Inner product spaces

Laurence Barker, Department of Mathematics, Bilkent University

version: 16 April 2024

In current form, these notes are for supplementary material for two courses, MATH 220 Linear Algebra and MATH 224 Linear Algebra 2.

Actually, this particular draft, 16 April, is a first draft and doubtless has many slips. I shall later be making changes, some of which I have in mind already.

1: Real inner product spaces

For vector spaces over arbitrary fields, there is no general notion of distance or angle. In this section, we shall be confining attention to real vector spaces, that is, vector spaces over the field of real numbers \mathbb{R}. Sometimes, not always, when dealing with real vector spaces, consideration of distances or angles may be useful or necessary. In that case, the real vector spaces involved have to be viewed as something more than just real vector spaces. They have to be equipped with some or other kind of further structure. In this section, we shall be considering real vector spaces equipped with a further structure called an inner product.

Let V be a real vector space, we mean, a vector space over the field of real numbers \mathbb{R}. We define a bilinear form on V to be a function $\mathbb{R} \leftarrow V \times V$, written $\langle x \mid y\rangle \leftrightarrow(x, y)$, such that the following two conditions hold:
Left linearity: For all $y \in V$, the function $\mathbb{R} \leftarrow V$ given by $\langle x \mid y\rangle \leftarrow x$ is a linear map.
Right linearity: For all $x \in V$, the function $\mathbb{R} \leftarrow V$ given by $\langle x \mid y\rangle \leftrightarrow y$ is a linear map.
Explicitly, the conditions are that, for all $x, x^{\prime}, y, y^{\prime} \in V$ and $\lambda, \lambda \in \mathbb{R}$, we have

$$
\left\langle\lambda x+\lambda^{\prime} x^{\prime} \mid y\right\rangle=\lambda\langle x \mid y\rangle+\lambda^{\prime}\left\langle x^{\prime} \mid y\right\rangle, \quad\left\langle x \mid \lambda y+\lambda^{\prime} y^{\prime}\right\rangle=\lambda\langle x \mid y\rangle+\lambda^{\prime}\left\langle x \mid y^{\prime}\right\rangle .
$$

We shall be considering two further conditions:

- The bilinear form is said to be symmetric provided $\langle x \mid y\rangle=\langle y \mid x\rangle$ for all $x, y \in V$.
- The bilinear form is said to be positive-definite provided $\langle x \mid x\rangle>0$ for all $x \in V$ with $x \neq 0$.
We define an inner product on V to be a positive-definite symmetric bilinear form on V. We define a real inner product space to be a real vector space equipped with an inner product.

Let V be a real inner product space. For $x \in V$, we define the norm of x to be the non-negative real number

$$
\|x\|=\sqrt{\langle x \mid x\rangle} .
$$

Recall that, given $\lambda \in \mathbb{R}$, the modulus of λ is defined to be the non-negative real number $|\lambda|$ such that $|\lambda|=\lambda$ when $\lambda \geq 0$ whereas $|\lambda|=-\lambda$ when $\lambda \leq 0$. Thus, for all $\lambda \in \mathbb{R}$, we have $|\lambda|=\sqrt{\lambda^{2}}$.

Theorem 1.1: (Cauchy-Schwarz Inequality.) Given a real inner product space V and $x, y \in V$, then

$$
|\langle x \mid y\rangle| \leq\|x\| \cdot\|y\|
$$

with equality if and only if $x=0$ or $y=0$ or $\mathbb{R} x=\mathbb{R} y$.
Proof: We may assume that $y \neq 0$. Given $t \in \mathbb{R}$, then

$$
a t^{2}+b t+c=\|x+t y\|^{2} \geq 0
$$

where $a=\|y\|^{2}$ and $b=2 \mid\langle x| y\langle |$ and $c=\|x\|^{2}$. Note that $a \neq 0$. The graph of the function $a t^{2}+b t+c \leftarrow t$ is a parabola ranging in the upper half place, possibly touching the horizontal axis, but not below that axis. So the discriminant of the quadratic equation $a t^{2}+b t+c=0$ must be non-positive, $b^{2}-4 a c \leq 0$, in other words, $(b / 2)^{2} \leq a c$. Taking a square root, we obtain the asserted inequality.

