
Inner product spaces

Laurence Barker, Department of Mathematics, Bilkent University

version: 26 April 2024

In current form, these notes are for supplementary material for two courses, MATH 220 Linear
Algebra and MATH 224 Linear Algebra 2.

1



1: Real inner product spaces

For vector spaces over arbitrary fields, there is no general notion of distance or angle. In this
section, we shall be confining attention to real vector spaces, that is, vector spaces over the field
of real numbers R. Sometimes, not always, when dealing with real vector spaces, consideration
of distances or angles may be useful or necessary. In that case, the real vector spaces involved
have to be viewed as something more than just real vector spaces. They have to be equipped
with some or other kind of further structure. In this section, we shall be considering real vector
spaces equipped with a further structure called an inner product.

Let V be a real vector space, we mean, a vector space over the field of real numbers R. We
define a bilinear form on V to be a function R← V × V , written ⟨x | y⟩ 7→(x, y), such that
the following two conditions hold:

Left linearity: For all y ∈ V , the function R← V given by ⟨x | y⟩ 7→x is a linear map.

Right linearity: For all x ∈ V , the function R← V given by ⟨x | y⟩ 7→y is a linear map.

Explicitly, the conditions are that, for all x, x′, y, y′ ∈ V and λ, λ ∈ R, we have

⟨λx+ λ′x′ | y⟩ = λ⟨x | y⟩+ λ′⟨x′ | y⟩ , ⟨x |λy + λ′y′⟩ = λ⟨x | y⟩+ λ′⟨x | y′⟩ .

We shall be considering two further conditions:

• The bilinear form is said to be symmetric provided ⟨x | y⟩ = ⟨y |x⟩ for all x, y ∈ V .

• The bilinear form is said to be positive-definite provided ⟨x |x⟩ > 0 for all x ∈ V with
x ̸= 0.

We define an inner product on V to be a positive-definite symmetric bilinear form on V . We
define a real inner product space to be a real vector space equipped with an inner product.

Let V be a real inner product space. For x ∈ V , we define the norm of x to be the
non-negative real number

∥x∥ =
√
⟨x |x⟩ .

Recall that, given λ ∈ R, the modulus of λ is defined to be the non-negative real number |λ|
such that |λ| = λ when λ ≥ 0 whereas |λ| = −λ when λ ≤ 0. Thus, for all λ ∈ R, we have
|λ| =

√
λ2.

Theorem 1.1: (Cauchy–Schwarz Inequality.) Given a real inner product space V and x, y ∈ V ,
then

|⟨x | y⟩| ≤ ∥x∥.∥y∥

with equality if and only if x = 0 or y = 0 or Rx = Ry.
Proof: We may assume that y ̸= 0. Given t ∈ R, then

at2 + bt+ c = ∥x+ ty∥2 ≥ 0

where a = ∥y∥2 and b = 2|⟨x | y⟨| and c = ∥x∥2. Note that a ̸= 0. The graph of the function
at2 + bt+ c 7→t is a parabola ranging in the upper half place, possibly touching the horizontal
axis, but not below that axis. So the discriminant of the quadratic equation at2 + bt + c = 0
must be non-positive, b2 − 4ac ≤ 0, in other words, (b/2)2 ≤ ac. Taking a square root, we
obtain the asserted inequality.

The argument also shows that x + ty = 0 for some t if and only if (b/2)2 = ac. The rider
follows. ⊓⊔
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For nonzero x and y in V , we define the angle between x and y to be the real number θ
in the interval 0 ≤ θ < π such that

cos(θ) = ⟨x | y⟩/∥x∥.∥y∥ .

The Cauchy–Schwarz Inequality assures us that θ is well-defined.

Theorem 1.2: (Triangle Inequality, first version.) Given a real inner product space and
u, v ∈ V , then

∥u+ v∥ ≤ ∥u∥+ ∥v∥ .

Proof: Applying the previous theorem, ∥u+ v∥2 = ∥u∥2 + 2⟨u | v⟩+ ∥v∥2 ≤ (∥u∥+ ∥v∥)2. ⊓⊔

Theorem 1.3: (Triangle Inequality, second version.) Given a real inner product space and
x, y, z ∈ V , then

∥x− z∥ ≤ ∥x− y∥+ ∥y − z∥ .

