
LINEAR ALGEBRA NOTES

Laurence Barker, Department of Mathematics, Bilkent University

version: 22 February 2024

These notes are associated with MATH 224 Linear Algebra 2. The prerequisites are a first
course in linear algebra together with some experience in abstract mathematical reasoning
founded on set theoretic definitions.

Anyone arriving here from my other current course, MATH 220 Linear Algebra, is very
welcome. However, the material is not oriented towards the needs of the 220 course. We
shall be approaching linear algebra as a mathematical theory. The focus is on properties of
mathematical objects, not methods of calculation.

Part 1: Vector Spaces

This version of the notes is in incomplete form. I intend to add some exercises. And some
parts, being in draft, will inevitably have many slips.

1: Rings and fields

In order to give a general definition of the notion of a vector space, we shall be needing the
notion of a field. But we shall start with the more general notion of a ring, which will be
needed later, for instance, when we come to study Jordan normal form.

We define a ring to be a set R equipped with two functions R×R→ R, one of the called
addition, written as (a, b) 7→ a+ b, the other called multiplication, written as (a, b) 7→ a.b,
the two functions being required to satisfy the following seven conditions. We often write ab
instead of a.b.

Additive associativity condition: For all a, b, c ∈ R, we have a+ (b+ c) = (a+ b) + c. So
we can write a+ b+ c unambiguously.

Additive commutativity condition: For all a, b ∈ R, we have a+ b = b+ a.

Zero condition: There exists an element 0R ∈ R such that, for all a ∈ R, we have 0R+a = a.
It is easy to check that 0R is unique. Indeed, if 0′R is another zero element, then 0′R = 0R+0′R =
0′R + 0R = 0R. We call 0R the zero element of R. When no ambiguity can arise, we write 0
instead of 0R.

Negation condition: For all a ∈ R, there exists an element b ∈ R such that a+ b = 0. It is
easy to check that, given a, then such b is unique. We call b the negative of a and we write
it as −a = b.

Multiplicative associativity condition: For all a, b, c ∈ R, we have a(bc) = (ab)c. So we
can write abc unambiguously.

Unity Condition: There exists an element 1R ∈ R such that, for all a ∈ R, we have 1Ra =
a = a1R. It is easy to check that 1R is unique. We call 1R the unity element of R. We often
write 1 instead of 1R.

1

Distributivity condition: For all a, b, c ∈ R, we have a(b+c) = ab+ac and (a+b)c = ac = bc.

In a more formal language, a ring is sometimes defined as a triple (R,+, .). That notation
lists the three things that are needed in order to specify the ring: the set R, the addition
operation and the multiplication operation. In practice, though, it is conventional to abuse
notation, employing the same symbol R to denote either the underlying set or else the ring.
The ambiguity is resolved through context.

A ring R is called a commutative ring provided the following further condition holds:

Multiplicative commutativity condition: For all a, b ∈ R, we have ab = ba.

We define a field to be a commutative ring F satisfying the following further condition.

Inversion condition: We have 1F ̸= 0F and, for all non-zero a ∈ F , there exists an element
b ∈ F such that ab = 1F = ba. It is easily checked that, given a, then b is unique. We call b
the inverse of a and we write a−1 = b.

Some examples of fields are the field of rational numbers Q, the field of real numbers R,
the field of complex numbers C. Some examples of finite fields are given in an exercise at the
end of this section.

Given rings R and S, we define a homomorphism R → S to be a function θ : R → S
such that the following three cinditions hold:

• we have θ(a+ b) = θ(a) + θ(b) for all a, b ∈ R,

• we have θ(ab) = θ(a)θ(b) for all a, b ∈ R,

we have θ(1R) = 1S .

When θ is bijective, we call θ an isomorphism. When there exists an isomorphism R→ S,
we say that R and S are isomorphic and we write R ∼= S.

Consider rings R, S, T . Observe that the identity function idR on R is an isomorphism
R → R. Given an isomorphism θ : R → S, then θ−1 : S → R is an isomorphism and, given
an isomorphism ϕ : S → T , then ϕ ◦ θ : R → T is an isomorphism. Thus, isomorphism has
the following features of an equivalence relation: reflexivity, R ∼= R; symmetry, if R ∼= S then
S ∼= R; transitivity, if R ∼= S and S ∼= T , then R ∼= T . Strictly speaking, equivalence relations
are defined only on sets, whereas the class of rings is a proper class. In jargon acknowledging
that quibble, ring isomorphism is said to be a formal equivalence relation.

Consider a ring R and a subset A ⊆ R. We call A a subring of R, writing A ≤ R, provided
1R ∈ A and the addition and multiplication operations on R restrict to functions A×A→ A.
In that case, A becomes a ring whose addition and multiplication operations are those two
restricted functions.