The argument also shows that $x+t y=0$ for some t if and only if $(b / 2)^{2}=a c$. The rider follows.

For nonzero x and y in V, we define the angle between x and y to be the real number θ in the interval $0 \leq \theta<\pi$ such that

$$
\cos (\theta)=\langle x \mid y\rangle /\|x\| \cdot\|y\| .
$$

The Cauchy-Schwarz Inequality assures us that θ is well-defined.
Theorem 1.2: (Triangle Inequality, first version.) Given a real inner product space and $u, v \in V$, then

$$
\|u+v\| \leq\|u\|+\|v\| .
$$

Proof: Applying the previous theorem, $\|u+v\|^{2}=\|u\|^{2}+2\langle u \mid v\rangle+\|v\|^{2} \leq(\|u\|+\|v\|)^{2}$.
Theorem 1.3: (Triangle Inequality, second version.) Given a real inner product space and $x, y, z \in V$, then

$$
\|x-z\| \leq\|x-y\|+\|y-z\| .
$$

Proof: Putting $u=x-y$ and $v=y-z$, then $u+v=x-z$. Thus, we have reduced to the previous version of the theorem.

Conversely, Theorem 1.2 can be quickly deduced from Theorem 1.3 by putting $x=u$ and $y=0$ and $z=-v$. So the two theorems are really just two different ways of expressing one and the same theorem.

For $x, y \in V$, we define

$$
d(x, y)=\|x-y\| .
$$

We call $d(x, y)$ the distance between x and y. The Triangle Inequality says that

$$
d(x, z) \leq d(x, y)+d(y, z)
$$

Put roughly, without digressing into any precise definition of a triangle, the theorem says that, for any triangle with vertices in a real inner product space, the length of any one of the edges is at most the sum of the lengths of the other two edges.
(Which of the above two versions of the Triangle Inequalty should we memorize for the exam? If one is asking that question, then one is doing it wrong. The trick is to understand, not to memorize. Everything about the Triangle Inequality can be recovered from just understanding what it is saying about the three edges of a triangle. That way, one sees that Theorems 1.2 and 1.3 have the same content. In a similar way, everything about the CauchySchwartz Inequality can be recovered from just understanding how it tells us that the angle between two non-zero vectors is well-defined.)

We now discuss the most important example of a finite-dimensional inner product space.
Let n be a positive integer and consider the real vector space \mathbb{R}^{n}. Recall, the standard basis for \mathbb{R}^{n} is defined to be the basis $\left\{e_{1}, \ldots, e_{n}\right\}$ such that, given $x \in \mathbb{R}^{n}$ and writing $x=$ $\left(x_{1}, \ldots, x_{n}\right)$ with each $x_{s} \in \mathbb{R}$, then $x=\sum_{s} x_{s} e_{s}$. The following notation is useful. For $s, t \in[1, n]$, the Kronecker delta symbol $\delta_{s, t}$ is defined to be the real number

$$
\delta_{s, t}= \begin{cases}1 & \text { if } s=t \\ 0 & \text { if } s \neq t\end{cases}
$$

Thus, $e_{s}=\left(\delta_{s, 1}, \ldots, \delta_{s, n}\right)$. For example, the standard basis of \mathbb{R}^{3} is $\left\{e_{1}, e_{2}, e_{3}\right\}$ where $e_{1}=$ $(1,0,0)$ and $e_{2}=(0,1,0)$ and $e_{3}=(0,0,1)$.

On \mathbb{R}^{n}, we define an inner product $\langle-\mid-\rangle$ such that, given $x, y \in \mathbb{R}^{n}$ and writing $x=$ $\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$, then

$$
\langle x \mid y\rangle=\sum_{s \in[1, n]} x_{s} y_{s} .
$$

We call this inner product the dot product. Often, as an alternative notation, we write $x . y=\langle x \mid y\rangle$. Note that

$$
\|x\|=\sqrt{x \cdot x}=\sqrt{\sum_{s} x_{s}^{2}}, \quad d(x, y)=\sqrt{\sum_{s}\left(x_{s}-y_{s}\right)^{2}} .
$$

When e speak of the inner product space \mathbb{R}^{n}, it is to be understood that the inner product under consideration is the dot product.

