Diffraction from crystals

- A crystal is a three dimensional diffraction grating
- The lattice periodicity of the crystal determines the sampling regions of the diffraction pattern
- The unit cell contents give you the envelope function

Laue equations

- Laue first mathematically described diffraction from crystals
 - consider X-rays scattered from every atom in every unit cell in the crystal and how they interfere with each other
 - to get a diffraction spot you must have constructive interference

- Laue equations:

 $\gg PD_1 = h_1\lambda, PD_2 = h_2\lambda, PD_3 = h_3\lambda$

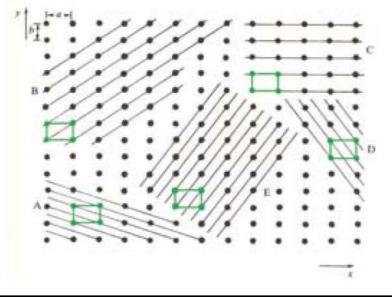
The Bragg equation

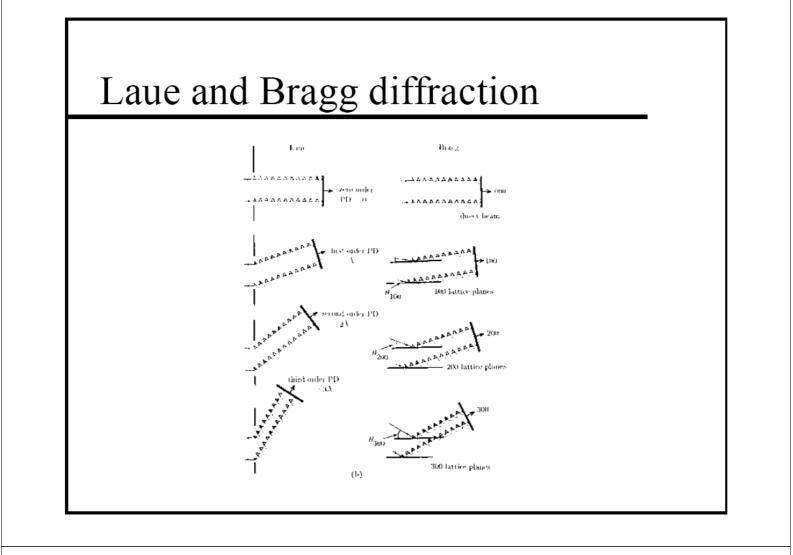
- Bragg discovered that you could consider the diffraction to have arisen from reflection from lattice planes
- Reformulated Laue equations