Proof: Putting u = x − y and v = y − z, then u + v = x − z. Thus, we have reduced to the
previous version of the theorem. ⊓⊔

Conversely, Theorem 1.2 can be quickly deduced from Theorem 1.3 by putting x = u and
y = 0 and z = −v. So the two theorems are really just two different ways of expressing one
and the same theorem.

For x, y ∈ V , we define
d(x, y) = ∥x− y∥ .

We call d(x, y) the distance between x and y. The Triangle Inequality says that

d(x, z) ≤ d(x, y) + d(y, z) .

Put roughly, without digressing into any precise definition of a triangle, the theorem says that,
for any triangle with vertices in a real inner product space, the length of any one of the edges
is at most the sum of the lengths of the other two edges.

(Which of the above two versions of the Triangle Inequalty should we memorize for the
exam? If one is asking that question, then one is doing it wrong. The trick is to understand,
not to memorize. Everything about the Triangle Inequality can be recovered from just un-
derstanding what it is saying about the three edges of a triangle. That way, one sees that
Theorems 1.2 and 1.3 have the same content. In a similar way, everything about the Cauchy–
Schwartz Inequality can be recovered from just understanding how it tells us that the angle
between two non-zero vectors is well-defined.)

♣ ♡ ♢ ♠

For any positive integer n, we shall equip the real vector space Rn with an inner product
called the dot product. Thus, Rn will become a real inner product space. This is an important
example. Indeed, as we shall later explain, every finite-dimensional real inner product space
is, in a sense which we shall make precise, a copy of Rn equipped with the dot product.

Recall, the standard basis for Rn is defined to be the basis {e1, ..., en} such that, given
x ∈ Rn and writing x = (x1, ..., xn) with each xs ∈ R, then x =

∑
s xses.
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We define the dot product on Rn to be the inner product ⟨– | –⟩ such that, given x, y ∈ Rn

and writing x = (x1, ..., xn) and y = (y1, ..., yn), then

⟨x | y⟩ =
∑

s∈[1,n]

xsys .

Note that the norm of x is

∥x∥ =
√
x.x =

√∑
s
x2s .

The distance between x and y is

d(x, y) =

√∑
s
(xs − ys)2 .

When we speak of the inner product space Rn, it is to be understood that, unless otherwise
sdtated, the inner product under consideration is the dot product.

Often, as an alternative notation, the dot product is expressed using a dot, x.y written
instead of ⟨x | y⟩. That alternative notation can potentially be ambiguous because, in many
different contexts, a dot is sometime used just to separate expressions that are being multiplied
together, as in 2.3 = 6. Still, if no multiplication operation on Rn is under consideration then,
for x, y ∈ Rn, the notation x.y is unambiguous.

It is worth restating, in the special case V = Rn, the two theorems in the previous section.
The proofs are by substituting x = (x1, ..., xn) and y = (y1, ..., yn) into the statements of those
theorems.

Theorem 1.4: (Cauchy–Schwarz Inequality, classical version.) Given real numbers x1, ..., xn,
y1, ..., yn, then (∑

r
xryr

)2
≤

(∑
s
x2s

)(∑
t
y2t

)
.

Proof: Substitute x = (x1, ..., xn) and y = (y1, ..., yn) into Theorem 1.1. ⊓⊔

Theorem 1.5: (Triangle Inequality, classical version.) Given real numbers u1, ..., un, v1, ...,
vn, then √∑

r
(ur + vr)2 ≤

√∑
s
u2s +

√∑
t
v2t .

Proof: Substitute u = (u1, ..., un) and v = (v1, ..., vn) into Theorem 1.2. ⊓⊔

♣ ♡ ♢ ♠

FISH Introduce ℓ2(R).

4



2: Orthonormal bases for real inner product spaces

Often, a system of linear equations has to be laboriously solved in order to express a given
vector as a linear combination of the elements of a given basis. We shall be discussing, for real
inner product spaces, a special kind of basis with the virtue that the coefficients of the linear
combination can be calculated in a different way.