Of course, a dot is often used just to separate expressions that are being multiplied together, as in $2.3=6$. Fortunately, there will be no ambiguity in the notation $x . y$ for $x, y \in \mathbb{R}^{n}$, since we shall only be considering a multiplication operation on \mathbb{R}^{n} when $n=1$, in which case the two interpretations of $x . y$ coincide.

It is worth restating, in the special case $V=\mathbb{R}^{n}$, the two theorems in the previous section. The proofs are by substituting $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ into the statements of those theorems.

Theorem 2.1: (Cauchy-Schwarz Inequality, classical version.) Given real numbers x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, then

$$
\left(\sum_{r} x_{r} y_{r}\right)^{2} \leq\left(\sum_{s} x_{s}^{2}\right)\left(\sum_{t} y_{t}^{2}\right)
$$

Proof: Substitute $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ into Theorem 1.1.
Theorem 2.2: (Triangle Inequality, classical version.) Given real numbers $u_{1}, \ldots, u_{n}, v_{1}, \ldots$, v_{n}, then

$$
\sqrt{\sum_{r}\left(u_{r}+v_{r}\right)^{2}} \leq \sqrt{\sum_{s} u_{s}^{2}}+\sqrt{\sum_{t} v_{t}^{2}}
$$

Proof: Substitute $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$ into Theorem 1.2.

Often, a system of linear equations has to be laboriously solved in order to express a given vector as a linear combination of the elements of a given basis. The next remark gives a quick trick for finding the coefficients. The trick is applicable for suitable basis of a real inner product space.

Let V be a finite-dimensional real inner product space. Vectors $v_{1}, \ldots, v_{n} \in V$ are said to be mutually orthogonal provided $\left\langle v_{s} \mid v_{t}\right\rangle=0$ whenever $s \neq t$. A basis $\left\{v_{1}, \ldots, v_{n}\right\}$ for V is called an orthogonal basis for V provided the elements v_{1}, \ldots, v_{n} are mutually orthogonal.
Remark 2.3: Let $\left\{u_{1}, \ldots u_{n}\right\}$ be an orthogonal basis for an inner product space V. Given $x \in V$, then

$$
x=\sum_{s \in[1, n]} \frac{\left\langle u_{s} \mid x\right\rangle}{\left\|u_{s}\right\|^{2}} u_{s} .
$$

Proof: Since $\left\{u_{1}, \ldots, u_{n}\right\}$ spans V, we can write $x=\sum_{s} x_{s} u_{s}$ with each $x_{s} \in \mathbb{R}$. The required conclusion follows upon evaluating $\left\langle u_{s} \mid x\right\rangle$.

A basis $\left\{w_{1}, \ldots, w_{n}\right\}$ for V is said to be orthonormal provided

$$
\left\langle w_{s} \mid w_{t}\right\rangle=\delta_{s, t}
$$

for all $s, t \in[1, n]$. Plainly, the next remark is a special case of the previous one.
Remark 2.4: Let $\left\{w_{1}, \ldots w_{n}\right\}$ be an orthonormal basis for an inner product space V. Given $x \in V$, then

$$
x=\sum_{s \in[1, n]}\left\langle w_{s} \mid x\right\rangle w_{s} .
$$

Corollary 2.5: Let $\left\{w_{1}, \ldots w_{n}\right\}$ be an orthonormal basis for an inner product space V. Let $x, y \in V$. For each $s \in[1, n]$, write $x_{s}=\left\langle w_{s} \mid x\right\rangle$ and $y_{s}=\left\langle w_{s} \mid y\right\rangle$. Then:

$$
\langle x \mid y\rangle=\sum_{s} x_{s} y_{s}
$$

In particular $\|x\|=\sqrt{\sum_{s} x_{s}^{2}}$. Also, $d(x, y)=\sqrt{\sum_{s}\left(x_{s}-y_{s}\right)^{2}}$.
The corollary reveals that, when working with coordinates with respect to an orthonormal basis, the inner product space V behaves very much like the inner product space \mathbb{R}^{n}. Let us introduce a definition to capture that observation. Given real inner product spaces U and V, we define an isometry $\alpha: U \leftarrow V$ to be an isomorphism $U \leftarrow V$ such that

$$
\left\langle\alpha(v) \mid \alpha\left(v^{\prime}\right)\right\rangle=\left\langle v \mid v^{\prime}\right\rangle
$$

