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1: Real inner product spaces

For vector spaces over arbitrary fields, there is no general notion of distance or angle. In this
section, we shall be confining attention to real vector spaces, that is, vector spaces over the field
of real numbers R. Sometimes, not always, when dealing with real vector spaces, consideration
of distances or angles may be useful or necessary. In that case, the real vector spaces involved
have to be viewed as something more than just real vector spaces. They have to be equipped
with some or other kind of further structure. In this section, we shall be considering real vector
spaces equipped with a further structure called an inner product.

Let V be a real vector space, we mean, a vector space over the field of real numbers R. We
define a bilinear form on V to be a function R← V × V , written ⟨x | y⟩ 7→(x, y), such that
the following two conditions hold:

Left linearity: For all y ∈ V , the function R← V given by ⟨x | y⟩ 7→x is a linear map.

Right linearity: For all x ∈ V , the function R← V given by ⟨x | y⟩ 7→y is a linear map.

Explicitly, the conditions are that, for all x, x′, y, y′ ∈ V and λ, λ ∈ R, we have

⟨λx+ λ′x′ | y⟩ = λ⟨x | y⟩+ λ′⟨x′ | y⟩ , ⟨x |λy + λ′y′⟩ = λ⟨x | y⟩+ λ′⟨x | y′⟩ .

We shall be considering two further conditions:

• The bilinear form is said to be symmetric provided ⟨x | y⟩ = ⟨y |x⟩ for all x, y ∈ V .

• The bilinear form is said to be positive-definite provided ⟨x |x⟩ > 0 for all x ∈ V with
x ̸= 0.

We define an inner product on V to be a positive-definite symmetric bilinear form on V . We
define a real inner product space to be a real vector space equipped with an inner product.

Let V be a real inner product space. For x ∈ V , we define the norm of x to be the
non-negative real number

∥x∥ =
√
⟨x |x⟩ .

Recall that, given λ ∈ R, the modulus of λ is defined to be the non-negative real number |λ|
such that |λ| = λ when λ ≥ 0 whereas |λ| = −λ when λ ≤ 0. Thus, for all λ ∈ R, we have
|λ| =

√
λ2.

Theorem 1.1: (Cauchy–Schwarz Inequality.) Given a real inner product space V and x, y ∈ V ,
then

|⟨x | y⟩| ≤ ∥x∥.∥y∥

with equality if and only if x = 0 or y = 0 or Rx = Ry.
Proof: We may assume that y ̸= 0. Given t ∈ R, then

at2 + bt+ c = ∥x+ ty∥2 ≥ 0

where a = ∥y∥2 and b = 2|⟨x | y⟨| and c = ∥x∥2. Note that a ̸= 0. The graph of the function
at2 + bt+ c 7→t is a parabola ranging in the upper half place, possibly touching the horizontal
axis, but not below that axis. So the discriminant of the quadratic equation at2 + bt + c = 0
must be non-positive, b2 − 4ac ≤ 0, in other words, (b/2)2 ≤ ac. Taking a square root, we
obtain the asserted inequality.

The argument also shows that x + ty = 0 for some t if and only if (b/2)2 = ac. The rider
follows. ⊓⊔
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For nonzero x and y in V , we define the angle between x and y to be the real number θ
in the interval 0 ≤ θ < π such that

cos(θ) = ⟨x | y⟩/∥x∥.∥y∥ .

The Cauchy–Schwarz Inequality assures us that θ is well-defined.

Theorem 1.2: (Triangle Inequality, first version.) Given a real inner product space and
u, v ∈ V , then

∥u+ v∥ ≤ ∥u∥+ ∥v∥ .

Proof: Applying the previous theorem, ∥u+ v∥2 = ∥u∥2 + 2⟨u | v⟩+ ∥v∥2 ≤ (∥u∥+ ∥v∥)2. ⊓⊔

Theorem 1.3: (Triangle Inequality, second version.) Given a real inner product space and
x, y, z ∈ V , then

∥x− z∥ ≤ ∥x− y∥+ ∥y − z∥ .

Proof: Putting u = x − y and v = y − z, then u + v = x − z. Thus, we have reduced to the
previous version of the theorem. ⊓⊔

Conversely, Theorem 1.2 can be quickly deduced from Theorem 1.3 by putting x = u and
y = 0 and z = −v. So the two theorems are really just two different ways of expressing one
and the same theorem.

For x, y ∈ V , we define
d(x, y) = ∥x− y∥ .

We call d(x, y) the distance between x and y. The Triangle Inequality says that

d(x, z) ≤ d(x, y) + d(y, z) .

Put roughly, without digressing into any precise definition of a triangle, the theorem says that,
for any triangle with vertices in a real inner product space, the length of any one of the edges
is at most the sum of the lengths of the other two edges.

(Which of the above two versions of the Triangle Inequalty should we memorize for the
exam? If one is asking that question, then one is doing it wrong. The trick is to understand,
not to memorize. Everything about the Triangle Inequality can be recovered from just un-
derstanding what it is saying about the three edges of a triangle. That way, one sees that
Theorems 1.2 and 1.3 have the same content. In a similar way, everything about the Cauchy–
Schwartz Inequality can be recovered from just understanding how it tells us that the angle
between two non-zero vectors is well-defined.)

♣ ♡ ♢ ♠

We now discuss the most important example of a finite-dimensional inner product space.
Let n be a positive integer and consider the real vector space Rn. Recall, the standard

basis for Rn is defined to be the basis {e1, ..., en} such that, given x ∈ Rn and writing x =
(x1, ..., xn) with each xs ∈ R, then x =

∑
s xses. The following notation is useful. For

s, t ∈ [1, n], the Kronecker delta symbol δs,t is defined to be the real number

δs,t =

{
1 if s = t,
0 if s ̸= t.
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Thus, es = (δs,1, ..., δs,n). For example, the standard basis of R3 is {e1, e2, e3} where e1 =
(1, 0, 0) and e2 = (0, 1, 0) and e3 = (0, 0, 1).

On Rn, we define an inner product ⟨– | –⟩ such that, given x, y ∈ Rn and writing x =
(x1, ..., xn) and y = (y1, ..., yn), then

⟨x | y⟩ =
∑

s∈[1,n]

xsys .

We call this inner product the dot product. Often, as an alternative notation, we write
x.y = ⟨x | y⟩. Note that

∥x∥ =
√
x.x =

√∑
s
x2s , d(x, y) =

√∑
s
(xs − ys)2 .

When e speak of the inner product space Rn, it is to be understood that the inner product
under consideration is the dot product.

Of course, a dot is often used just to separate expressions that are being multiplied together,
as in 2.3 = 6. Fortunately, there will be no ambiguity in the notation x.y for x, y ∈ Rn, since
we shall only be considering a multiplication operation on Rn when n = 1, in which case the
two interpretations of x.y coincide.

It is worth restating, in the special case V = Rn, the two theorems in the previous section.
The proofs are by substituting x = (x1, ..., xn) and y = (y1, ..., yn) into the statements of those
theorems.

Theorem 2.1: (Cauchy–Schwarz Inequality, classical version.) Given real numbers x1, ..., xn,
y1, ..., yn, then (∑

r
xryr

)2
≤

(∑
s
x2s

)(∑
t
y2t

)
.

Proof: Substitute x = (x1, ..., xn) and y = (y1, ..., yn) into Theorem 1.1. ⊓⊔

Theorem 2.2: (Triangle Inequality, classical version.) Given real numbers u1, ..., un, v1, ...,
vn, then √∑

r
(ur + vr)2 ≤

√∑
s
u2s +

√∑
t
v2t .

Proof: Substitute u = (u1, ..., un) and v = (v1, ..., vn) into Theorem 1.2. ⊓⊔

♣ ♡ ♢ ♠

Often, a system of linear equations has to be laboriously solved in order to express a given
vector as a linear combination of the elements of a given basis. The next remark gives a quick
trick for finding the coefficients. The trick is applicable for suitable basis of a real inner product
space.

Let V be a finite-dimensional real inner product space. Vectors v1, ..., vn ∈ V are said to
be mutually orthogonal provided ⟨vs | vt⟩ = 0 whenever s ̸= t. A basis {v1, ..., vn} for V is
called an orthogonal basis for V provided the elements v1, ..., vn are mutually orthogonal.

Remark 2.3: Let {u1, ...un} be an orthogonal basis for an inner product space V . Given
x ∈ V , then

x =
∑

s∈[1,n]

⟨us |x⟩
∥us∥2

us .
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Proof: Since {u1, ..., un} spans V , we can write x =
∑

s xsus with each xs ∈ R. The required
conclusion follows upon evaluating ⟨us |x⟩. ⊓⊔

A basis {w1, ..., wn} for V is said to be orthonormal provided

⟨ws |wt⟩ = δs,t

for all s, t ∈ [1, n]. Plainly, the next remark is a special case of the previous one.

Remark 2.4: Let {w1, ...wn} be an orthonormal basis for an inner product space V . Given
x ∈ V , then

x =
∑

s∈[1,n]

⟨ws |x⟩ws .

Corollary 2.5: Let {w1, ...wn} be an orthonormal basis for an inner product space V . Let
x, y ∈ V . For each s ∈ [1, n], write xs = ⟨ws |x⟩ and ys = ⟨ws | y⟩. Then:

⟨x | y⟩ =
∑
s

xsys .

In particular ∥x∥ =
√∑

s
x2s. Also, d(x, y) =

√∑
s
(xs − ys)2.

The corollary reveals that, when working with coordinates with respect to an orthonormal
basis, the inner product space V behaves very much like the inner product space Rn. Let us
introduce a definition to capture that observation. Given real inner product spaces U and V ,
we define an isometry α : U ← V to be an isomorphism U ← V such that

⟨α(v) |α(v′)⟩ = ⟨v | v′⟩ .

The corollary now says that, given an orthonormal basis {w1, ..., wn} for a real inner product
space V , then there is an isometry Rn ← V determined by the condition that es 7→ws.
However, before we can conclude that this applies to every finite-dimensional real inner product
space, we must prove that every finite-dimensional real inner product space has an orthonormal
basis. We shall do that in the next subsection.

♣ ♡ ♢ ♠

Again, let V be a finite-dimensional inner product space. We now describe a process, called
the Gram–Schmidt Process, for replacing any given basis of an real inner product space
with a orthonormal basis.

Let U = {u1, ..., un} be any basis for V . We define a set V = {v1, ..., vn} recursively by the
condition that v1 = u1 and

vr = ur −
⟨v1 |ur⟩
∥v1∥2

v1 − ...− ⟨vr−1 |ur⟩
∥vr−1∥2

vr−1

for 2 ≤ r ≤ n.

Remark 2.6: With the notation above, V is an ortogonal basis for V .

Proof: For 2 ≤ s ≤ n, if the vectors v1, ... , vs−1} are mutually orthogonal, then a direct
calculation shows that ⟨vt | vs⟩ = 0 for all 1 ≤ t < s. An inductive argument now yields the
required conclusion. ⊓⊔
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We define W = {w1, ..., wn} where each wr = vr/∥vr∥. The previous remark immediately
implies the next one.

Remark 2.7: With the notation above, W is an orthonormal basis for V .

The above process for constructing the orthogonal basis V or the orthonormal basis W is
called the Gram–Schmidt process. Combining Corollary 2.5 and Remark 2.7, we obtain
the following result.

