First Exam Solutions
Spring 2024

Bilkent University
Phys 326

1. $E_{00}^{(1)}=\langle 00| H^{(1)}|00\rangle=q\langle 00| x_{1}^{2}|00\rangle+q\langle 00| x_{2}^{2}|00\rangle-2 q\langle 00| x_{1} x_{2}|00\rangle$

$$
=2 q\langle 0| x^{2}|0\rangle-2 q \underbrace{\langle 0| x|0\rangle^{2}}_{0}=2 q x_{o}^{2} / 4\langle 0|\left(a_{+} a_{-}+a_{-} a_{+}\right)|0\rangle=q x_{o}^{2} / 2
$$

2.(a) The ground state is non-degenerate, so we have $E_{11}^{(1)}=\left\langle\Psi_{11}^{(0)}\right| S_{1 x} S_{2 x}\left|\Psi_{11}^{(0)}\right\rangle$

Remembering that $|10\rangle$ is spherically symmetric so that
$\left.\left.|10\rangle=\left(\left|\uparrow_{z} \downarrow_{z}\right\rangle\right)-\left|\downarrow_{z} \uparrow_{z}\right\rangle\right) / \sqrt{2}=\left(\left|\uparrow_{x} \downarrow_{x}\right\rangle\right)-\left|\downarrow_{x} \uparrow_{x}\right\rangle\right) / \sqrt{2}$ and $\left.\left.E_{11}^{(1)}=\left(\left\langle\uparrow_{x} \downarrow_{x}\right|\right)-\left\langle\downarrow_{x} \uparrow_{x}\right|\right) \alpha S_{1 x} S_{2 x}\left(\left|\uparrow_{x} \downarrow_{x}\right\rangle\right)-\left|\downarrow_{x} \uparrow_{x}\right\rangle\right) / 2$
$\left.\left.=\left(-\alpha \hbar^{2} / 8\right)\left(\left\langle\uparrow_{x} \downarrow_{x}\right|\right)-\left\langle\downarrow_{x} \uparrow_{x}\right|\right)\left(\left|\uparrow_{x} \downarrow_{x}\right\rangle\right)-\left|\downarrow_{x} \uparrow_{x}\right\rangle\right) / 2=-\alpha \hbar^{2} / 8$
(b)To find $E_{12}^{(1)}$ we have to use degenerate perturbation theory. We have a number of choices: We could use the total angular momentum basis $|\ell, m\rangle$ (which would probably be best if we needed to find the eigenvectors as well), the outer product basis $\left|\imath_{z} \hat{\imath}_{z}\right\rangle$ or the outer product basis formed of the eigenstates of the S_{x} operators $\left|\downarrow_{x} \downarrow_{x}\right\rangle$. I will use the last one:

	$\left\|\uparrow_{x} \uparrow_{x}\right\rangle$	$\left\|\uparrow_{x} \downarrow_{x}\right\rangle$	$\left\|\downarrow_{x} \uparrow_{x}\right\rangle$	$\left\|\downarrow_{x} \downarrow_{x}\right\rangle$
$\left\langle\uparrow_{x} \uparrow_{x}\right\|$	$\alpha \hbar^{2} / 4$	0	0	0
$\left\langle\uparrow_{x} \downarrow_{x}\right\|$	0	$-\alpha \hbar^{2} / 4$	0	0
$\left\langle\downarrow_{x} \uparrow_{x}\right\|$	0	0	$-\alpha \hbar^{2} / 4$	0
$\left\langle\downarrow_{x} \downarrow_{x}\right\|$	0	0	0	$\alpha \hbar^{2} / 4$

So, two states will have $E_{12}^{(1)}=\alpha \hbar^{2} / 4$ and two states $-\alpha \hbar^{2} / 4$.
3. Let us try a wavefunction of the form $\Psi_{\text {trial }}(x)=A \exp (-|x| / a)$. Normalization constant will be given by $|A|^{2} 2 \cdot(a / 2)=1$ or $|A|^{2}=1 / a$.
$E_{\text {trial }}=\left\langle\Psi_{\text {trial }}\right|\left[-\hbar^{2} /(2 m) \partial^{2} / \partial x^{2}-V_{o} \exp \left(-x / x_{o}\right)\right]\left|\Psi_{\text {trial }}\right\rangle$
$=\hbar^{2} /(2 m)|A|^{2} 2 \cdot \int_{0}^{\infty}[\exp (-x / a) / a]^{2} d x-V_{o}|A|^{2} 2 \cdot \int_{0}^{\infty} \exp \left[-x\left(2 / x_{o}+1 / a\right)\right] d x$
$=\hbar^{2} /\left(2 m a^{2}\right)-2 V_{o} /\left[a\left(2 / x_{o}+1 / a\right)\right]=\hbar^{2} /\left(2 m a^{2}\right)-2 V_{o} /\left(2 a / x_{o}+1\right)$
$\partial E_{\text {trial }} / \partial a=-\hbar^{2} /\left(m a^{3}\right)+4 V_{o} /\left[x_{o}\left(2 a / x_{o}+1\right)^{2}\right]=0$
$\Longrightarrow 4 V_{o} m a^{3}=\hbar^{2} x_{o}\left(2 a / x_{o}+1\right)^{2} \quad \Longrightarrow \quad$ solve for a and substitute the value in $E_{\text {trial }}$.