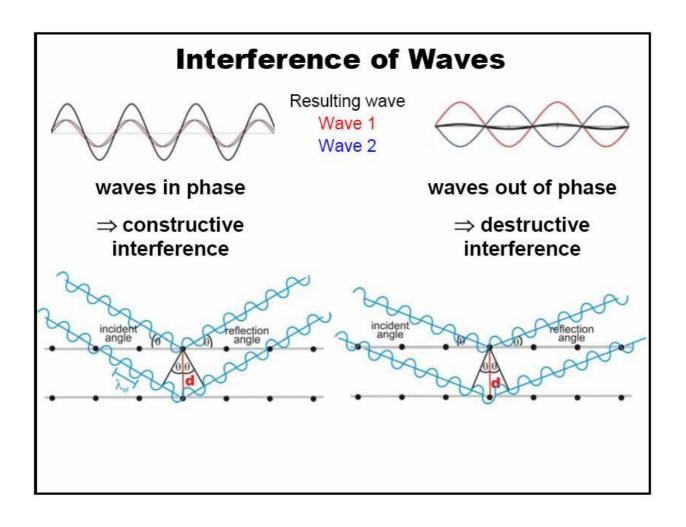
 $-2d_{hkl}\sin\theta_{hkl} = n\lambda$

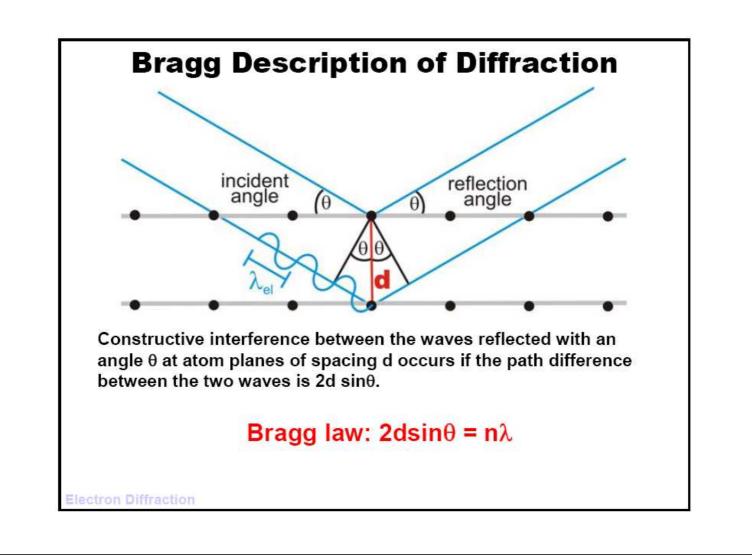
The orientation of lattice planes

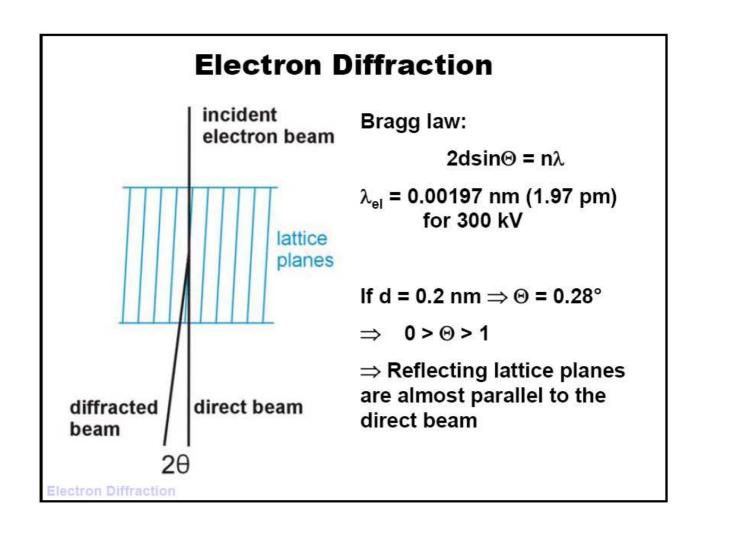
• It is possible to describe certain directions and planes with respect to the crystal lattice using a set of three integers referred to as Miller Indices

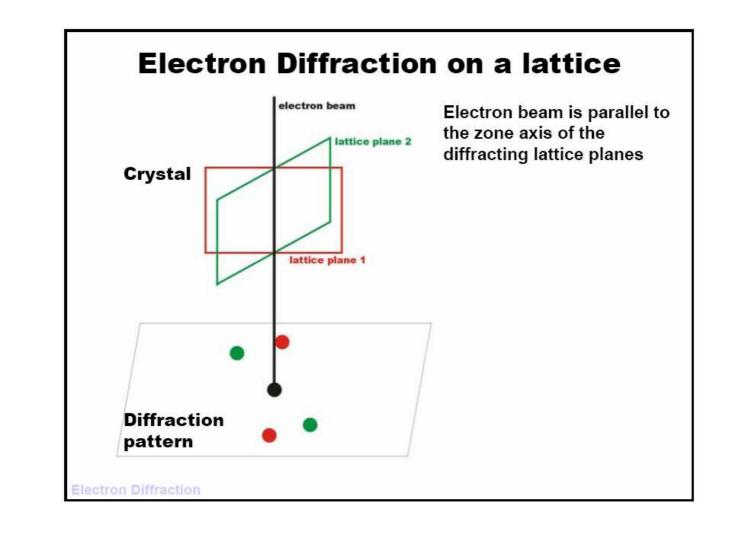


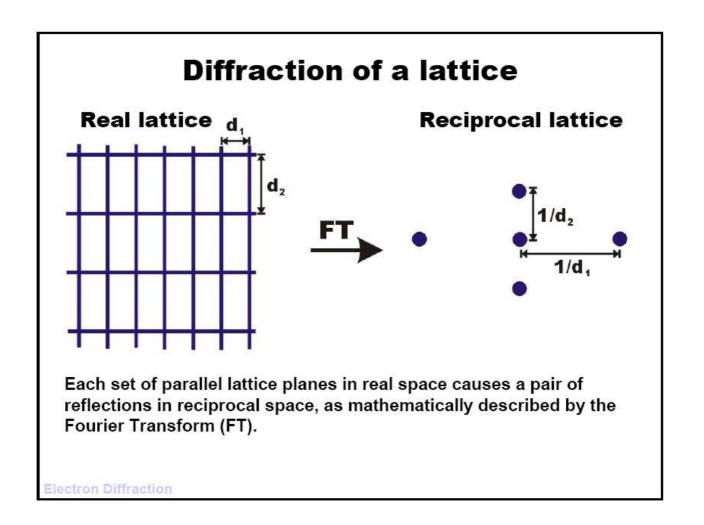






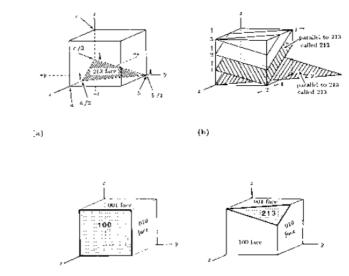


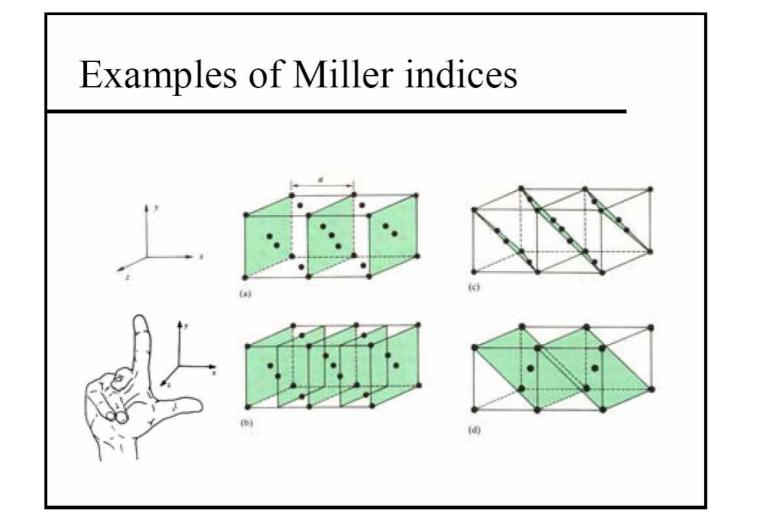




Miller indices (hkl)

- Miller Indices are the reciprocal intercepts of the plane on the unit cell axes
- Identify plane adjacent to origin
 - can not determine for plane passing through origin
- Find intersection of plane on all three axes
- Take reciprocal of intercepts
- If plane runs parallel to axis, intercept is at ∞, so Miller index is 0