Corollary 2.8: Let V be a finite-dimensional inner product space. Then V has an orthonormal
basis. Moreover, letting {w1, ..., wn} be an orthonormal basis for V , then there is an isometry
Rn ← V given by (⟨w1 |x⟩, ...⟨wn |x⟩) 7→x.
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Procedural exercises on Section 1

1.A: Let u1 = (2, 1, 1) and u2 = (1, 3, 1) and u3 = (1, 1, 3). Let {w1, w2, w3} be the orthonormal
basis for R3 obtained from {u1, u2, u3} by the Gram–Schmidt process. Evaluate w1 and w2

and w3.

1.B: Let V be the vector space whose vectors are the polynomial functions R ← R of degree
at most 4. That is to say, the vectors in V are the functions f : R← R that can be expressed
in the form

f(t) = a0 + a1t+ a2t
2 + a3t

3

with each as ∈ R. We make V become a real inner product space such that

⟨f | g⟩ =
∫ 1

−1
f(t)g(t) dt .

Let {u0, u1, u2, u3} be the basis for V such that

u0(t) = 1 , u1(t) = t , u2(t) = t2 , u3(t) = t3 .

Let {w0, w1, w2, w3} be the orthogonal basis obtained from {u0, u1, u3, u4} without any nor-
malization. Give explicit formulas for w0(t), w1(t), w2(t), w3(t).

1.C:
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Theoretical exercises on Section 1

1.A: Let ⟨– | –⟩ be a bilinear form on a real vector space V . We say that ⟨– | –⟩ is non-
degenerate provided the following two conditions hold:

Left non-degeneracy: all x ∈ V with x ̸= 0, there exists y ∈ V satisfying ⟨x | y⟩ ≠ 0.

Right non-degeneracy: for all y ∈ V with y ̸= 0 there exists x ∈ V satisfying ⟨x | y⟩ ≠ 0.

(a) Suppose V is finite-dimensional. Show that ⟨– | –⟩ is left non-degenerate if and only if ⟨– | –⟩
is right non-degenerate.

(b) Give an example of an infinite-dimensional V such that the conclusion of part (a) fails.

1.B: Let ⟨– | –⟩ be a non-degenerate bilinear form on a real vector space V . Show that ⟨x |x⟩ ≠ 0
for some x ∈ V .

1.C: Let V be a finite-dimensional inner product space and α : V → V a function such that
α(x, y) = d(α(x), α(y)) for all x, y ∈ V . Show that α is an isometry. (Warning: most of the
work is in showing that α is a linear map.)
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Solutions to procedural exercises on Section 1

1.A: We have w1 = u1/∥u1∥ =
1√
6
(2, 1, 1). Let v2 = u2 − (w1.u2)w1. Then

v2 = (1, 3, 1)−
(

1√
6
(2, 1, 1).(1, 3, 1)

)
1√
6
(2, 1, 1) = (1, 3, 1)− (2, 1, 1) = (−1, 2, 0) .

We have w2 = u2/∥u2∥ =
1√
5
(−1, 2, 0). Let v3 = u3 − (w1.u3)w1 − (w2.u3)w2. Then

v3 = (1, 1, 3)−
(

1√
6
(2, 1, 1).(1, 1, 3)

)
1√
6
(2, 1, 1)−

(
1√
5
(−1, 2, 0).(1, 1, 3)

)
1√
5
(−1, 2, 0)

= (1, 1, 3)− (2, 1, 1)− 1

5
(−1, 2, 0) = 1

5

(
(−5, 0, 10)− (−1, 2, 0)

)
=

2

5
(−2,−1, 5) .

We have w3 = v3/∥v3∥ = (−2,−1, 5)/∥(−2,−1, 5)∥ = 1√
30

(−2,−1, 5). In conclusion,

w1 =
1√
6
(2, 1, 1) , w2 =

1√
5
(−1, 2, 0) , w3 =

1√
30

(−2,−1, 5) .

1.B:
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Solutions to theoretical exercises on Section 1

1.A:

1.B:
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