♣ ♡ ♢ ♠

To avoid confusion over some fundamental notions that involve some subtleties in the case
of infinite-dimensional vector spaces, let us make a careful review of some background. Even
for real or complex vector spaces, infinite sums of vectors do not always make sense, indeed,
they can only make sense under suitable topological constraints. Such matters lie within the
realm of functional analysis, and they lie outside our scope.

Recall that, for any subset S of a vector space X over any field F , we define a linear
combination of elements of S to be a sum having the form∑

s∈S
λss

where each λs ∈ F and there are only finitely many s such that λs ̸= 0. Thus, although S
may be infinite, the sum makes sense because it can be viewed as the finite sum of the nonzero
terms. When the condition ∑

s

λss = 0

implies that each λs = 0, we call S linearly independent. The set of linear combinations
of elements of S, denoted span(S), is a subspace of X. When span(S) = X, we say call S a
spanning set for X. When S is a linearly independent spanning set for X, we call S a basis
for X.

In functional analysis and its applications, a basis for X, as defined above, is sometimes
called an algebraic basis, in distinction from another concept, called a topological basis,
for which infinite sums may be considered.

♣ ♡ ♢ ♠

Often, a system of linear equations has to be laboriously solved in order to express a given
vector as a linear combination of the elements of a given basis. We shall be discussing a special
kind of basis where the coefficients of the linear combination can be calculated in a different
way.

A subset U of a real inner product space V is said to be orthogonal provided ⟨u |u′⟩ = 0
for all u, u′ ∈ S with u ̸= u′. Obviously, any orthogonal subset of V is linearly independent.
When U is an orthogonal subset of V and also a basis for V , we call U an orthogonal basis
for V .

Remark 2.1: Let V be a real inner product space with orthogonal basis U . Given x ∈ V , then

x =
∑
u∈U

⟨u |x⟩
∥u∥2

u .
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Proof: Since U spans V , we can write x =
∑

u xuu with each xu ∈ R, only finitely many of the
xu being nonzero. The required conclusion follows upon evaluating ⟨u |x⟩. ⊓⊔

An element v ∈ V is called a unit vector in V provided ∥v∥ = 1. Note that, for any
nonzero vector v in V , the vector v/∥v∥ is a unit vector. In casual language, the replacement
of v with v/∥v∥ is called normalization.

A subset W of V is called orthonormal provided W is orthogonal and every element of
W is a unit vector. When W is an orthonormal subset of V and also a basis for V , we call W
an orthonormal basis for V .

Note that any orthogonal basis V for V gives rise to an orthonormal basis W for V given
by

W = {v/∥v∥ : v ∈ V} .

Thus, W is obtained from V by normalizing the elements. The next remark is just a special
case of the previous one.

Remark 2.2: Let V be a real inner product space with orthonormal basis W. Given x ∈ V ,
then

x =
∑
w∈W
⟨w |x⟩w .

♣ ♡ ♢ ♠

Now let V be a finite-dimensional real inner product space. Let n = dim(V ). Specializing
a definition above, an orthogonal basis for V is a basis having the form {u1, ..., un} where
⟨us |ut⟩ = 0 for all s, t ∈ [1, n] with s ̸= t. Recall, the Kronecker delta symbol δs,t is defined
to be the real number

δs,t =

{
1 if s = t,
0 if s ̸= t.

An orthonormal basis for V is a basis having the form {w1, ..., wn} where

⟨us |ut⟩ = δs,t .

As an example, the standard basis {e1, ..., en} of Rn satisfies

⟨es | et⟩ = δs,t

for all s, t ∈ [0, n]. In other words, the standard basis of Rn is an orthonormal basis for Rn.
For ease of reference, we write down the following specialization of Remarks 2.3 and 2.4.

Remark 2.3: Let V be a finite-dimensional real inner product space and let x ∈ V . Then:

(1) For any orthogonal basis {u1, ..., un} of V , we have x =
∑

s∈[1,n]

⟨us |x⟩
∥us∥2

us .

(2) For any orthonormal basis {w1, ..., wn} of V , we have x =
∑

s∈[1,n]

⟨ws |x⟩ws .