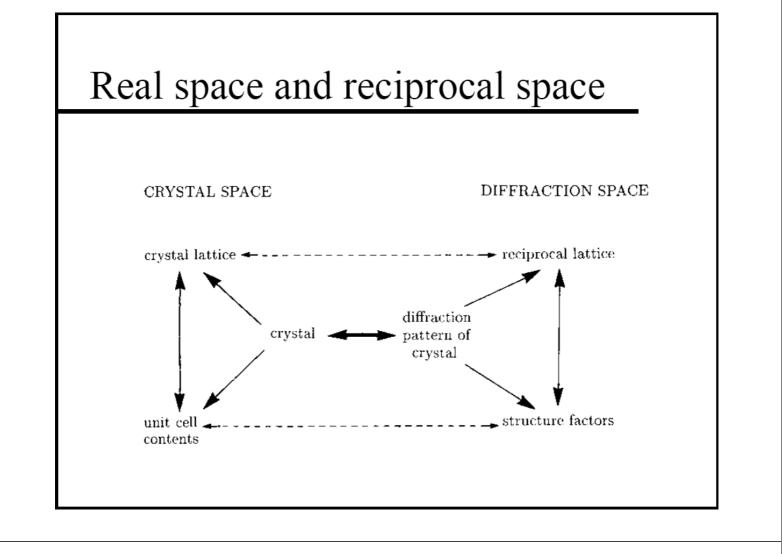


Families of planes

- Miller indices describe the orientation and spacing of a family of planes
 - The spacing between adjacent planes in a family is referred to as the "d-spacing"

Three different				Note all
families of planes				(100) planes
d-spacing between				are members
(300) planes is one	-			of the (300)
third of the (100) spacing		(200)	(300)	family
	(100)			

RASMOL demo here



The reciprocal lattice

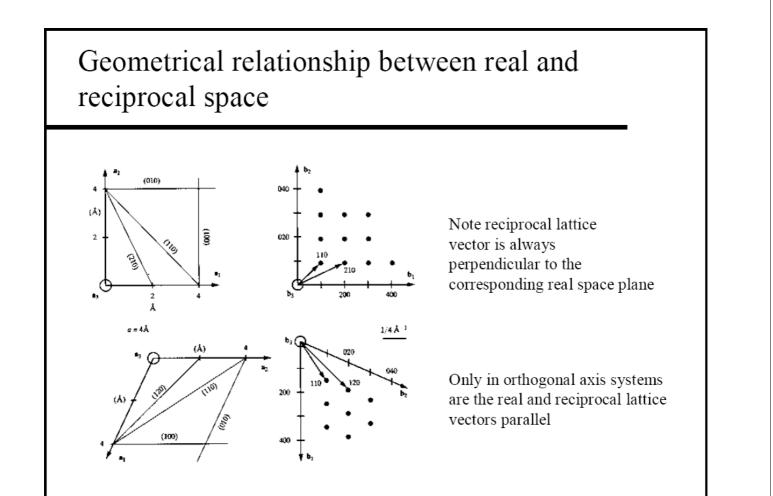
- It is convenient when talking about diffraction to use the concept of a reciprocal lattice
- The reciprocal lattice is related to the real space lattice by:

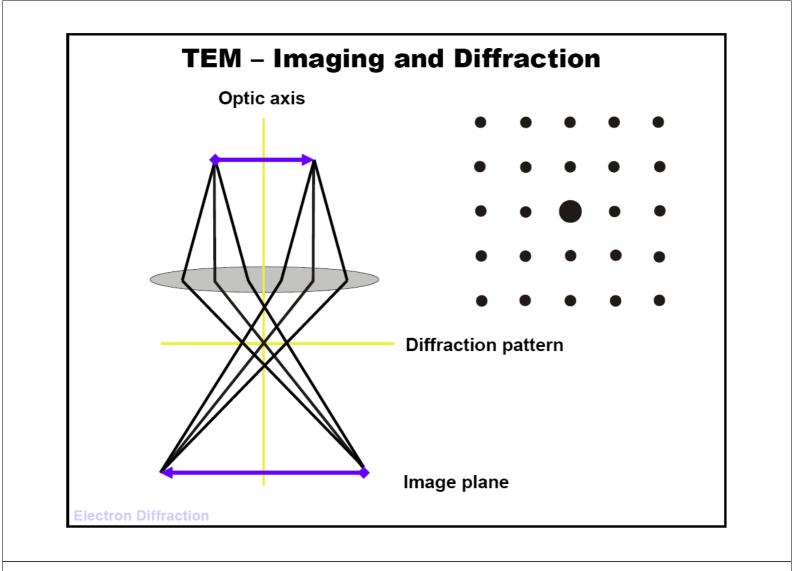
$$b_1 = \frac{a_2 \times a_3}{a_1 \cdot a_2 \times a_3} \qquad b_2 = \frac{a_3 \times a_1}{a_1 \cdot a_2 \times a_3} \qquad b_3 = \frac{a_1 \times a_2}{a_1 \cdot a_2 \times a_3}$$

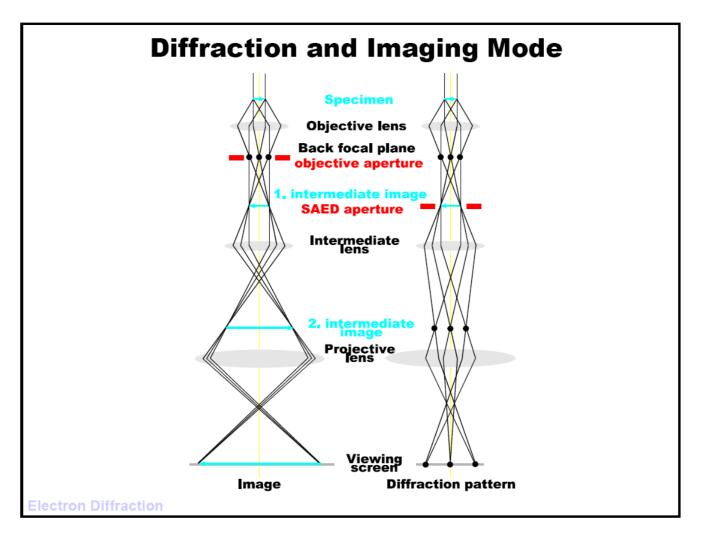
- a₁, a₂, a₃ are the vectors of the real space lattice (alternatively a,b,c) and b₁,b₂,b₃ are the vectors of the reciprocal lattice (alternatively a*,b*,c*).
- Note a₁.a₂xa₃ is the unit cell volume