We define the centre of a ring R, denoted Z(R), to be the set of elements z ∈ R such that
az = za for all a ∈ R. Plainly, Z(R) is a subring of R.

♣ ♡ ♢ ♠

Exercise 1.1.A: Let R be a ring. Show that, for all a ∈ R, we have 0Ra = 0R = a0R.

Exercise 1.1.B: Let θ : R→ S be a ring homomorphism. Show that θ(0R) = 0S .

Exercise 1.1.C: Let E and F be fields. Show that any homomomorphism E → F is injective.

Exercise 1.1.D: Given a ring R and a positive integer n, we write Matn(R) to denote the
ring of n× n matrices with entries in R. Show that Z(Matn(R)) ∼= Z(R).

2

Exercise 1.1.E: The ring of quaternions H is defined to be the ring such that Z(H) = R and
H has an R-basis {1, i, j, k} where

i2 = j2 = k2 = ijk = −1 .

Show that there is an injective ring homomorphism H→ Mat2(C) given by

t+ ix+ jy + kz 7→ t+ xI + yJ + zK

for t, x, y, z ∈ R, where I =

[
−i 0
0 i

]
and J =

[
0 −1
1 0

]
and K =

[
0 i
i 0

]
. Show that

det(t+ xI + yJ + zK) = t2 + x2 + y2 + z2 .

Hence or otherwise, show that every nonzero element q = t+ ix+ jy + kz has an inverse and
give a formula for q−1.

Exercise 1.1.F For a positive integer n, we write Z/n to denote the ring of modulo n residue
classes of the integers. Show that Z/n is a field if and only if n is prime.

2: Vector spaces

Let F be a field. We define a vector space over F , sometimes called an F -vector space to
be a set V equipped with functions V ×V → V and F ×V → V , the first called addition and
written as (x, y) 7→ x+y, the second called scalar multiplication and written as (λ, x) 7→ λx,
the two functions satisfying the following seven conditions.

Zero Condition: There is a vector 0 ∈ V , called the zero vector, such that, for all x ∈ V ,
we have x+ 0 = x.

Negation Condition: For all x ∈ V , there exists −x ∈ V such that x+ (−x) = 0.

Commutativity Condition: For all x, y ∈ V , we have x+ y = y + x.

Additive Associativity Condition: For all x, y, z ∈ V , we have x+ (y + z) = (x+ y) + z.
Hence, we can write x+ y + z unambiguously.

Multiplicative Associativity Condition: For all λ, µ ∈ F and x ∈ V , we have λ(µx) =
(λµ)x.

Distributivity Condition: For all λ, µ ∈ F and x, y ∈ V , we have (λ+ µ)x = λx+ µx and
λ(x+ y) = λx+ λy.

Identity Condition: For all x ∈ V , we have 1x = x.

Given F -vector spaces U and V , we define an F -linear map U → V , to be a function
α : U → V such that the following conditions hold:

Preservation of addition: We have α(x+ y) = α(x) + α(y) for all x, y ∈ U .

Preservation of scalar multiplication: We have α(λx) = λα(x) for all λ ∈ F and x ∈ U .

Those two conditions can be combined as the condition that

α(λx+ µy) = λα(x) + µα(y)

for all λ, µ ∈ F and x, y ∈ U . When F can be understood from the context, an F -linear map
is called simply a linear map.

3

A bijective linear map is called an isomorphism When there exists an isomorphism U →
V , we say that U and V are isomorphic and we write U ∼= V .

Much as above, isomorphism of F -vector spaces is a formal equivalence relation. Indeed,
for F -vector spaces U , V , W , it is easy to see that: U ∼= U ; if U ∼= V then V ∼= U ; if U ∼= V
and V ∼= W , then U ∼= W .

♣ ♡ ♢ ♠

Exercise1. 2.1: Let F be any field. Give an example of an F -vector space V and a subspace
U strictly contained in V such that U ∼= V .

3: Spanning, linear independence, bases, dimension

In this version of the notes, we omit to cover much of the eponymous material of this section.
Let us just note a few major points, omiting proofs. The following result is a key to many
others.

Lemma 3.1: (Steinitz Exchange Lemma.) Let V be a vector space. Let r1, ..., rm be in-
dependent vectors in V and let S be a finite spanning set in V . Then n ≤ |S| and the
elements of S can be enumerated as S = {s1, ..., sm} such that, for all 1 ≤ k ≤ m, the set
{r1, ..., rk, sk+1, ..., sm} is a spanning set for V .

The remaining results in this section are not hard to deduce using theb latest lemma.

Theorem 3.2: Let V be a vector space, let T be a linearly independent set in V and let S be
a finite spanning set in V . Then T is finite and |T | < |S|. In particular, V has a finite basis
and all the bases of V have the same size.

When the equivalent conditions in the latest theorem hold, we say that V is finite-
dimensional and we define the dimension of V , denoted dim(V), to be the size of a basis
for V .

Theorem 3.3: Given a subspace U of a finite-dimensional vector space V , then U is finite-
dimensional, any basis for U can be extended to a basis for V and, in particular, dim(U) ≤
dim(V). Furthermore, dim(U) = dim(V) if and only if U = V .

♣ ♡ ♢ ♠

Exercise 1.3.1: Let F be a finite field. Show that there exists a prime p and a positive integer
n such that V = pn.

Exercise 1.3.2: Let F3 denote the field with order 3. Let V be a 3-dimensional F3-vector
space. How many subspaces does V have?

4: Coding theory

We shall discuss coding theory over the field F2 = {0, 1}. Similar notions apply, with little
change, when F2 is replaced by another finite field.

Let n be a positive integer. Consider the standard n-dimensional vector space Fn
2 over F2.

We define a linear code in Fn to be a subspace of F2. Note that, given a liear code C in Fn

and letting m = dimF2(C), then C ∼= Fm
2 and, in particular, |C| = |Fm

2 | = 2m.

4

A linear coding scheme over F2 is a triple (C, e, d) consisting of:

• a code C in a standard vector space Fn,

• an bijective function e : C ← Fm called the encoding function,

• a function d : Fm → Fn, called the decoding function, such that de = idFm .

The primary use of coding theory is as follows. We are to transmit a message as a sequence
of message words, each message word being a binary string with length m. We encode each
message word as a binary string of length n, called the corresponding codeword. During
transmission, the data may be corrupted, and the received binary strong of length n, called the
received word, may be different from the codeword. We decode the received word, detecting
errors if possible, correcting errors if possible.

More precisely, the message word w ∈ Fm is encoded as a codeword e(w) ∈ Fn. The
received word r ∈ Fn is then decoded as d(r) ∈ Fm. The condition de = id ensures that, if
r = e(w), then d(r) = w. Of course, if r is not a codeword, then there must have been an error
of transmission. The main aim of coding theory is to optimize the task of detecting or even
correcting small errors of transmission.

We define the weight wt(x) of a binary string x to be the number of nonzero digits of x.
Thus, for example wt(100010110) = 4.

We view Fn
2 as a metric space where the distance d(x, y) between two elements x, y ∈ F2 is

d(x, y) = wt(x− y) .

Note that, since 1 + 1 = 0 in F2, we have x − y = x + y. Thus, writing x = x1...xn and
y = y1...yn as binary strongs, with each xi, yi ∈ F2, then

d(x, y) = |{i : xi ̸= yi}| .

For instance, d(1011010, 1010110) = 2.

Proposition 4.1: Let C be a linear code over F2 and let k be the minimum weight of a
nonzero element of C. Then k is the minimum distance between any two distinct elements of
C. Furthermore:

(1) If the number of errors of transmittion in the received word is less than k, then we can
detect any error of transmission.

(2) If the number of errors of transmission in the received word is less than k/2, then we can
correct any error of transmission.

Proof: Let c be a codeword of minimum weight, and let x and y be codewords such that d(x, y)
is minimum. Since wt(c) = d(c, 0) and 0 is a codeword, we have wt(c) ≥ d(x, y). But x− y is
a codeword, so d(x, y) = wt(x− y) ≥ wt(c).

Part (1) is obvious. For part (2), we note that, to correct a received word r with less than
k/2 errors of transmission, we can replace r with the unique nearest codeword. ⊓⊔

The crucial features of linear coding scheme are the rate m/n, which one prefers to be small
for the sake of efficiency, and the minimum weight of a codeword k, which determines the error-
detection and error-correction capabilities. Note that those parameters are determined entirely
by the code C, presuming that the decoding function operates in the manner described in the
proof of the latest proposition.

♣ ♡ ♢ ♠

5

We shall examine coding schemes of the following form. The scheme is determined by a
matrix A ∈ Matn−m,m(F2), we mean, A is an (n − m) × m matrix over F2. We define the
generating matrix G and the Hamming matrix H to be

G =

[
Im
A

]
∈ Matn,m(F2) , H =

[
A In−m

]
∈ Matn−m,n(F2) .

The matrix G determines the encoding function. For a message word w ∈ Fm, the correspond-
ing codeword is e(w) = Gw ∈ Fn. The matrix H can be used as a check to see whether a
received word r ∈ Fn is a codeword. Indeed, we have the following little proposition, whose
proof we defer to Exercise 1.4.B

Proposition 4.2: With the notation above Hr = 0 if and only if r is a codeword.