The corollary now says that, given an orthonormal basis $\left\{w_{1}, \ldots, w_{n}\right\}$ for a real inner product space V, then there is an isometry $\mathbb{R}^{n} \leftarrow V$ determined by the condition that $e_{s} \leftarrow w_{s}$. However, before we can conclude that this applies to every finite-dimensional real inner product space, we must prove that every finite-dimensional real inner product space has an orthonormal basis. We shall do that in the next subsection.

Again, let V be a finite-dimensional inner product space. We now describe a process, called the Gram-Schmidt Process, for replacing any given basis of an real inner product space with a orthonormal basis.

Let $\mathcal{U}=\left\{u_{1}, \ldots, u_{n}\right\}$ be any basis for V. We define a set $\mathcal{V}=\left\{v_{1}, \ldots, v_{n}\right\}$ recursively by the condition that $v_{1}=u_{1}$ and

$$
v_{r}=u_{r}-\frac{\left\langle v_{1} \mid u_{r}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}-\ldots-\frac{\left\langle v_{r-1} \mid u_{r}\right\rangle}{\left\|v_{r-1}\right\|^{2}} v_{r-1}
$$

for $2 \leq r \leq n$.
Remark 2.6: With the notation above, \mathcal{V} is an ortogonal basis for V.
Proof: For $2 \leq s \leq n$, if the vectors $\left.v_{1}, \ldots, v_{s-1}\right\}$ are mutually orthogonal, then a direct calculation shows that $\left\langle v_{t} \mid v_{s}\right\rangle=0$ for all $1 \leq t<s$. An inductive argument now yields the required conclusion.

We define $\mathcal{W}=\left\{w_{1}, \ldots, w_{n}\right\}$ where each $w_{r}=v_{r} /\left\|v_{r}\right\|$. The previous remark immediately implies the next one.
Remark 2.7: With the notation above, \mathcal{W} is an orthonormal basis for V.
The above process for constructing the orthogonal basis \mathcal{V} or the orthonormal basis \mathcal{W} is called the Gram-Schmidt process. Combining Corollary 2.5 and Remark 2.7, we obtain the following result.

Corollary 2.8: Let V be a finite-dimensional inner product space. Then V has an orthonormal basis. Moreover, letting $\left\{w_{1}, \ldots, w_{n}\right\}$ be an orthonormal basis for V, then there is an isometry $\mathbb{R}^{n} \leftarrow V$ given by $\left(\left\langle w_{1} \mid x\right\rangle, \ldots\left\langle w_{n} \mid x\right\rangle\right) \leftarrow x$.

Procedural exercises on Section 1

1.A: Let $u_{1}=(2,1,1)$ and $u_{2}=(1,3,1)$ and $u_{3}=(1,1,3)$. Let $\left\{w_{1}, w_{2}, w_{3}\right\}$ be the orthonormal basis for \mathbb{R}^{3} obtained from $\left\{u_{1}, u_{2}, u_{3}\right\}$ by the Gram-Schmidt process. Evaluate w_{1} and w_{2} and w_{3}.
1.B: Let V be the vector space whose vectors are the polynomial functions $\mathbb{R} \leftarrow \mathbb{R}$ of degree at most 4. That is to say, the vectors in V are the functions $f: \mathbb{R} \leftarrow \mathbb{R}$ that can be expressed in the form

$$
f(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}
$$

with each $a_{s} \in \mathbb{R}$. We make V become a real inner product space such that