The next result shows that, when using coordinates with respect to an orthonormal basis,
the inner product behaves very much like the dot product.
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Corollary 2.4: Let {w1, ...wn} be an orthonormal basis for an inner product space V . Let
x, y ∈ V . For each s ∈ [1, n], write xs = ⟨ws |x⟩ and ys = ⟨ws | y⟩. Then:

⟨x | y⟩ =
∑
s

xsys .

In particular ∥x∥ =
√∑

s
x2s. Also, d(x, y) =

√∑
s
(xs − ys)2.

♣ ♡ ♢ ♠

We now describe a process, called the Gram–Schmidt Process, for replacing any given
basis U of a finite-dimensional real inner product space with an orthogonal basis V and thence,
if desired, an orthonormal basis W.

Let V be a finite-dimensional real inner product space. Let U = {u1, ..., un} be any basis
for V . We define a set V = {v1, ..., vn} recursively by the condition that v1 = u1 and

vr = ur −
⟨v1 |ur⟩
∥v1∥2

v1 − ...− ⟨vr−1 |ur⟩
∥vr−1∥2

vr−1

for 2 ≤ r ≤ n. We define a set W = {w1, ..., wn} where each wr is the normalization of vr.
That is to say, wr = vr/∥vr∥.

Proposition 2.5: With the notation above, V is an orthogonal basis for V . Also, W is an
orthonormal basis for V .

Proof: For 2 ≤ s ≤ n, if the vectors v1, ... , vs−1 are mutually orthogonal, then a direct
calculation shows that ⟨vt | vs⟩ = 0 for all 1 ≤ t < s. An inductive argument now yields the
conclusion that V is an orthogonal basis for V . It follows immediately thatW is an orthonormal
basis for V . ⊓⊔

For any x ∈ V with x ̸= 0, we define the normalization of x to be the vector x/∥x∥. Note
that the normalization x′ = x/∥x∥ has norm ∥x′∥ = 1. We defineW = {w1, ..., wn} where each
wr is the normalization of vr. Thus,

wr = vr/∥vr∥ .

The previous remark immediately implies the next one.

Proposition 2.6: With the notation above, W is an orthonormal basis for V .

The latest proposition immediately yields the next theorem.

Theorem 2.7: Any finite-dimensional real inner product space has an orthonormal basis.

In the previous section, we promised to explain how any finite-dimensional real inner prod-
uct space can be viewed as a copy of Rn. We now fulfill that promise.

Given real inner product spaces U and V , we define an isometry α : U ← V to be an
isomorphism U ← V such that

⟨α(v) |α(v′)⟩ = ⟨v | v′⟩ .

When there exists an isometry U ← V , we say that U is isometric to V .
Consider inner product spaces U , V , W . The identity operator on U is an isometry. So

U is isometric to U . Inverses of isometries are isometries. So if U is isometric to V , then V
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is isometric to U . Composites of isometries are isometries. So if U is isometric to V and if V
is isometric to W , then U is isometric to W . Thus, isometry of real inner product spaces is a
formal equivalence relation. Intuitively, when U is isometric to V , we understand that, as real
inner product spaces, U and V have the same structure, in other words, U and V are copies
of each other. The next result says that every finite-dimensional real inner product space is,
in the above sense, a copy of Rn for some n.

Corollary 2.8: Let V be a finite-dimensional real inner product space. Let n = dim(V ). Then
V is isometric to Rn.

Proof: By Theorem 2.7, V has an orthonormal basis W = {w1, ..., wn}. Let {e1, ..., en} be the
standard basis for Rn. By Corollary 2.4, there is an isometry U ← Rn such that ws 7→es. ⊓⊔

♣ ♡ ♢ ♠

The Gram–Schmidt process adapts in a straightforward way to the case of a real inner
product space with an infinite enumerated basis U = {u1, u2, ...}. Defining V = {v1, v2, ...} and
W{w1, w2, ...} by the same formulas as before, the proof of Proposition 2.5 shows that V is an
orthogonal set and W is an orthogonal basis. Noting that span{u1, ...un} = span{v1, ..., vn}
for each n, we see that V is a basis for V , henceW is a basis. In conclusion, V is an orthogonal
basis for V and U is an orthonormal basis for V .

Let us give another example of a real inner product space. Consider an infinite sequence
a0, a1, ... of real numbers such that an ̸= 0 for only finitely many natural numbers n. Let
f : R← R be the function such that

f(t) = a0 + a1t+ a2t
2 + ... =

∑
m∈N

amtm .