The matrix H can also be used to evaluate the decoding function, as explained below.
For such coding schemes, let us describe a method for writing out a table for decoding

by hand, and then a method for using the table carry out the encoding and decoding. To
construct the decoding table, we carry out the following steps:

Step 1: Write out the message words w in the top row of the table.

Step 2: In the next row, beneath each message word w, write out the corresponding codeword
Gw.

Step 3: Having completed a row of the decoding table, if not all of the possible received words
have yet appeared in the table, choose a received word r of minimal weight such that r has not
yet appeared. Write r in the first column of the next row. Complete the row by entering r+ c
in the column containing codeword c. Repear this step until all 2n possible received words
appear.

Step 4: Add a new column on the right such that, for each received word r, the entry in the
rightmost column of the rowe containing r is Hr. We call Hr the syndrome of r. All the
received words in a row have the same syndrome.

The following is the decoding table for A =

1 0 1
1 1 0
0 1 1

. We have

G =



1 0 0
0 1 0
0 0 1
1 0 1
1 1 0
0 1 1

 , H =

1 0 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1

 .

000 001 010 011 100 101 110 111 syndrome

000000 001101 010011 011110 100110 101011 110101 111000 000

100000 101101 110011 111110 000110 001011 010101 011000 110
010000 011101 000011 001110 110110 111011 100101 101000 011
001000 000101 011011 010110 101110 100011 111101 110000 101
000100 001001 010111 011010 100010 101111 110001 111100 100
000010 001111 010001 011100 100100 101001 110111 111010 010
000001 001100 010010 011111 100111 101010 110100 111001 001
100001 101100 110010 111111 000111 001010 010100 011001 111

6

Encoding message words is very easy. As we have already said, for a message word w, the
encoding of w is e(w) = Gw. Thus, for the example above, the sequence of message words

100, 101, 000, 111

is encoded as
100110, 101011, 000000, 111000 .

To decode a received word r, we could just scan the whole table to find r. Then the decoded
word d(r) is the message word in the same column as r. An algorithm that is rather faster to
implement by computer is to calculate the syndrome Hr, then find the received word in the
same row as the syndrome, whereupon the decoded word d(r) is again the message word in
the same column as r. Thus, returning again to the example above, the sequence of received
words

100111, 101010, 010000, 011010

has corresponding syndromes
001, 001, 011, 111

and correponding message words
100, 101, 000, 010 .

None of those 4 syndromes are 000, so none of those received words are codewords.
So, had someone wished to communicate the message 100, 101, 000, 111, had they encoded

it as 100110, 101011, 00000, 111000, had 5 inversions of digits taken place in the ether, and had
we received 100111, 101010, 010000, 011010, then our decoding would be 100, 101, 000, 010, but
we would at least know that the data had been corrupted.

Exercise 1.4.A: Consider the linear coding scheme with generating matrix

G =


1 0 0
0 1 0
0 0 1
1 1 0
0 1 1

 .

(a) Write down the Hamming matrix H for the coding scheme.

(b) Write down a decoding table in the manner described above, including the column of syn-
dromes.

(c) Encode the message words 100, 011, 110, 000.

(d) For the received words 10010, 01001, 00011, 11111, write down the syndromes, then write
down the decoded words.

(e) What is the rate of the code?

(f) If a single codeword is transmitted, what is the maximum number of errors of transmission
(the maximum number of inversions of binary digits) such that any error can be detected? And
what is the maximum number of errors of transmission (the maximum number of inversions
of binary digits) such that any error can be corrected?

Exercise 1.4.A: Prove Proposition 4.2. (Hint: this can be done using the rank-nullity formula,
or by a direct combinatorial argument.)

7

Solutions

Solution 1.4.A: Part (a). We have H =

[
1 1 0 1 0
0 1 1 0 1

]
.

Part (b). The decoding table:

000 001 010 011 100 101 110 111 syndrome

00000 00101 01011 01110 10010 10111 11001 11100 00

00001 00100 01010 01111 10011 10110 11000 11101 01
00010 00111 01001 01100 10000 10101 11011 11110 10
01000 01101 00011 00110 11010 11111 10001 10100 11

Part (c). Respectively, 100, 011, 110, 000 have encodings 10010, 01110, 11001, 00000.
Part (d). Respectively, 10010, 01001, 00011, 11111 have syndromes 00, 10, 11, 11 and

decodings 100, 010, 010, 101.
Part (e). The rate is 3/5.
Part (f). The minimum weight of a nonzero codeword is 2. So up to 1 error of transmission

can always be detected, and up to 0 errors of transmission can always be corrected.

8

