MSN 551 Notes

Ion Implantation and Diffusion

Overview

- Basic semiconductor physics: Most common application of ion implantation is doping silicon
- Ion implantation
- Dopant activation and Diffusion

Energy bands

Basic convention:

Kinetic energy:

$$K.E. = E - E_C$$

Potential Energy:

$$\begin{split} P.E. &= -qV = E_C - E_{ref} \\ V &= -\frac{1}{q} \Big(E_C - E_{ref} \Big) \end{split}$$

Electric field: $\mathbf{e} = -\nabla V$, or in 1D $\mathbf{e} = -\frac{dV}{dx} = \frac{1}{q} \frac{dE_C}{dx}$

Basic semiconductor physics

Semiconductor bands

Current density

$$J_n = -qnv_e$$

$$J = J_n + J_p = q\mu_n n\mathcal{E} + q\mu_p p\mathcal{E}$$

mobility 1400 cm²/V-s

Basic semiconductor physics

Semiconductor bands

Current density

$$J_n = -qnv_e$$

$$J = J_n + J_p = q\mu_n n\mathcal{E} + q\mu_p p\mathcal{E}$$

mobility 1400 cm²/V-s

FIGURE 5: Band diagram with an electric field.

Doping and resistivity

 MOSFET is a four-terminal device. Basic device configuration is illustrated on the figures below.

Side-view of the device

Top-view of the device

Basic device parameters:

channel length L channel width W oxide thickness d_{ox} junction depth r_j substrate doping N_A

EEE 531: Semiconductor Device Theory I

• The role of the Gate electrode for *n*-channel MOSFET:

Positive gate voltage does two things:

- (1) Reduces the potential energy barrier seen by the electrons from the source and the drain regions.
- (2) Inverts the surface, and increases the conductivity of the channel.

• The role of the Drain electrode for *n*-channel MOSFET:

- There are basically four types of MOSFETs:
 - (a) *n*-cnannel, enhancement mode device

(b) *n*-cnannel, depletion mode device

EEE 531: Semiconductor Device Theory I

(c) p-cnannel, enhancement mode device

(b) p-cnannel, depletion mode device

EEE 531: Semiconductor Device Theory I

(A) Terminology and symbols

Bipolar Junction Transistor

PNP - transistor

- Both, pnp and npn transistors can be thought as two very closely spaced pn-junctions.
- The base must be small to allow interaction between the two pn-junctions.

EEE 531: Semiconductor Device Theory I

(D) Types of transistors

Discrete (double-diffused)
 p+np transistor

EEE 531: Semiconductor Device Theory I

Summary

- We need to control doping in XY and Z, and also in density
- Ion Implantation and diffusion give us the freedom to do this

EE143 F05 Lecture 7

Ion Implantation

Concentration Profile versus Depth is a single-peak function

Reminder: During implantation, temperature is ambient. However, post-implant annealing step (>900°C) is required to anneal out defects.

EE143 F05 Lecture 7

Advantages of Ion Implantation

- Precise control of <u>dose</u> and <u>depth</u> profile
- Low-temp. process (can use photoresist as mask)
- Wide selection of masking materials e.g. photoresist, oxide, poly-Si, metal
- Less sensitive to surface cleaning procedures
- Excellent lateral dose uniformity (< 1% variation across 12" wafer)

Application example: self-aligned MOSFET source/drain regions

Masking

Mask layer thickness can block ion penetration

Ion Implanter

\$3-4M/implanter

e.g. AsH₃ ~60 wafers/hour As⁺, AsH⁺, H⁺, AsH₂⁺ Magnetic Mass separation Accelerator Voltage: 1-200kV lon Dose $\sim 10^{11}\text{-}10^{16}\text{/cm}^2$ source Accuracy of dose: <0.5% Uniformity<1% for 8" wafer As+ Accelerator Column wafer ion beam (stationary) Translational spinning wafer holder wafer motion. holder

FIGURE 8.4 Schematic of a commercial ion-implantation system, the Nova-10-160, 10 mA at 160 keV.

Energetic ions penetrate the surface of the wafer and then undergo a series of collisions with the atoms and electrons in the target.

