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Phase Contrast

« Converts phase change to Amplitude change

http://micro.magnet.fsu.edu/primer/techniques/phasecontrast/phaseindex.html




Phase Contrast

« Converts phase change to Amplitude change
Quarter wave dot
(at optic axis)

Input plane: 7(x,y) = &/#*5)

FT plane field = 7'(k,, ky)

Implementing Phase Contrast Using 4F Correlator

» Converts phase change to Amplitude change
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Implementing Phase Contrast Using 4F Correlator
PSF(kx,ky) is the Point spread function (PSF)

T(‘f‘::r.':kw) = PSF (k:r.': k‘n) - J (I’(k:r.': kw)

E[k:i‘f 1 l‘-;:'f".l') = jP*SrF[:kii‘.'! k?f) | j(I)(ki" 1 k?f) Wlth PC opthS

E(x,y) =1+ ¢(z,y)




Proper Choice of the phase shift reverses contrast

Positive and Negative Phase Contrast Systems

Shade-Off in Positive and Negative Phase Contrast

Positive Phase MNegative Phase
Contrast l5g|‘.:ontr'i|sl:

Extended
Phase Specimen

Phase
Plates

Phase Contrast

f(x) {x) fix) 1{x)
2

2 1.5
15 H h
15 1.5 4
1 1 1
0.5
0.5 0.5 05
0 0 0 0
-500 0 500 -500 0 500 =500 ) 500 =500 0 500
() 1(x) f(x) 10x)
2 15 15 3
15 ]1
1 frememeottl])s i 1 2
| |
0.5 0.5 1
05 N
9 0 0 0
-500 0 500 -500 0 500 =500 0 500 =500 0 500
f(xy) d=0.1 mm fixy) d=0,5 mm before lens
=100
0 e
100

=100 Q 100 =100 (4] 100 100 1] 100
d=0.2 mm d=1.50 mm d=0.5 mm after lens
100 . : 100
0 L] 0 o
100 100




Phase Contrast convert to amplitude
contrast with defocusing
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Contrast Transfer Function

The contrast transfer function (CTF) is the Fourier Transform
of the point spread function (PSF)

The CTF describes the response of the system to an input plane wave.
By convention the CTF is normalized to the response at zero frequency (i.e. DC level)

(k) =2E
H(0)
A low-pass filter A high-pass filter

—

H(k) H(k)
k ok .
(division by k in Fourier Space (multiplication by k in Fourier Space

_>integration in real space) ->differentiation in real space)

smoothing Edge-enhancing
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Coherent vs. Incoherent Imaging

(Kirkland, Chapter 3.3)

17,1 - > obj
Lateral Coherence of the Electron Beam Av .~ 0.164
for an angular spread f,,,, (Born&Wolf): Xeon ™ /3 o
max
. A
Image resolution ( ~ P

max

Combining these 2 formula we get:

Coherent imaging: [3.. <<0.16a

max

Wave Interference inside AX,,, allows us to measure phase changes

2
as wavefunctions add: ‘!,!/ o T l//b‘ = ‘y/a

2 2 Tk
| +waw, rvy,

Incoherent imaging: /))max >> (.16 (usually Py > 3% )

max

No interference, phase shifts are not detected. Intensities add i/, : + ‘wa
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Coherent Imaging
(Kirkland 3.1)
p~0
incident electrons : VindX)
specimen ¢ : =
W e (X) Lens has a PSF A(x)

objective lens .
a w.fi?mge (x) = w.«_)bjeﬁ (x) ® A(x)

-

image

objective aperture

——— [e—]
(back focal plane)

,inmage (k) = wgbjecs‘ (k) ' A(k)

-
e

image plane

g(x) = ‘wr'mage (x)

We measure the intensity, not the wavefunction

i
OpMIC K

)
“

g(x) = ‘yfob_m (x)® A(x)

Convolve wavefunctions, measure intensities 18
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Incoherent Imaglng (Kirkland 3.4)

Lost phase information, only work with intensities

' 2
ingiddent electrons ﬁ F Vit X) Lens has a PSF ‘A(X)‘

specimen = "
l//objecr' (‘1 )

2

chjee b ) ‘s :
l//r'mage(x) = yfobjé?i’f(x)‘ @)“4(37)‘
gbiective aperture i [—— y/mmcrg( *) l
thack focal planc) =

l &Y yfr'mage (k) — I:Wob_,r'grr (k) ® lf’f:E:jecf (k):l [‘4(’1"’) @ ‘4* (k)]
phine (x) - meage (x )‘ CTF
J, s We measure the intensity, not the wavefunction

g(x)=

David Muller 2006 Convolve intensities, measure intensities 19

i,//objm,(x)‘2 ® ‘A(x)‘z

Coherent vs Incoherent Imaging

Coherent Incoherent

Point Spread 5
Function A(x ) ‘A(x) ‘

Contrast Transfer | 7135 Ob/ect Im[A (k )] .
Function ‘A(k) ® 4 (k)‘
Amplitude Object Re [ A( k)]

2

V )| ®|A[

We measure g(x)= glx)=

Y opject (X) ® A(X)
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An Arbitrary Distortion to the Wavefront can be expanded in a power series

(Either Zernike Polynomials or Seidel aberration coefficients)

Z(p,f)')= =Zy—Zy+ Zy piston
+P\/(Zl —2Ze)* +(Z, - 22,)?
Zernike Polynomials Z, — 27 _
xcos| O —tan 1| 22— tilt
Z, —2Zg
+p*2Z, — 6Zy + JZ2 + Z2) focus
e 1 V4 . .
+2p% /7% + ZEcos?| 0 ——tan [ =2 astigmatism
+2p°/Z% 5 2 Z, g
3 2 2 y 1%
+3p3JZ% + Z3 cos| ¢ — tan s coma
6
+6p*Z,. spherical
TAELE IV
:xu
7
Zy
Z, astigmatism & 0° & focus
Ze astigmatism @ 45° & focus
Z, coma & x-tilt
Zy ma & y-tilt
Zy spherical & focus

J.C. Wyant, K. Creath, APPLIED OPTICS AND OPTICAL ENGINEERING, VOL. XI 28

Phase Shift in a Lens

(Kirkland, Chapter 2.4)

Electron wavefunction in focal plane of the lens

pla)=e"

Where the phase shift from the lens is

2 (1 . 4 1 2
) = —C,o0" —— AN
x(a) ,.(4 3 2f J

s

Keeping only spherical aberration and defocus
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Jefz(r’f.la
A(k) =
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k> k

max
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Spherical Aberration (C,) as a Phase Shift

o o
o

..‘\Jl
o o

\ Gaussian

image plane
Wavefronts (lines of equal phase)

_ _ 2
Phase shift from lens aberrations: ;((O:) = TAS(O:)

[

(remember wave exp[ i(2x/2) X] has a 27 phase change every A)
|
For spherical aberration AS(O!) = — (_,305 ! but there are other terms as well
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Michael A. O'Keefe* and Yang Shao-Horn**

In the HRTEM, the image is recorded with an intensity,
[ (x), which is the square of the complex image ampli-

tude, or electron wave, y(x) at the image plane:
I(x) = v (x) y*(x) (1)
Fourier transformation of this equation gives the image

intensity spectrum as the auto-correlation function of

the image amplitude spectrum, ¥ (u)
[ (u) =¥Y*(-u) ® ¥Y(u) (2)

where ® represents convolution.




The convolution may be written out as a sum over all
pairs of amplitude spectrum components, ¥(u) that

contribute to the image, in the form

[(W)=2Y (u).¥Y*(u'-u) (3)

where each product term represents the contribution to
the image intensity spectrum of the interference of any
complex diffracted beam amplitude ¥ (u') with (the
conjugate of) all the complex diffracted beam ampli-

tudes W*(u'-u).

Phase Shift in a Lens

(Kirkland, Chapter 2.4)

Electron wavefunction in focal plane of the lens

pla)=e"

Where the phase shift from the lens is

y(a) = 2?(1 C.o’ —lAfazj
A\ 4 /' 2

Keeping only spherical aberration and defocus
k

k

<k

max

Jefz(r’f.la
A(k) =

o

>k

max
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Phase changes from the objective lens are imposed on
the specimen exit-surface wave ¥, (u), to produce the
image amplitude spectrum wave ¥ (u). The phase
changes are described via an objective lens phase func-

tion % (u), such that
W(u) = g, (u).expl-iyg(w) (4)
Then the image intensity spectrum is given by

[ (u) =2 (u).expl-ix(u)}. Wg* (u-u).expi+iy(u’-u)}

2 3 4 (5)
y(u) = meAlul” + tCA ' lul /2

Abbé Concept of Image Formation

High spatial frequencies in the object do not pass through the lens
aperture; low frequencies do. The frequencies that pass through the
lens for a Fourier transform (with a phase factor) at the focal pland
(source image plane) before passing on to the image plane.

N~
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TS B A5 [mage
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Diffracted

orders

plane

Figure 6-2 The Abbe theory of image formation.

The University of Texas at Austin Fourier Optics EE3S83P




With non-linear terms excluded from eqn.5, the uth
component of the "linear-image" intensity spectrum
contains only u and -u ditfracted-beam interference

with the zero beam

I (u) =Yg (u) expl-ix(w)} . Yg*O) +
Wi (0).W*(-u) exp{+iy(-u)} (6)

Y(0) has a weight that is close to unity for a weakly-
scattering specimen. Since it is present for all the inter-

terence terms and can be normalized out, we can write

I (u) = ¥Yg (u).expl-ix(u)] +
Wi (-u).exp|+ix(-u)] (7)

The electron wave at the specimen exit surface is a

function of the (projected) specimen structure. The

function of the (projected) specimen structure. The
major effect of elastic scattering of the electrons within
the specimen occurs on the phase of the electron wave
traversing the specimen - the specimen behaves as a
“phase object”. Thus, information about the (projected)
spatial distribution of specimen potential ¢,(x) and
specimen thickness H is encoded in the phase of the

electron wave, which can be written

YE(X) = expi—1 6 ¢,(x) H (8)




Electron wavefunct

angle(f(x,y))
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For our weakly-scattering specimen, the majority of the

elastically-scattered electrons will undergo kinematic

(single) scattering. Neglecting dynamical diffraction, the

direct-space electron wave at the specimen exit-surface

of this “weak phase object” can then be written

Ve(X) =1-i0c0,(x) H

9)

where ¢ is the interaction coefficient, Op(X) is the speci-

men potential projected in the incident electron beam

direction, and H is the specimen thickness. In Fourier

space
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direction, and H is the specimen thickness. In Fourier

space
We(u) =08(u) —io V(u) H (10)

where V(u) is the (complex) Fourier component, with
spatial frequency u, of the (real) projected potential
0p(X).

When the (reciprocal-space) exit-surface wave (10) is
included, the expression for the linear image intensity

spectrum (7) becomes

[[(u) =8(u) —ic V(u) H expliy(u)] +
i o V*(-u) H expl-iy(-u)] (11)




[[(u) =0(u) —ic V(u) H expliy(u)] +
i o V*(-u) H exp[-iy(-u)] (11)

Then, since {explix(u)] — exp[-ix(-u)]} is equal to 2isiny (u)
tor a round lens, and V*(-u) is equal to V(u) for a real
potential, the image intensity spectrum for such a

"linear" (or "weak-phase object") image is reduced to
[[(u) =0(u) + 2 ¢ V(u) H siny(u) (12)

Thus the magnitude of the uth term in the image inten-
sity spectrum is just proportional to V(u), which is the
uth Fourier coefticient of the projected potential, and
to siny(u), the value of the phase-contrast transfer

tunction (CTF) at the corresponding value of lul.

By choosing a value of defocus at which siny(u) is
approximately equal to -1 (Scherzer or optimum defo-
cus), it is possible to have each term in the intensity
spectrum proportional to (the negative of) the corre-
sponding Fourier coefficient of the projected potential.

An inverse Fourier transformation back into direct space

yields image intensity proportional to the negative
magnitude of the projected potential. Peaks in the
potential at the atom positions will produce dips in the

image intensity; the image will show “black atoms”.

[[(x)=1-20¢,(x) H (13)




Phase Shift in a Lens

(Kirkland, Chapter 2.4)

Electron wavefunction in focal plane of the lens

pla)= e

Where the phase shift from the lens is

2o (1 ., 4 1

7(a)=""| ~C,a* - Afa’
A\ 4 /' 2

Keeping only spherical aberration and defocus

kl <k

max

>k

max

Jefz(r’f.la
A(l) =

o
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Optimizing defocus and aperture size for ADF

Goal is to get the smallest phase shift over the largest range of angles
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Step 1. Pick largest tolerable phase shift: in EM A4=7/2, in light optics A/10

Step 2: Use defocus to oppose the spherical aberration shift within the widest /2 band

Step 3: P rture at d of the /2 band
Dae\‘-?d 1\"[111161‘%8066 apenure at Upper end o & an 32




Optimizing defocus and aperture size for ADF

Goal is to get the smallest phase shift over the largest range of angles

Step 1. We assume a phase shift <A4=m/2 is small enough to be ignored

Step 2. Use defocus to oppose the spherical aberration shift within the widest 7/2 band

Optimal defocus:  Af, = ((S,«)%

TRl
: 44
Optimal aperture: &, = c
Step 3. Place aperture at upper end of the 7/2 band & treat as diffraction limited
- . 0.614
Minimum Spot size: dmin ~
aopr
~1/4 73/4
g

(The full derivation of this is given in appendix A of Weyland&Muller
David Muller 2006 33

Contrast Transfer Functions of a lens with Aberrations

Generated with ctemtf

k| <k,

k|>k

max

Jew(kl
Aperture function  A(k) =
of a real lens 10,

Coherent Imaging CTF: Im[A(k )] = Sin [ V4 (k )]
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Remember Coherence

* A measure of how sinusoidal the wave is
— Or the length over which it interferes with itself

Contrast Transfer Functions of a lens with Aberrations

Generated with stemtf

Jew(k'],

Aperture function A(Ig )= 1
0

ol < k&

max

k>

max

of a real lens

2

Incoherent Imaging CTF: ‘A(k) ® A" (k)

12 Cs=1.2mm, df= 400A, E= 200keV, OA= 10mrad, d0=0A

1

CTF for different defocii
0.8
Theorem:

Aberrations will never
Increase the MTF

For incoherent imaging

0.6

MTF

0.41

0.2r

0

900A

0.2
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
k in inv. Angstroms 39
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Phase vs. ADF Contrast
(JEOL 2010F, C=1mm)

——STEM
—-—~HRTEM

Contrast Transfer Function

_1 _||||||||-|‘.T"|-'|‘|| | L1 L1 L1 L1
0 01 02 03 04 05 06 0.7 0.8

k (Inverse Angstroms)

TEM: Bandpass filter:low frequencies removed = artificial sharpening

ADF : Lowpass filter: 3 x less contrast at 0.3 nm than HRTEM

David Muller 2006

Effect of defocus and aperture size on an ADF-STEM image

CTF

Defocus (Angstroms)

PSF

Defocus (Angstroms)

David Muller 2006

~ (200 kV, Cy=1.2 mm)
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Depth of Field, Depth of Focus

d 0611

2
- tana 48

Figure 11. Depth of field. Object points O1 and O2 objects are separated by

the resolution limit d of the lens. Rays from these points cross
the axis at A and B equally. Hence, points between A and B will
look equally sharp, and AB is the depth of field Do of the lens for
a semi-angular aperture o.

For d=0.2 nm, =10 mrad, D,= 20 nm Ford=2 nm, a=1 mrad, D,= 2000 nm!

David Muller 2006

For d=0.05 nm, a= 50 mrad, D,= 1 nm!
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