$$
\langle f \mid g\rangle=\int_{-1}^{1} f(t) g(t) \mathrm{d} t
$$

Let $\left\{u_{0}, u_{1}, u_{2}, u_{3}\right\}$ be the basis for V such that

$$
u_{0}(t)=1, \quad u_{1}(t)=t, \quad u_{2}(t)=t^{2}, \quad u_{3}(t)=t^{3} .
$$

Let $\left\{w_{0}, w_{1}, w_{2}, w_{3}\right\}$ be the orthogonal basis obtained from $\left\{u_{0}, u_{1}, u_{3}, u_{4}\right\}$ without any normalization. Give explicit formulas for $w_{0}(t), w_{1}(t), w_{2}(t), w_{3}(t)$.
1.C:

Theoretical exercises on Section 1

1. \mathcal{A} : Let $\langle-\mid-\rangle$ be a bilinear form on a real vector space V. We say that $\langle-\mid-\rangle$ is nondegenerate provided the following two conditions hold:
Left non-degeneracy: all $x \in V$ with $x \neq 0$, there exists $y \in V$ satisfying $\langle x \mid y\rangle \neq 0$.
Right non-degeneracy: for all $y \in V$ with $y \neq 0$ there exists $x \in V$ satisfying $\langle x \mid y\rangle \neq 0$.
(a) Suppose V is finite-dimensional. Show that $\langle-\mid-\rangle$ is left non-degenerate if and only if $\langle-\mid-\rangle$ is right non-degenerate.
(b) Give an example of an infinite-dimensional V such that the conclusion of part (a) fails.
1.B: Let $\langle-\mid-\rangle$ be a non-degenerate bilinear form on a real vector space V. Show that $\langle x \mid x\rangle \neq 0$ for some $x \in V$.
1.C: Let V be a finite-dimensional inner product space and $\alpha: V \rightarrow V$ a function such that $\alpha(x, y)=d(\alpha(x), \alpha(y))$ for all $x, y \in V$. Show that α is an isometry. (Warning: most of the work is in showing that α is a linear map.)

Solutions to procedural exercises on Section 1

1.A: We have $w_{1}=u_{1} /\left\|u_{1}\right\|=\frac{1}{\sqrt{6}}(2,1,1)$. Let $v_{2}=u_{2}-\left(w_{1} \cdot u_{2}\right) w_{1}$. Then

$$
v_{2}=(1,3,1)-\left(\frac{1}{\sqrt{6}}(2,1,1) \cdot(1,3,1)\right) \frac{1}{\sqrt{6}}(2,1,1)=(1,3,1)-(2,1,1)=(-1,2,0) .
$$

We have $w_{2}=u_{2} /\left\|u_{2}\right\|=\frac{1}{\sqrt{5}}(-1,2,0)$. Let $v_{3}=u_{3}-\left(w_{1} \cdot u_{3}\right) w_{1}-\left(w_{2} \cdot u_{3}\right) w_{2}$. Then

$$
\begin{aligned}
v_{3}= & (1,1,3)-\left(\frac{1}{\sqrt{6}}(2,1,1) \cdot(1,1,3)\right) \frac{1}{\sqrt{6}}(2,1,1)-\left(\frac{1}{\sqrt{5}}(-1,2,0) \cdot(1,1,3)\right) \frac{1}{\sqrt{5}}(-1,2,0) \\
& =(1,1,3)-(2,1,1)-\frac{1}{5}(-1,2,0)=\frac{1}{5}((-5,0,10)-(-1,2,0))=\frac{2}{5}(-2,-1,5) .
\end{aligned}
$$

We have $w_{3}=v_{3} /\left\|v_{3}\right\|=(-2,-1,5) /\|(-2,-1,5)\|=\frac{1}{\sqrt{30}}(-2,-1,5)$. In conclusion,

$$
w_{1}=\frac{1}{\sqrt{6}}(2,1,1), \quad w_{2}=\frac{1}{\sqrt{5}}(-1,2,0), \quad w_{3}=\frac{1}{\sqrt{30}}(-2,-1,5) .
$$

1.B:

Solutions to theoretical exercises on Section 1

1. \mathcal{A} :
1.B:
