecomposable,
W ∼= O(D×P )/∆(ψ). By Theorem 5.5, ψ is an F-morphism. Let I = O(ψ(P )×P )/∆(ψ) as
an Oψ(P )-OP -bimodule. Writing I◦ for the opposite bimodule of I, we have

W ⊗OP I
◦ ∼= O(D×ψ(P ))/∆(ψ(P )) .

So –⊗ODW ⊗OP I
◦ is the restriction functor to right Oψ(P )-modules from right OD-modules.

Therefore,
L⊗OP I

◦ | OF1A ⊗OD W ⊗OP I
◦ ∼= OF1A

as A-Oψ(P )-bimodules. Since L⊗OP I
◦ is indecomposable, there exists a primitive idempotent

h′ of Aψ(P ) such that
L⊗OP I

◦ ∼= OFh′

as A-Oψ(P )-bimodules. Let f ∈ F such that ψ is conjugation by f . Let h be the primitive
idempotent of AP such that h′ = fh. Let α be the point of P on A owning h. We have

L ∼= L⊗OP I
◦ ⊗Oψ(P ) I ∼= OFh′ ⊗Oψ(P ) Oψ(P )fP ∼= OFh ∼= Dia(Pα) .

To show that α is local, let Q be a defect group of α. As an O(F×P )-module, L is
isomorphic to a direct summand of a module induced from F×Q. By Green’s indecomposability
Criterion,

L ∼= F×P IndF×Q(K) ∼= K ⊗OQ OP

for some A-OQ-bimodule K. We have

Dia(Pγ) ∼=M∗ ⊗A L ∼=M∗ ⊗A K ⊗OQ OP ∼= G×P IndG×Q(M
∗ ⊗A K) .

But Dia(Pγ) has vertex ∆(P ), so Q = P and α is local.
To show that Pα is overshadowed by A, let α′ be the point of ψ(P ) on A owning h′. Since

h′ ∈ Aψ(P ), we have ψ(P )α′ ∈ (ψ(P ), eψ(P )). But ψ(P )α′ = f (Pα) and (ψ(P ), eψ(P )) =
f (P, eP ),

so Pα ∈ (P, eP ), in other words, Pα is overshadowed by A.
We have now established that Pα is an LP(A)-object. It remains to show that ιP preserves

fusions and multiplicities. Let ϕ be an F-morphism with domain P . Lemma 5.3 tells us that,
applying the functor –⊗OP (P×ϕ(P ))/∆(ϕ−1), we have

Dia(ϕ(Pα)) ∼=M ⊗Dia(ϕ(Pγ)) .

So ϕα = ιϕ(P )(
ϕγ) and ι preserves fusions. Let Q ≤ P and let δ be an LP(B)-point of Q. Let

β be the LP(A)-point of Q such that Dia(Qβ) ∼= M ⊗B Dia(Qδ). Since M ⊗B – is a Morita
equivalence to A ⊗O OQ from B ⊗O OQ, Lemma 5.4 yields m(Qβ, Pα) = m(Qδ, Pγ). So ι
preserves multiplicities.
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An A-B-bimodule M is said to induce a splendid stable equivalence of Morita type
to A from B with respect to A and B provided the following two conditions hold:

• M and the dual M∗ induce a stable equivalence of Morita type between A and B,
• M is an indecomposable direct summand of OF1A ⊗OD 1BOG.
By [6, 9.8.2], when such M exists, the fusion system associated with A is F .

Theorem 5.7. Suppose there is an A-B-bimodule M inducing a splendid stable equivalence of
Morita type to A from B with respect to A and B. Then there is an F-identical isomorphism
ι : LP(A)← LP(B) such that Dia(PιP (γ)) is the non-projective part of M ⊗B Dia(Pγ) for any

LP(B)-object Pγ.

Proof. Write M∗ ⊗A M ∼= B ⊕ Y where Y is a projective B-B-module. Fix an LP(B)-object
Pγ . We have a direct sum of A-OP -bimodules

L⊕ L′ ∼=M ⊗B Dia(Pγ)

where L is indecomposable and non-projective while L′ is projective. Letting i ∈ γ, then
Dia(Pγ) ∼= OGi and

M∗ ⊗A L⊕M∗ ⊗A L
′ ∼= (B ⊕ Y )⊗B Dia(Pγ) ∼= Dia(Pγ)⊕ Y i .

Since M∗ ⊗A L′ and Y i are projective, Dia(Pγ) is the non-projective part of M∗ ⊗A L. We
shall show that there exists an LP(A)-object Pα such that L ∼= Dia(Pα). It will then follow, by
Proposition 5.2, that there is a bijective correspondence Pα ↔ Pγ between the LP(A)-objects
and the LP(B)-objects.