EE143 F05

Monte Carlo Simulation of 50keV Boron implanted into Si

- Range and profile shape depends on the ion energy (for a particular ion/substrate combination)
- (2) Height (i.e. Concentration) of profile depends on the implantation dose

Simulation: SRIM

EE143 F05 Lecture 7

Monte Carlo Simulation of 50keV Boron implanted into Si

Implantation Dose

For singly charged ions (e.g. As+)

Dose
$$\Phi = \frac{\left(\frac{Ion \ Beam \ Current \ in \ amps}{q}\right) \times \left(\frac{Implant}{time}\right)}{\left[Implant \ area\right]}$$

$$= \frac{\#}{cm^{2}}$$

Over-scanning of beam across wafer is common. In general, Implant area > Wafer area

EE143 F05 Lecture 7

Practical Implantation Dosimetry

^{* (}Charge collected by integrating cup current) / (cup area) = dose

Ion Implantation Energy Loss Mechanisms

Nuclear stopping

Crystalline Si substrate damaged by collision

Electronic stopping

Electronic excitation creates heat

Energy Loss and Ion Properties

Light ions/at higher energy → more electronic stopping

Heavier ions/at lower energy—→more nuclear stopping

EXAMPLES Implanting into Si:

H⁺ \Longrightarrow Electronic stopping dominates

B⁺ \Longrightarrow Electronic stopping dominates

As+ Nuclear stopping dominates

Figure 5.8 Nuclear and electronic components of S(E) for several common silicon dopants as a function of energy (after Smith as redrawn by Seidel, "Ion Implantation," reproduced by permission, McGraw-Hill, 1983).

Gaussian Approximation of One-Dimensional Implant Depth Profile

$$C(x) = C_p \cdot e^{\frac{-(x-R_p)^2}{2(\Delta R_p)^2}}$$

$$D_p = projected none$$

 $R_p = projected range$

 $\Delta R_{\rm p}$ = longitudinal straggle

Note: For lateral positions far from masking boundaries, C(x) is independent of lateral position y

Projected Range and Straggle

Rp and ∆Rp values are given in tables or charts e.g. see pp. 113 of Jaeger

Dose-Concentration Relationship

$$\therefore C_p = \frac{\phi}{\sqrt{2\pi} \Delta R_p} \cong \frac{0.4\phi}{\Delta R_p}$$

Junction Depth, x_i

$$C(x = x_j) = N_B = Bulk \ Conc. \Rightarrow \ Solution \ for \ x_j$$

If Gaussian approx for $C(x)$ is used, from $C_p \exp [-(x_j - R_p)^2/2(\Delta R_p)^2] = C_B$

we can solve for x_i

Sheet Resistance R_S of Implanted Layers

Example:

n-type dopants implanted

into p-type substrate_

x =0

p-sub (
$$C_B$$
)

 $\mathbf{R}_{s} = \frac{1}{\int_{0}^{x_{j}} \mathbf{q} \cdot \mu(\mathbf{x}) [\mathbf{C}(\mathbf{x}) - \mathbf{C}_{B}] d\mathbf{x}}$

•Needs numerical integration to get Rs value

X

C(x) log scale

Total doping conc

Approximate Value for R_s

If $C(x) >> C_B$ for most depth x of interest and use approximation: $\mu(x) \sim constant$

$$\Rightarrow R_s \to \frac{1}{q\mu \int_0^{x_j} C(x) dx} \cong \frac{1}{q\mu \phi}$$

$$\downarrow 1$$

This expression assumes ALL implanted dopants are 100% electrically activated

$$[R_s] = \frac{ohm}{\Box}$$

use the μ for the highest doping region which carries most of the current

or ohm/square

EE143 F05 Lecture 7

Example Calculations

200 keV Phosphorus is implanted into a p-Si (C_B= 10¹⁶/cm³) with a dose of 10¹³/cm².

From graphs or tables , Rp =0.254 μm , ΔRp=0.0775μm

(a) Find peak concentration

$$Cp = (0.4 \times 10^{13})/(0.0775 \times 10^{-4}) = 5.2 \times 10^{17}/cm^3$$

(b) Find junction depths

(b)
$$C_p \exp[-(x_j-0.254)^2/2 \Delta R_p^2] = C_B \text{ with } x_j \text{ in } \mu \text{m}$$

$$\therefore (x_j - 0.254)^2 = 2 \times (0.0775)^2 \ln [5.2 \times 10^{17}/10^{16}]$$
or $x_j = 0.254 \pm 0.22 \ \mu \text{m}$; $x_{j1} = 0.032 \ \mu \text{m}$ and $x_{j2} = 0.474 \ \mu \text{m}$

Phosphorus properties of the extreme position of the extreme properties of t

(c) Find sheet resistance

From the mobility curve for electrons (using peak conc as impurity conc), μ_n = 350 cm² /V-sec

$$R_s = \frac{1}{q\mu_n \phi} = \frac{1}{1.6 \times 10^{-19} \times 350 \times 10^{13}} \approx 1780 \text{ }\Omega/\text{square}.$$

Implantation Damage

After implantation, we need an annealing step. A typical ~900°C, 30min will:

- Restore Si crystallinity.
- (2) Put dopants into Si substitutional sites for electrical activation

Implantation Damage

Schematic of the disorder produced along the individual paths of light and heavy ions and the formation of an amorphous region.

