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MATH 112
MIDTERM EXAM II
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IMPORTANT:
1) This exam consists of 5 questions of equal weights.
2) Please read the questions carefully and write your answers under the

corresponding question. Be neat.
3) Show all your work. Correct answers without sufficient explanation might not

get full credit.
4) Calculators and dictionaries are not allowed.
5) Close your cellular telephones.
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1) Determine whether each of the following series is convergent or divergent. State
clearly the name and the conditions of the test you are using.
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 then by the n-th term test the given series diverges.
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then by the Ratio Test the given series  converges.



2) Determine whether each of the following series is convergent or divergent. State
clearly the name and the conditions of the test you are using.
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 converges by the p-test,

p=2>1, then the given series converges by the Limit Comparison Test.
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3)a) Either evaluate the improper integral ∫
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then by the Limit Comparison Test for Improper

Integrals the given integral diverges.
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4) Consider the power series ∑
∞
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Find the radius of convergence and interval of convergence of this power series.
Determine whether the power series is absolutely convergent, conditionally
convergent or divergent at the left end-point and at the right end-point of its
interval of convergence.
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The series is absolutely convergent when )3,1(−∈x and radius of convergence is
R=2.

End Points:

If 3=x  then we get the alternating series ∑
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Thus the series converges by A.S.T.
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is a divergent harmonic series. Thus the

alternating series is conditionally convergent.

     If  1−=x  then we get the same alternating series as in the previous case.
    Therefore I=[-1,3] is the interval of convergence.

    



5)a) Find the sum of the series ∑
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exactly.

1st Solution:
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Putting x=0  we can find that C = 0.
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2nd Solution:

 You may also use the power series of ∑ −=
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.Since ∑ na is a convergent then the given series is also

convergent by the Limit Comparison Test.
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