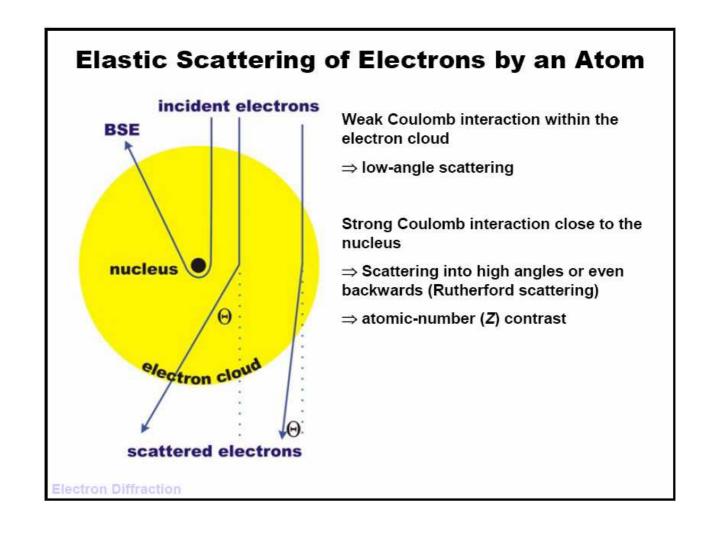
Properties of the reciprocal lattice

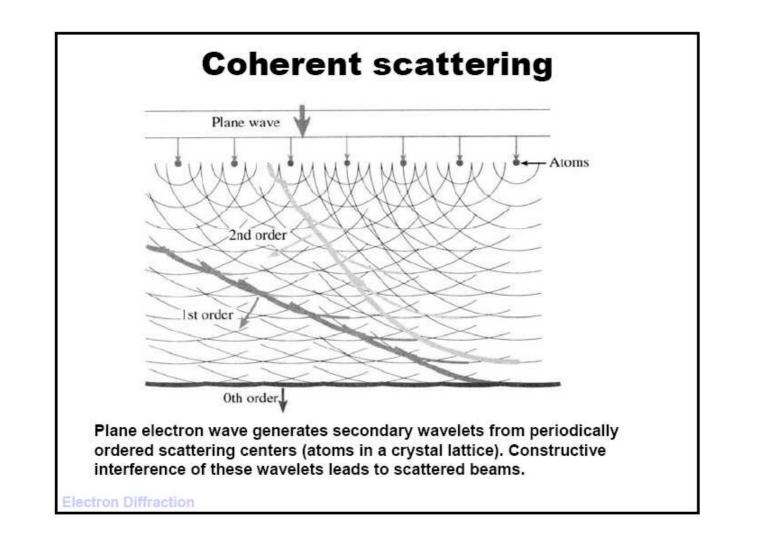
- Note $a_i \cdot b_j = \delta_{ij}$
- So $a_1.b_1 = 1$, but $a_1.b_2 = 0$ and $a_1.b_3 = 0$ etc.
 - This is the origin of the term reciprocal lattice.
 - The reciprocal lattice and real space lattice are orthonormal
- Any point on the reciprocal lattice can be specified by a vector $\mathbf{H}_{hkl} = h\mathbf{b}_1 + k\mathbf{b}_2 + l\mathbf{b}_3$ (hkl are integers)
 - This vector is perpendicular to the plane in real space with Miller indices (hkl)
 - The length of this vector $H_{hkl} = 1/d_{hkl}$ where d_{hkl} is the interplanar spacing in real space
 - We get to represent a whole family of planes in real space by a single point in reciprocal space







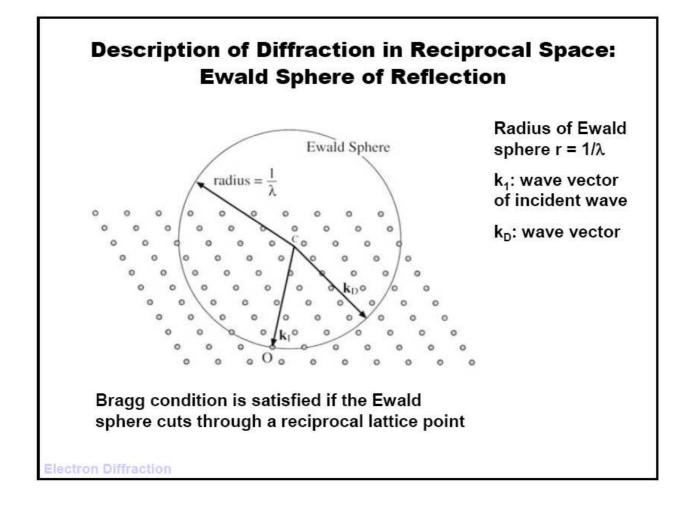


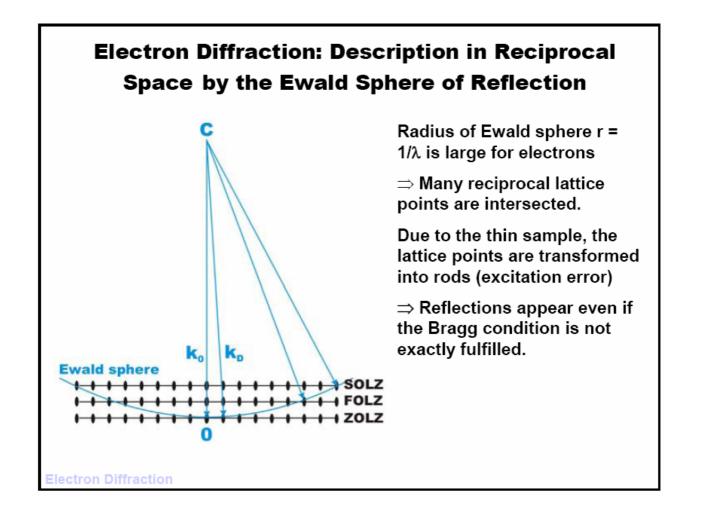


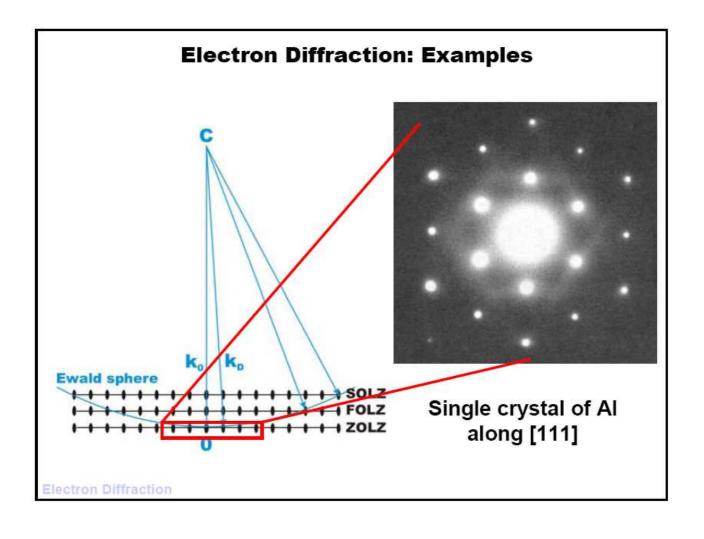
The Ewald construction

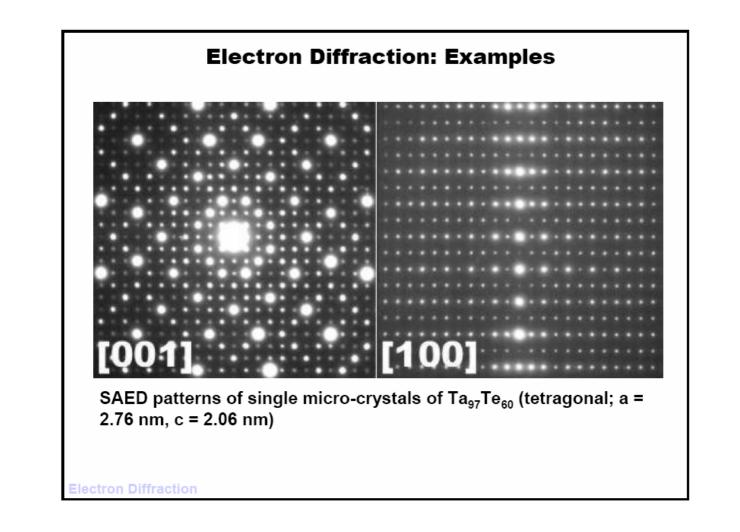
- A crystal at a random orientation in an Xray beam will not necessarily give a diffraction spot
- Ewald construction allows the prediction of the orientation required for diffraction

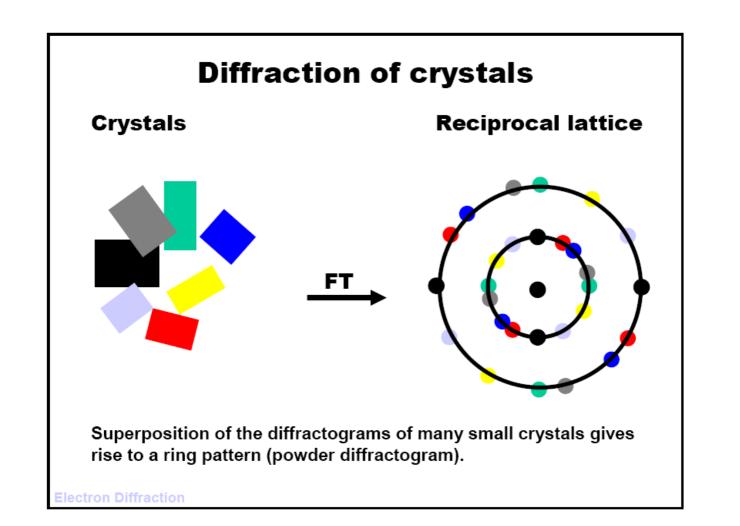
- widely used in diffraction books



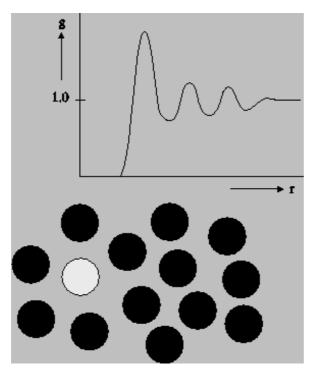






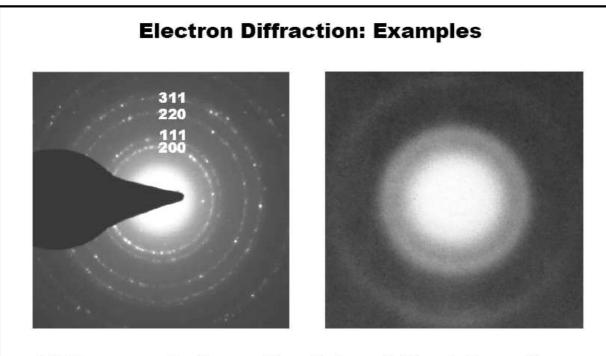


Radial Distribution Functions

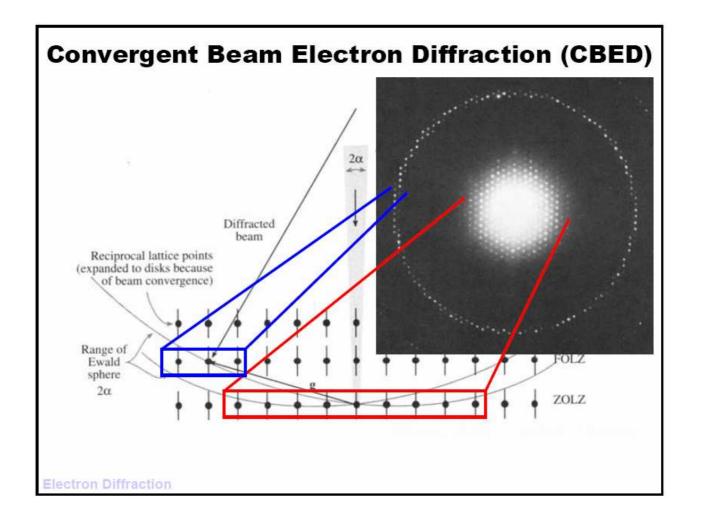


Probability that an atom lies r away From another atom

Good for even fluids!



SAED patterns of polycrystalline platinum (left) and of amorphous carbon (right).



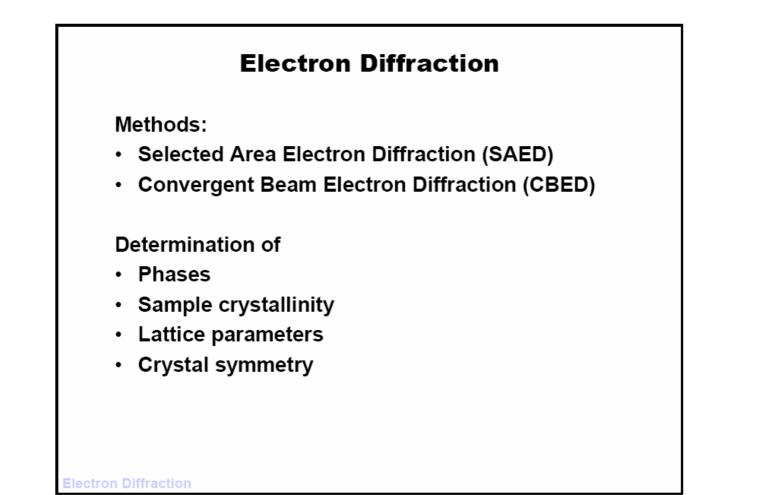
Comparison of electron (ED) and X-ray (XRD) Diffraction

What ED and XRD have in common:

- generated by interference (Bragg law, extinction rules...)
- single crystal and powder diffractograms

Differences:

- X-rays interact with the electron cloud, electrons are scattered by the positive potential inside the electron cloud
- electrons interact with matter much stronger than X-rays
 ⇒ intensity of ED reflections is 10⁶-10⁷x those of XRD
 ⇒ exposure times in ED: ~ sec; in XRD: ~ min h
 ⇒ problem: multiple scattering in ED
- wavelength of electrons ($\lambda \sim 2 \text{ pm}$) much shorter than that of X-rays ($\lambda \sim 100 \text{ pm}$)
- diffraction angles: ED 0-2°; XRD 0-180°
- penetration depth: ED ~ 1 μm; XRD ~ 100 μm
- investigated sample volumes: ED ~ 1 μm³ (CBED ~ 10 nm³); XRD ~ 0.1-10 mm³



FEI Confidential Copyright © 2004

TEM Modes of Operation, Operating Principles and Examples

Bright Field Imaging Dark Field Imaging Diffraction Analysis STEM EFTEM

TEM Modes

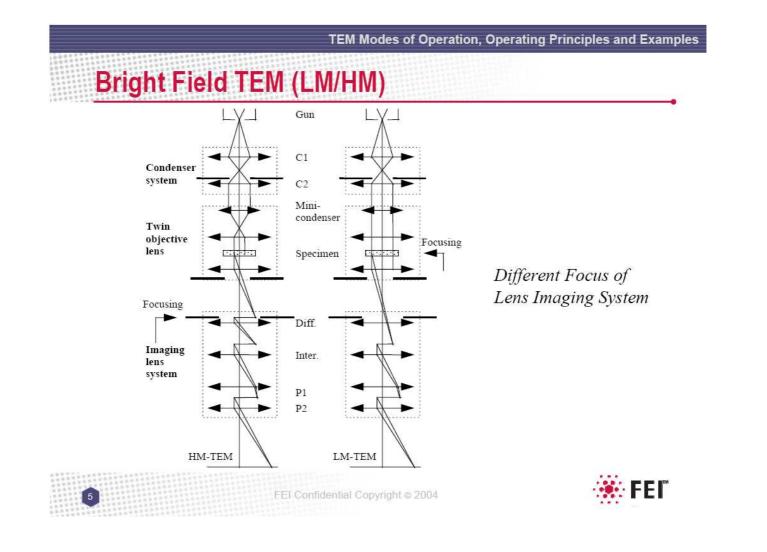
Bright Field TEM

Standard method for making images with the transmitted beam

FEI Confidential Copyright © 2004

Imaging modes

- LM (objective lens nearly off)
- · HM (objective lens on)

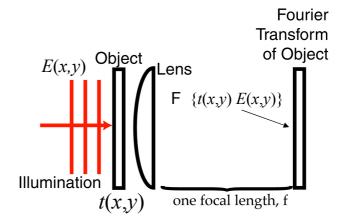


A lens brings the far field in to its focal length.