Solid Epitaxial "Growth" through the Implant Damaged Region

Solid Epitaxial "Growth" through the Implant Damaged Region – cont.

- (1) Regrow the amorphous region at T = 500-600°C into single crystal. The substrate acts as a seed. If higher temperatures are used then nucleation within the amorphous layer takes place making it polycrystalline and crystal structure can never be regained. This temperature range also recovers most of the electrical activity.
- (2) A further anneal at T>900°C restores the crystal structure and electrical activity 100%.

Dopant Activation Versus Annealing Temp

Figure 5.15 Fraction of implanted boron activated in silicon for several isochronal anneals (after Seidel and MacRae, reprinted by permission, Elsevier Science).

Transverse (or Lateral) Straggle (ΔR_t or ΔR_{\perp})

Lateral standard deviation of boron, phosphorus, arsenic and antimony in silicon

Lateral Scattering Causes Feature Enlargement

Transmission Factor of Implantation Mask

Transmitted Fraction

$$T = \int_0^\infty C(x) dx - \int_0^d C(x) dx$$
$$= \frac{1}{2} erfc \left\{ \frac{d - R_p}{\sqrt{2} \Delta R_p} \right\}$$

$$erfc(x) = 1 - \frac{2}{\sqrt{\pi}} \int_0^x e^{-y^2} dy$$

 R_p , ΔR_p are values of for ions into the **masking material**

Rule of thumb: Good masking thickness

$$d = R_p + 4.3\Delta R_p$$
 $\frac{C(x = d)}{C(x = R_p)} \sim 10^{-4}$

Diffusion

- Motion of impurities inside the crystal
- Sometimes intentional
- Sometimes unintentional, as a byproduct of a thermal process

Dopant Diffusion

(1) Predeposition

dose control

(2) Drive-in

Turn off dopant gas or seal surface with oxide

profile control (junction depth; concentration)

Note: Predeposition by diffusion can also be replaced by a shallow implantation step.

Dopant Diffusion Sources

(a) Gas Source: AsH₃, PH₃, B₂H₆

(b) Solid Source

(c) Spin-on-glass SiO₂+dopant oxide

Figure 3.20 A typical bubbler arrangement for doping a silicon wafer using a POCl source. The gas flow is set using mass flow controllers (MFC).

Si Native Point

Defects

Si vacancy

For reference only

1) Thermal-equilibrium values of Si neutral interstitials and vacancies at diffusion temperatures << doping concentration of</p> interest $(10^{15} - 10^{20} / \text{cm}^3)$

$$C_{I^0}^* \cong 1 \times 10^{27} \exp\left(\frac{-3.8 \text{ eV}}{kT}\right)$$

$$C_{V^0}^* \cong 9 \times 10^{23} \exp\left(\frac{-2.6 \text{ eV}}{kT}\right)$$

At 1000°C, $C_{Io}^* \sim 10^{12} / \text{cm}^3$ $C_{Vo}^* \sim 10^{13} / cm^3$

$$d_I = 1.58 \times 10^{-1} \exp\left(-\frac{1.37}{kT}\right) \text{cm}^2 \text{sec}^{-1}$$

$$d_V = 1.18 \times 10^{-4} \exp\left(-\frac{0.1}{kT}\right) \text{ cm}^2 \text{ sec}^{-1}$$

Diffusion Mechanisms in Si

(A) No Si Native Point Defect Required

Example: Cu, Fe, Li, H

(a) Interstitial Diffusion

Diffusion Mechanisms in Si

(B) Si Native Point Defects Required (Si vacancy and Si interstitials)

Example: Dopants in Si (e.g. B, P,As,Sb)

(a) Substitutional Diffusion

(b) Interstitialcy Diffusion

Figure 3.5 In interstitialcy diffusion an interstitial silicon atom displaces a substitutional impurity, driving it to an interstitial site where it diffuses some distance before it returns to a substitutional site.

EE143 F05

(B) Si Native Point Defects Required (Si vacancy and Si interstitials) continued

- (c) Kick-Out Diffusion
- (d) Frank Turnbull Diffusion

Figure 3.6 The kick-out (left) and Frank–Turnbull mechanisms (right).

Diffusivity Comparison:

Dopants, Si interstitial, and interstitial diffusers

Figure 4–8 Diffusivities of various species in silicon. Au_s refers to gold in substitutional form (on a lattice site); Au_i to gold in an interstitial site. The silicon interstitial (I) diffusivity is also shown and will be discussed later. The gray area representing the I diffusivity indicates the uncertainty in this parameter. (After [4.10, 4.11].)