We have L ⊕ L′ ∼= Mi. So L | OF1A ⊗OD W for some indecomposable OD-OP -bimodule
W such that W | 1BOGi. Since Dia(Pγ) is the non-projective part of M∗ ⊗A L, we have

(M∗ ⊗A L)(∆(P )) ∼= (Dia(Pγ))(∆(P )) ̸= 0 .

But M∗ ⊗A L |M∗ ⊗A OF1A ⊗OD W ∼=M∗1A ⊗OD W . So

(M∗1A ⊗OD W )(∆(P )) ̸= 0 .

The next stage of the argument proceeds much as in the proof of Theorem 5.6. Let us
summarize it. Again, we find that W ∼= O(D×P )/∆(ψ) for some F-morphism ψ. Letting I be
as before, we find that there exists a primitive idempotent h′ of Aψ(P ) such that L ⊗OP I

◦ ∼=
OFh′. By considering f , h, α as before, we deduce that L ∼= Dia(Pα).

To show that α is local, adaptation of the analogous argument in the proof of Theorem
5.6 requires some care. We again use Green’s Indecomposability Criterion to show that L ∼=
K ⊗OQ OP where K is an A-OQ-bimodule and Q is a defect group of α. Again,

M∗ ⊗A L ∼= G×P IndG×Q(M
∗ ⊗A K) .

But we saw above that (M∗ ⊗A L)(∆(P )) ̸= 0. So Q = P and α is local. To show that Pα is
overshadowed by A the argument is very similar to what we did before.

Thus, we have established that Pα is an LP(A)-object, and it remains only to check preser-
vation of fusions and multiplicities. Let ϕ be as before. Write J = O(P×ϕ(P ))/∆(ϕ−1).
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Applying the functor – ⊗OP J to the isomorphism Dia(Pα) ⊕ L′ ∼= M ⊗B Dia(Pγ) and using
Lemma 5.3, we obtain

Dia(ϕ(Pα))⊕ L′ ⊗OP J ∼=M ⊗B Dia(ϕ(Pγ)) .

Since L′ ⊗OP J is a projective A-Oϕ(P )-bimodule, ϕα = ιϕ(P )(
ϕγ) and ι preserves fusions.

To show that ι preserves multiplicities, let Q be a non-trivial subgroup of P , let δ be an
LP(B)-point of Q and let β be the LP(A)-point of Q such that

Dia(Qβ)⊕N ∼=M ⊗B Dia(Qδ)

for some projective B-OQ-bimodule N . Since L′ ⊗OP O(P×Q)/∆(Q) is a projective A-OQ-
bimodule, Lemma 5.4 yields

m(Qβ, Pα) = m(Dia(Qβ),M ⊗B Dia(Pα)⊗OP O(P×Q)/∆(Q)) .

The non-projective part of M∗ ⊗A Dia(Qβ) is Dia(Qδ) and the non-projective part of M∗ ⊗A
M ⊗B Dia(Pγ) ⊗OP O(P×Q)/∆(Q) is isomorphic to the non-projective part of Dia(Pγ) ⊗OP
(P×Q)/∆(Q), so

m(Qβ, Pα) = m(Dia(Qδ),Dia(Pγ)⊗OP O(P×Q)/∆(Q)) .

By Lemma 5.4 again, m(Qβ, Pα) = m(Qδ, Pγ). So ι preserves multiplicities.

6 Klein-four defect groups

Once again, let G, b, D, B, B be as in Section 2. In the case where p = 2 and D ∼= V4, we
shall describe all the possibilities for the underlying multiposet of the pointed fusion system
LP = LP(B). This will be an application of the following theorem of Craven–Eaton–Kessar–
Linckelmann [4, 1.1]. Their proof of the theorem relies on the classification of simple finite
groups.

Theorem 6.1. (Craven–Eaton–Kessar–Linckelmann.) Supposing p = 2 and D ∼= V4 then, as
an interior D-algebra, B is isomorphic to OD or OA4 or the principal block algebra of OA5.
In the latter two cases, D is identified with a Sylow 2-subgroup of A4 or A5.

Suppose p = 2 and D ∼= V4. By Theorem 6.1, together with Theorem 5.6, we shall have
described all the possible multiposet structures for LP when we have done so in the three cases
where G ∈ {D,A4, A5} and b is the principal block of OG.

Let X, Y , Z be the proper subgroups of D. For any R ∈ {X,Y, Z,D}, we have CG(R) = D.
So there exists a unique local point γR of R on B. We write R1 = RγR . Let V1, ... be
representatives of the isomorphism classes of simple B-modules, enumerated such that V1 is
trivial. Let γi be the point on B that does not annihilate Vi. We write 1i = 1γi . Thus, every
LP-object has the form R1 or 1i. We shall show that, in the three cases where G is D, A4,
A5, respectively, the multiposet structure of LP is as shown, where the double lines indicate
multiplicity 2 and all the other multiplicities are 1.
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For the rest of this paper, we regard LP as a multiposet. Plainly, if G = D, then LP is
as depicted in the left-hand diagram. The remaining two cases share some common features.
Henceforth, suppose that G = A4 or G = A5 and let b be the principal block of OG. By
Theorem 6.1 (or an easy direct argument which we omit), B = B. The points on B are the
γi with i ∈ {1, 2, 3}. Let Ei be the indecomposable projective B-module, well-defined up to
isomorphism, such that Vi ∼= Ei/J(Ei). Transporting via the isomorphism G×1 ∼= G, we have

Dia(1i) ∼= G×1IsoG(Ei) .

To proceed further, we consider the two cases separately.
Suppose G = A4. Then OG ∼= E1 ⊕ E2 ⊕ E3 as OG-modules. So

OG ∼= Dia(11)⊕Dia(12)⊕Dia(13)

as O(G×1)-modules. We also have OG ∼= Dia(X1) ⊕ E as O(G×X)-modules, where E is
projective. Restricting via the embedding G ∼= G×1 ↪→ G×X, we have GResG×X(E) |E1 ⊕
E2⊕E3. But every projective O(G×X)-module restricts to a direct sum of 2 isomorphic copies
of a projective OG-module. Therefore, E = 0, that is, Dia(X1) ∼= OG as O(G×X)-modules
and

G×1ResG×X(Dia(X1)) ∼= Dia(11)⊕Dia(12)⊕Dia(13) .

It follows that Dia(D1) ∼= OG as O(G×D)-modules and

G×XResG×D(Dia(D1)) ∼= Dia(X1) .

Bearing in mind that the subgroups X, Y , Z are G-conjugate, we deduce, using Lemma 5.4,
that LP is as depicted in the middle diagram above.

Now suppose G = A5. Let X < H < G with H ∼= D10, the dihedral group of order 10.
We have OH ∼= L⊕L0 as O(H×X)-modules, where L0 is projective and L is indecomposable
with vertex ∆(X) and O-rank rkO(L) = 2. Since Dia(X1) has vertex ∆(X) and

Dia(X1) | OG ∼= G×XIndH×X(OH)

we have Dia(X1) |G×XIndH×X(L). Therefore, rkO(Dia(X1)) ≤ 12. For i ∈ {1, 2, 3}, inducing
via the embedding G×X ←↩ G×1 ∼= G, let EXi = G×XIndG(Ei). Then E

X
1 , EX2 , EX3 comprise

a set of representatives of the isomorphism classes of indecomposable projective O(G×X)-
modules. Since rkO(E1) = 12 and rkO(E2) = rkO(E3) = 8, we have rkO(E

X
1 ) = 24 and

rkO(E
X
2 ) = rkO(E

X
3 ) = 16. Now

B ∼= Dia(X1)⊕ E

as O(G×X)-modules, where E is projective. We have rkO(B) = 44, so 32 ≤ rkO(E) < 44. By
considering an outer automorphism of G, we see that EX2 and EX3 have the same multiplicity
as direct summands of E. The constraints we have obtained on the O-ranks imply that
E ∼= EX2 ⊕ EX3 . Therefore, rkO(Dia(X1)) = 12.

We have B ∼= E1 ⊕ 2E2 ⊕ 2E3 as OG-modules, so

B ∼= Dia(11)⊕ 2Dia(12)⊕ 2Dia(13)

as O(G×1)-modules. By the above isomorphism for E, we have

G×1ResG×X(Dia(X1)) ∼= Dia(11) , G×1ResG×X(E) ∼= 2Dia(12)⊕ 2Dia(13) .
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We have Dia(D1) ∼= OG1B as O(G×D)-modules. But B = B, so Dia(D1) ∼= B as O(G×D)-
modules and

G×XResG×D(Dia(D1)) ∼= Dia(X1)⊕ E .

Again bearing in mind the G-conjugacy of X, Y , Z, an application of Lemma 5.4 yields the
conclusion that LP is as depicted in the right-hand diagram above.

Our analysis of the three cases is now complete. It follows, in particular, that whenever
the defect group of a 2-block is V4, the underlying multiposet of the stable part LP of the
pointed fusion system is such that all the LP-multiplicities are unity and, as a poset, LP has
the following Hasse diagram.

s s s
s

.

...................................................................................................................... .
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