Second Exam Solutions
Spring 2024

Bilkent University

Phys 316

1. (a) Electric field exists only for radius $a<r<b$.

Gauss's Law: $E \cdot 2 \pi r D=Q / \epsilon_{o} \quad \Longrightarrow \quad E=Q /\left(2 \pi \epsilon_{o} D r\right)$ in the radial direction.
Magnetic field exists inside the rotating shell, for $r<b$.
Ampere's law: $B \cdot D=\mu_{o} Q /(2 \pi / \omega) \Longrightarrow B=\mu_{o} Q \omega /(2 \pi D)$ in the $-z$-direction.
(b) Poynting vector $\vec{S}=\vec{E} \times \vec{B} / \mu_{o}$ exists only between the shells $a<r<b$.
$S=E B / \mu_{o}=Q^{2} \omega /\left(4 \pi^{2} \epsilon_{o} D^{2} r\right)$ in the ϕ direction.
(c) The angular momentum density $\vec{\ell}=\vec{r} \times \vec{\wp}$ also exists only between the shells $a<r<b$.
$\ell=r \cdot \mu_{o} \epsilon_{o} S=Q^{2} \mu_{o} \omega /\left(4 \pi^{2} D^{2}\right)$ in the z-direction. So that the total angular momentum would be $L=\ell \pi\left(b^{2}-a^{2}\right) D=Q^{2} \mu_{o} \omega\left(b^{2}-a^{2}\right) /(4 \pi D)$ in the z-direction.
2.(a) Due to the symmetry of the problem, the direction of the E-field will be in the $-x$-direction on the $y-z$ plane.
(b) Gauss's law gives a field magnitude $E \cdot 2 \pi r D=\lambda D / \epsilon_{o} \quad \Longrightarrow \quad E=\lambda /\left(2 \pi \epsilon_{o} r\right)$
due to one of the line charges and with $r=\sqrt{a^{2}+y^{2}}$. We need only the component of the field in the $-x$-direction. That will bring in a factor of a / r. So the field on the $y-z$ plane due to the two line charges will be $E=2 a \lambda /\left(2 \pi \epsilon_{o} r^{2}\right)=a \lambda /\left[\pi \epsilon_{o}\left(a^{2}+y^{2}\right)\right]$ in the $-x$ direction.
(c) From symmetry, we know that the force between the charges will be in the $\pm x$ direction. The surface element on the $y-z$ plane is also in the x-direction. So, we will need to calculate only the $T_{x x}$ element: $T_{x x}=-\epsilon_{o} E_{x}^{2} / 2=a^{2} \lambda^{2} /\left[2 \pi^{2} \epsilon_{o}\left(a^{2}+y^{2}\right)^{2}\right]$
(d) If we now integrate over a strip of heigth D in the z-direction, and extending to $\pm \infty$ in the y-direction on the $y-z$ plane,
$F_{x}=\int_{0}^{D} d z \int_{-\infty}^{\infty} d y T_{x x}=D a^{2} \lambda^{2} /\left(2 \pi^{2} \epsilon_{o}\right) \cdot \int_{-\infty}^{\infty} d y /\left(a^{2}+y^{2}\right)^{2}$.
Using the transformation $y=a \tan \phi$ so that $\left(a^{2}+y^{2}\right)^{2}=a^{4} / \cos ^{4} \phi$ and $d y=a d \phi / \cos ^{2} \phi$ we get $\int_{-\infty}^{\infty} d y /\left(a^{2}+y^{2}\right)^{2}=\left(1 / a^{3}\right) \int_{-\pi / 2}^{\pi / 2} \cos ^{2} \phi d \phi=\pi /\left(2 a^{3}\right)$.
This then gives $F_{x} / D=\lambda^{2} /\left[2 \pi \epsilon_{o}(2 a)\right]$ as expected.
3. (a) $\vec{E}=E_{o} \hat{y}[\exp (i k(\hat{z} \cos \theta+\hat{x} \sin \theta) \cdot \vec{r}-i \omega t)-\exp (i k(-\hat{z} \cos \theta+\hat{x} \sin \theta) \cdot \vec{r}-i \omega t)]$
$\vec{B}=\left(E_{o} / c\right)[((\hat{z} \cos \theta+\hat{x} \sin \theta) \times \hat{y}) \exp (i k(\hat{z} \cos \theta+\hat{x} \sin \theta) \cdot \vec{r}-i \omega t)$

$$
-((-\hat{z} \cos \theta+\hat{x} \sin \theta) \times \hat{y}) \exp (i k(-\hat{z} \cos \theta+\hat{x} \sin \theta) \cdot \vec{r}-i \omega t)]
$$

$$
=\left(E_{o} / c\right)[(-\hat{x} \cos \theta+\hat{z} \sin \theta) \exp (i k(\hat{z} \cos \theta+\hat{x} \sin \theta) \cdot \vec{r}-i \omega t)
$$

$$
-(\hat{x} \cos \theta+\hat{z} \sin \theta) \exp (i k(-\hat{z} \cos \theta+\hat{x} \sin \theta) \cdot \vec{r}-i \omega t)]
$$

(b) $\overline{\bar{S}}=\operatorname{Re} \vec{E}^{*} \times \vec{B} /\left(2 \mu_{o}\right)$
$=E_{o}^{2} /\left(2 \mu_{o} c\right) \operatorname{Re}\{(\hat{z} \cos \theta+\hat{x} \sin \theta)+(-\hat{z} \cos \theta+\hat{x} \sin \theta)$ $+(\hat{z} \cos \theta-\hat{x} \sin \theta) \exp (-2 i k z \cos \theta)-(\hat{z} \cos \theta-\hat{x} \sin \theta) \exp (2 i k z \cos \theta)\}$
$=\sqrt{\epsilon_{o} / \mu_{o}} E_{o}^{2} / 2 \cdot 2 \hat{x} \sin \theta=\hat{x} E_{o}^{2} \sin \theta / Z_{o}$ since the last line above is imaginary.
So, the average power moves in the $+x$ direction, proportionl to $\sin \theta$.