Mathematics of Diffusion

Fick's First Law:

$$J(x,t) = -D \cdot \frac{\partial C(x,t)}{\partial x}$$

D: diffusion constant
$$[D] = \frac{cm^2}{\sec}$$

Concentration independence of D

If D is independent of C (i.e., D is independent of x).

$$\frac{\partial C(x,t)}{\partial t} = D \frac{\partial^2 C(x,t)}{\partial x^2}$$

Concentration Independent Diffusion Equation

State of the art devices use fairly high concentrations, causing variable diffusivity and other significant side-effects (transient-enhanced diffusion, for example.)

Solid Solubility of Common Impurities in Si

٥C

Figure 2.4 Solid solubility of common silicon impurities (all rights reserved, reprinted with permission, © 1960 AT & T).

A. Predeposition Diffusion Profile

Boundary Conditions.

$$C(x = 0, t) = C_0 = solid solubility of the dopant$$

$$C(x = \infty, t) = 0$$

Justification:

Si wafers are ~500um thick, doping depths of interest are typically < several um

•*Initial Condition*:

$$C(x, t = 0) = 0$$

At time =0, there is no diffused dopant in substrate

Diffusion under constant surface concentration

$$C(x,t) = C_0 \cdot \left[1 - \frac{2}{\sqrt{\pi}} \int_0^{\frac{x}{2\sqrt{Dt}}} e^{-y^2} dy \right]$$
$$= C_0 \cdot erfc \left(\frac{x}{2\sqrt{Dt}} \right)$$

 $2\sqrt{Dt}$ = Characteristic distance for diffusion.

 $C_0 \equiv$ Surface Concentration (solid solubility limit)

B. Drive-in Profile

• Boundary Conditions :

$$C(x=\infty,t)=0$$

$$\left. \frac{\partial C}{\partial x} \right|_{x=0} = 0$$

 $\frac{\partial C}{\partial x} = 0$ Physical meaning of $\partial C/\partial t = 0$: No diffusion flux in/out of the Si surface. Therefore, dopant dose is conserved

• Initial Conditions :

$$C(x, t = 0) = Co \cdot erfc \left[\frac{x}{2\sqrt{(Dt)}} \right]$$
Predep's (Dt)

Solution of Drive-in Profile with **Shallow** Predeposition Approximation:

$$Q = \frac{C_0 \cdot 2\sqrt{(Dt)}_{predep}}{\sqrt{\pi}}$$

Х

$$C(x,t)$$
 t_1
 t_2

$$C(x,t) = \frac{Q}{\sqrt{\pi(Dt)_{drive-in}}} e^{-x^2/4(Dt)_{drive-in}}$$

Summary of Predeposition + Drive-in

 D_1 = Diffusivity at Predeposition temperature

 t_1 = Predeposition time

 D_2 = Diffusivity at Drive-in temperature

 t_2 = Drive-in time

$$C(x) = \left(\frac{2C_0}{\pi}\right) \left(\frac{D_1 t_1}{D_2 t_2}\right)^{\frac{1}{2}} e^{-x^2/4D_2 t_2}$$

*This will be the overall diffusion profile after a "shallow" predeposition diffusion step, followed by a drive-in diffusion step.

Diffusion of Gaussian Implantation Profile

$$C(x, t) = \frac{\phi}{\sqrt{2\pi} (\Delta R_p^2 + 2Dt)^{1/2}} \cdot e^{-\frac{(x - R_p)^2}{2 (\Delta R_p^2 + 2Dt)}}$$

Diffusion of Gaussian Implantation Profile (arbitrary Rp)

The exact solutions with $\frac{\partial C}{\partial x}$ = 0 at x = 0 (.i.e. no dopant loss through surface) can be constructed by adding another full gaussian placed at -R_p [Method of Images].

$$C(x, t) = \frac{\phi}{\sqrt{2\pi} (\Delta R_p^2 + 2Dt)^{1/2}} \cdot \left[e^{-\frac{(x - R_p)^2}{2 (\Delta R_p^2 + 2Dt)}} + e^{-\frac{(x + R_p)^2}{2 (\Delta R_p^2 + 2Dt)}} \right]$$

We can see that in the limit $(Dt)^{1/2} >> R_p$ and ΔR_p ,

$$C(x,t)
ightarrow rac{\varphi e^{-x^2/4Dt}}{(\pi Dt)^{1/2}}$$
 (the half-gaussian drive-in solution)

Thermal Budget

$$(\mathbf{Dt})_{\text{effective}} = \sum_{\text{step i}} (\mathbf{Dt})_{\mathbf{i}}$$

Example

Dt_{total} of :

Well drive-in

and

S/D annealing

For a complete process flow, only those steps with high Dt values are important