1.
$$E_{00}^{(1)} = \langle 00 | H^{(1)} | 00 \rangle = q \langle 00 | x_1^2 | 00 \rangle + q \langle 00 | x_2^2 | 00 \rangle - 2q \langle 00 | x_1 x_2 | 00 \rangle$$
$$= 2q \langle 0 | x^2 | 0 \rangle - 2q \underbrace{\langle 0 | x | 0 \rangle^2}_{0} = 2q x_o^2 / 4 \langle 0 | (a_+ a_- + a_- a_+) | 0 \rangle = q x_o^2 / 2$$

2.(a) The ground state is non-degenerate, so we have $E_{11}^{(1)} = \left\langle \Psi_{11}^{(0)} \middle| S_{1x}S_{2x} \middle| \Psi_{11}^{(0)} \right\rangle$ Remembering that $|1 0\rangle$ is spherically symmetric so that $|1 0\rangle = (|\uparrow_z\downarrow_z\rangle) - |\downarrow_z\uparrow_z\rangle)/\sqrt{2} = (|\uparrow_x\downarrow_x\rangle) - |\downarrow_x\uparrow_x\rangle)/\sqrt{2}$ and $E_{11}^{(1)} = (\langle\uparrow_x\downarrow_x|) - \langle\downarrow_x\uparrow_x|)\alpha S_{1x}S_{2x}(|\uparrow_x\downarrow_x\rangle) - |\downarrow_x\uparrow_x\rangle)/2$ $= (-\alpha\hbar^2/4)(\langle\uparrow_x\downarrow_x|) - \langle\downarrow_x\uparrow_x|)(|\uparrow_x\downarrow_x\rangle) - |\downarrow_x\uparrow_x\rangle)/2 = -\alpha\hbar^2/4$

(b)To find $E_{12}^{(1)}$ we have to use degenerate perturbation theory. We have a number of choices: We could use the total angular momentum basis $|\ell, m\rangle$ (which would probably be best if we needed to find the eigenvectors as well), the outer product basis $|\downarrow_z\downarrow_z\rangle$ or the outer product basis formed of the eigenstates of the S_x operators $|\downarrow_x\downarrow_x\rangle$. I will use the last one:

	$ \uparrow_x\uparrow_x\rangle$	$ \uparrow_x\downarrow_x\rangle$	$\left \downarrow_x\uparrow_x\right\rangle$	$\left \downarrow_x\downarrow_x\right\rangle$
$\langle \uparrow_x \uparrow_x $	$\alpha \hbar^2/4$	0	0	0
$\langle \uparrow_x \downarrow_x $	0	$-\alpha\hbar^2/4$	0	0
$\langle \downarrow_x \uparrow_x $	0	0	$-\alpha\hbar^2/4$	0
$\langle \downarrow_x \downarrow_x $	0	0	0	$\alpha \hbar^2/4$

So, two states will have $E_{12}^{(1)} = \alpha \hbar^2/4$ and two states $-\alpha \hbar^2/4$.

3. Let us try a wavefunction of the form $\Psi_{\text{trial}}(x) = A \exp(-|x|/a)$. Normalization constant will be given by $|A|^2 2 \cdot (a/2) = 1$ or $|A|^2 = 1/a$.

$$\begin{split} E_{\text{trial}} &= \left\langle \Psi_{\text{trial}} \right| \left[-\hbar^2 / (2m) \partial^2 / \partial x^2 - V_o \exp(-x/x_o) \right] \left| \Psi_{\text{trial}} \right\rangle \\ &= \hbar^2 / (2m) |A|^2 2 \cdot \int_0^\infty \left[\exp(-x/a) / a \right]^2 dx - V_o |A|^2 \ 2 \cdot \int_0^\infty \exp[-x(2/x_o + 1/a)] dx \\ &= \hbar^2 / (2ma^2) - 2V_o / [a(2/x_o + 1/a)] = \hbar^2 / (2ma^2) - 2V_o / (2a/x_o + 1) \\ \partial E_{\text{trial}} / \partial a &= -\hbar^2 / (ma^3) + 4V_o / [x_o(2a/x_o + 1)^2] = 0 \\ \implies \quad 4V_o ma^3 = \hbar^2 x_o (2a/x_o + 1)^2 \implies \text{ solve for } a \text{ and substitute the value in } E_{\text{trial}}. \end{split}$$