We call f the real polynomial function with coefficients a0, a1, ... . Note that f determines
the coefficients am, indeed,

am =
1

m!
f (m)(0)

where f (m) denotes the m-th derivative of f . If an ̸= 0 and am = 0 for all m ≥ n, then we say
that f has degree n. In that case,

f(t) = a0 + a1t+ ...+ ant
n .

It is to be understood that if f(t) = 0, then f has degree −1.
Let P (R) denote the set of real polynomial functions. We make P (R) become a real vector

space such that, given f, g ∈ P (R) then (f + g)(t) = f(t) + g(t) and, given a ∈ R, then
(af)(t) = a(f(t). Thus, we can write af(t) unambiguously. We make P (R) become a real
inner product space with inner product given by

⟨f | g⟩ =
∫ 1

−1
f(t)g(t) dt .

Let I0, I1, ... be the real polynomial functions such that

In(t) = tn .
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Since a real polynomial function determines its coefficients, the set {I0, I1, ...} is a basis for
P (R). But

⟨Im | In⟩ =
∫ 1

−1
Im(t)In(t) dt =

∫ 1

−1
tm+n dt

=
tm+n+1

m+ n+ 1

∣∣∣∣t=1

t=−1

=

{
2/(m+ n+ 1) if m+ n is even,
0 if m+ n is odd.

Evidently, {I0, I1, ...} is not an orthogonal basis for P (R).
For any nonzero real numbers a0, a1, ..., the set {a0I0, a1I1, ...} is a basis for P (R). in

particular, defining

Kn(t) =
1

2n

(
2n
n

)
tn

then {k0,K1, ...} is a basis for P (R). The Legendre polynomial functions L1, L1, ... are
defined to be the real polynomial functions such that {L0, L1, ...} is the orthogonal basis for
P (R) obtained from {K0,K1, ...} by the Gram–Schmidt process without any normalization.
We shall be investigating the Legendre polynomial functions in some of the exercises.
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3: Orthogonal complements for real inner product spaces

FISH.

Theorem 3.1: Given a subspace U of a finite-dimensional real inner product space V , then
V = U ⊕ U⊥.

Proof: FISH.

The conclusion of the theorem can fail when we drop the hypothesis that V is finite-
dimensional. For example, putting V = ℓ2(R), let U be the subspace of V consisting of those
sequences x such that xi ̸= 0 for only finitely many natural numbers i. Then U ̸= V and
U⊥ = {0}, hence U ⊕ U⊥ ̸= V .

FISH.
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Procedural exercises on Sections 1, 2, 3

1.A: Let u1 = (2, 1, 1) and u2 = (1, 3, 1) and u3 = (1, 1, 3). Let {w1, w2, w3} be the orthonormal
basis for R3 obtained from {u1, u2, u3} by the Gram–Schmidt process. Evaluate w1 and w2

and w3.

1.B: Directly from the definition of the Legendre polynomial functions Ln in Section 2, give
explicit formulas for L0(t), L1(t), L2(t), L3(t).

1.C:

11



Theoretical exercises on Sections 1, 2, 3

1.Z: Let ⟨– | –⟩ be a bilinear form on a real vector space V . We say that ⟨– | –⟩ is non-
degenerate provided the following two conditions hold:

Left non-degeneracy: all x ∈ V with x ̸= 0, there exists y ∈ V satisfying ⟨x | y⟩ ≠ 0.

Right non-degeneracy: for all y ∈ V with y ̸= 0 there exists x ∈ V satisfying ⟨x | y⟩ ≠ 0.

(a) Suppose V is finite-dimensional. Show that ⟨– | –⟩ is left non-degenerate if and only if ⟨– | –⟩
is right non-degenerate.

(b) Give an example of an infinite-dimensional V such that the conclusion of part (a) fails.

1.Y: Let ⟨– | –⟩ be a non-degenerate bilinear form on a real vector space V . Show that ⟨x |x⟩ ≠ 0
for some x ∈ V .

1.X: Let V be a finite-dimensional inner product space and α : V → V a function such that
α(x, y) = d(α(x), α(y)) for all x, y ∈ V . Show that α is an isometry. (Warning: most of the
work is in showing that α is a linear map.)

1.W: Let V be a real inner product space with subspaces X and Y such that V = X ⊕Y . Let
U = {u1, u2, ...} be a finite or countably infinite basis for V such that, for each index s, either
us ∈ X or us ∈ Y . Let V be the orthogonal basis obtained from U by the Gram–Schmidt
process. Show that, for each s, if us ∈ X then vs ∈ X whereas if us ∈ Y then vs ∈ Y .

1.V: A function f : R ← R is said to be even provided f(−t) = f(t) for all t ∈ R, odd
provided f(−t) = −f(t) for all t. Directly from the definition of the Legendre polynomial
functions Lnin Section 2, show that if n is even then Ln is even whereas if n is odd then Ln is
odd.

1.U: In this question, you may assume the equality

1 +m+ n

2m+n

∑
a∈[0,m],b∈[0,n]

(
m
a

)2(
n
b

)2 ∫ 1

−1
(t− 1)m+n−a−b(t+ 1)a+b dt = δm,n

for all natural numbers m and n.

(a) Directly from the above equality and the definition of the functions Ln in Section 2, show
that

Ln(t) =
1

2n

∑
b∈[0,n]

(
n
b

)2
(t− 1)n−b(t+ 1)b .

Hint: Consider the coefficient of tn in the equality (t+ t)2n = (t+ 1)n(t+ 1)n.

(b) Evaluate ∥Ln∥2.
(c) Let f be a real polynomial function of degree at most n. Show that

f =
∑

m∈[0,n]

bmLm

for some real numbers b0, ..., bn. Express bm in terms of f and Lm.

Comment: I do not know of any way of proving the baroque equality above using just the basic
techniques of calculus. The equality arises, eventually, after first using some more sophisticated
techniques to establish the equivalence of various characterizations of the Legendre functions.
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1.S: Let U be a subspace of a real inner product space V . Suppose that, for all v ∈ V , there
exists π(v) ∈ U such that d(π(v), v) is minimal, in other words, d(π(v), v) ≤ d(u, v) for all
u ∈ U .

(a) Show that V = U ⊕ U⊥.

(b) Show that π is a linear map.
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Solutions to procedural exercises on Section 1

1.A: We have w1 = u1/∥u1∥ =
1√
6
(2, 1, 1). Let v2 = u2 − (w1.u2)w1. Then

v2 = (1, 3, 1)−
(

1√
6
(2, 1, 1).(1, 3, 1)

)
1√
6
(2, 1, 1) = (1, 3, 1)− (2, 1, 1) = (−1, 2, 0) .

We have w2 = u2/∥u2∥ =
1√
5
(−1, 2, 0). Let v3 = u3 − (w1.u3)w1 − (w2.u3)w2. Then

v3 = (1, 1, 3)−
(

1√
6
(2, 1, 1).(1, 1, 3)

)
1√
6
(2, 1, 1)−

(
1√
5
(−1, 2, 0).(1, 1, 3)

)
1√
5
(−1, 2, 0)

= (1, 1, 3)− (2, 1, 1)− 1

5
(−1, 2, 0) = 1

5

(
(−5, 0, 10)− (−1, 2, 0)

)
=

2

5
(−2,−1, 5) .

We have w3 = v3/∥v3∥ = (−2,−1, 5)/∥(−2,−1, 5)∥ = 1√
30

(−2,−1, 5). In conclusion,

w1 =
1√
6
(2, 1, 1) , w2 =

1√
5
(−1, 2, 0) , w3 =

1√
30

(−2,−1, 5) .

1.B: We begin with a little observation that will simplify the calculations. Let f ∈ P (R) and
FISH.

foxcat
We have

K0(t) = 1 , K1(t) = t , K2(t) = 3t2/2 , K3(t) = 5t3/2

for all t ∈ R. Also, L0 = K0. We are to calculate

Ln = Kn −
⟨K0 |Kn⟩
∥K0∥2

K0 − ...− ⟨Kn−1 |Kn⟩
∥K0∥2

Kn−1 .

Since
foxcat
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Solutions to theoretical exercises on Section 1

1.A:

1.B:
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