This yields:

$$E(x_1, y_1) \propto \iint \exp\left\{-i\frac{k}{f}(x_0x_1 + y_0y_1)\right\} t(x_0, y_0) E(x_0, y_0) \, dx_0 \, dy_0$$

If we look in a plane one focal length behind a lens, we are in the Fraunhofer regime, even if it isn't far away! So we see the Fourier Transform of any object immediately in front of the lens!



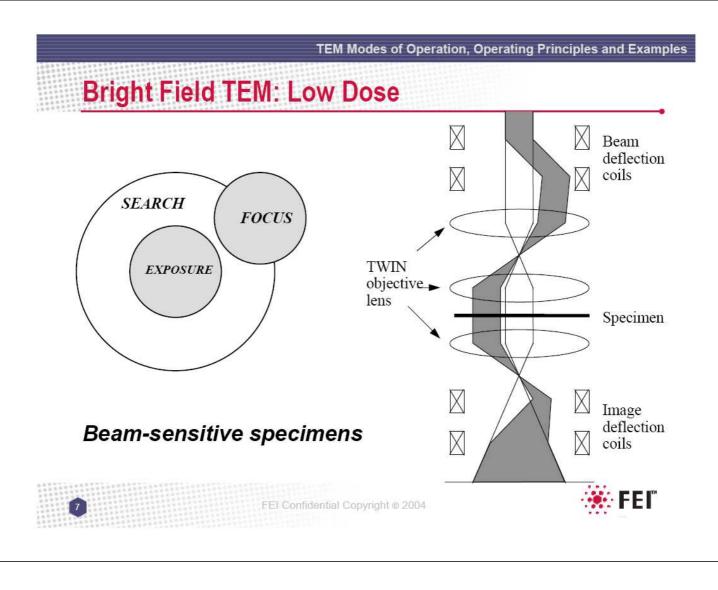
A lens in this configuration is said to be a Fourier-transforming lens.

Fraunhofer Diffraction: interesting example

Randomly placed identical holes yield a diffraction pattern whose gross features reveal the shape of the holes.

> Hole Diffraction pattern pattern Round holes

Square holes



TEM Modes of Operation, Operating Principles and Examples

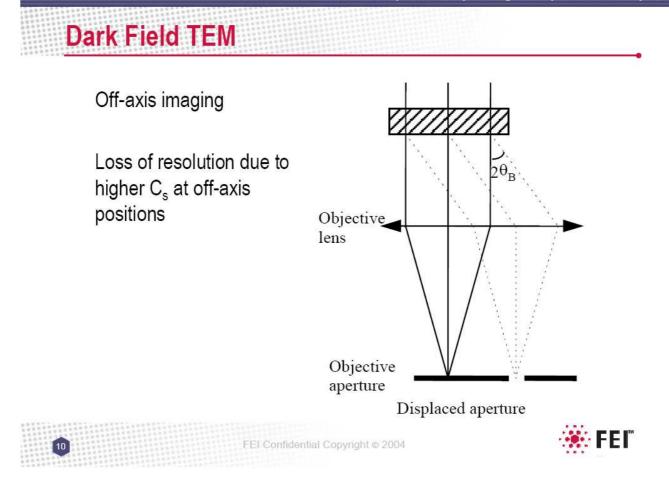
Standard method for making images with deflected

or diffracted beams

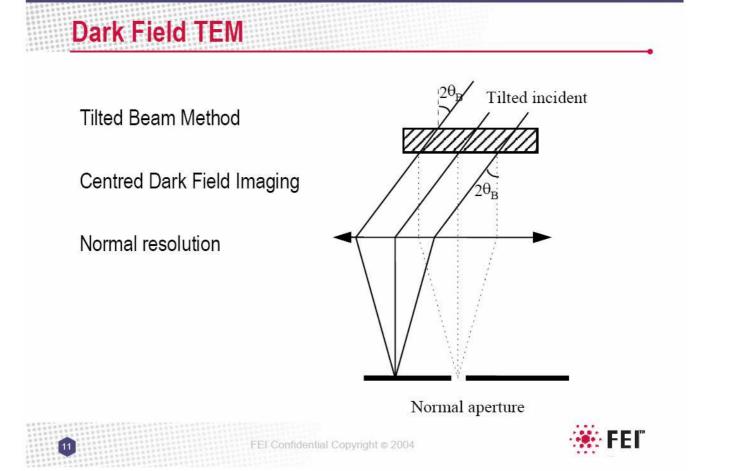
Imaging modes

Dark Field TEM

- Off-axis method
- Tilted Beam method



TEM Modes of Operation, Operating Principles and Examples

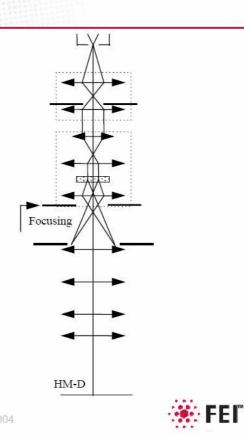


TEM Modes of Operation, Operating Principles and Examples

Diffraction

The imaging lens system is focusing at the back focal plane of the objective lens

- Selected Area Diffraction (SAD)
- Micro-diffraction
- Convergent Beam Diffraction (CBED)



TEM Modes of Operation, Operating Principles and Examples

Diffraction: SAD

Specimen area for diffraction pattern can be selected with SA aperture

 effects in a virtual insertion of an aperture in the specimen plane with size M time smaller (M: 20-40x)

Diffraction: micro-diffraction and CBED

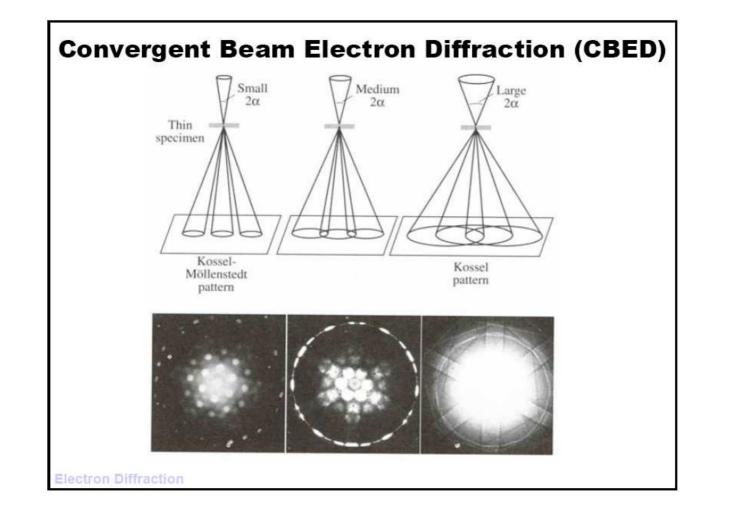
Specimen area for diffraction pattern can be selected by locating beam on area of interest

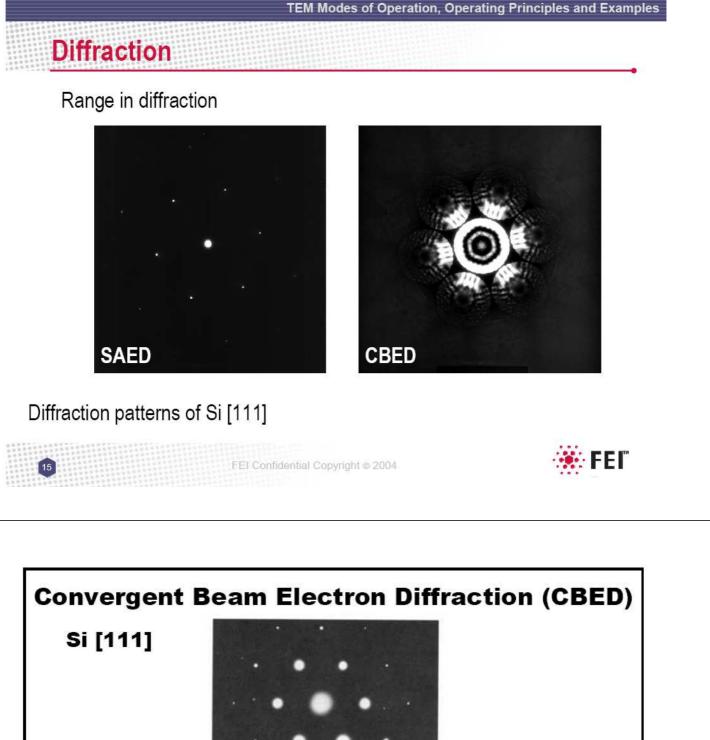
FEI Confidential Copyright © 2004

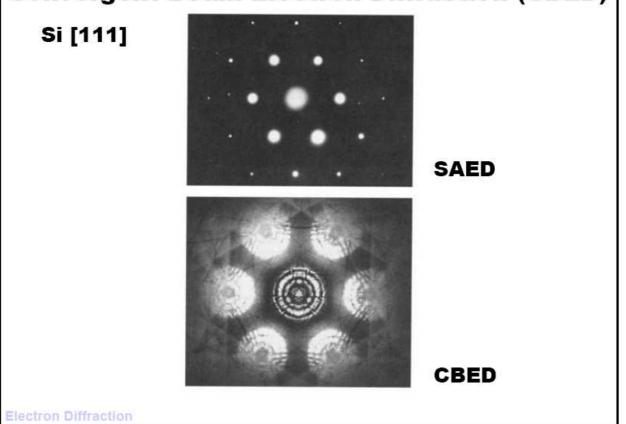
- convergent-beam
 - microprobe

14

• nanoprobe (down to 0.3 nm)







The Fourier Transform of a random array of identical tiny objects

Define a random array of two-dimensional delta-functions:

$$Rand(x, y) = \sum_{i=1}^{n} \delta(x - x_i, y - y_i)$$

$$F \{Rand(x, y)\} = \sum_{i=1}^{n} \exp[-i(k_x x_i + k_y y_i)]$$
Sum of rapidly
varying sinusoids
(looks like noise)

If Hole(x,y) is the shape of an individual tiny hole, then a random array of identically shaped tiny holes is:

Holes(x, y) = Rand(x, y) * Hole(x, y)

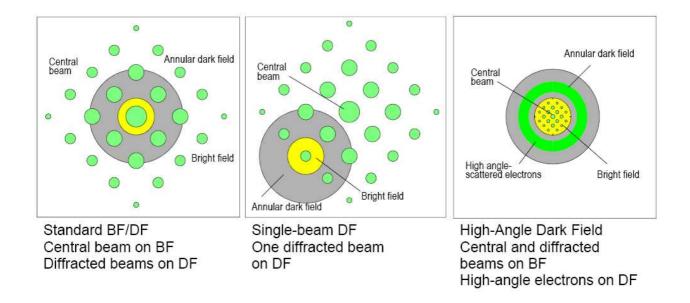
The Fourier Transform of a random array of identically shaped tiny holes is then:

$$F \{Holes(x, y)\} = F \{Rand(x, y)\} F \{Hole(x, y)\}$$

$$\uparrow \qquad \uparrow$$
Rapidly Slowly
varying varying

TEM Modes of Operation, Operating Principles and Examples

Scanning Bright Field / Dark Field



Scanning Bright Field / Dark Field

