First Exam Solutions
Spring 2024

Bilkent University
Phys 316
1.(a) Applying Ampere's law using a rectangle with one side at r, the other side outside the selenoid, with length d, we get $d H=K=d N I / D$. So that $B=\mu(r) H=\mu(r) N I / D$.
(b) Magnetic flux through a circle of radius R :
$\Phi_{B}=\int_{o}^{R} B(r) 2 \pi r d r=\int_{o}^{R} \mu_{o} 2 \pi r(1+r / R)(N I / D) d r=2 \pi \mu_{o}(N I / D)\left(R^{2} / 2+R^{2} / 3\right)$
$=5 \pi R^{2} \mu_{o} N I /(3 D)$
(c) $L=5 \pi R^{2} \mu_{o} N^{2} /(3 D)$
2.(a)For positive plate at the top and negative at the bottom, $\vec{E}=-\hat{z} \sigma / \epsilon_{o}=-\hat{z}\left(\sigma_{o} / \epsilon_{o}\right) \sin (\omega t)$
(b) The flux of E-field in the $-z$ direction through a circle of radius r will be
$\Phi_{E}=E \pi r^{2}=\left(\sigma_{o} / \epsilon_{o}\right) \pi r^{2} \sin (\omega t)$. This will result in a magnetic field $B \cdot 2 \pi r=\mu_{o} \epsilon_{o} \partial \Phi_{E} / \partial t$, so that $B=\left(\mu_{o} \sigma_{o} / 2\right) r \omega \cos (\omega t)$ in the $-\hat{\phi}$ direction.
(c) A magnetic field in the $-\hat{\phi}$ direction generates a flux Φ_{B} in the positive direction for loop c with the given direction:
$\Phi_{B}=\int_{a}^{b} B(r) L d r=\int_{a}^{b}\left(\mu_{o} \sigma_{o} / 2\right) r \omega \cos (\omega t) L d r=\left(\mu_{o} \sigma_{o} / 4\right) \omega \cos (\omega t) L\left(b^{2}-a^{2}\right)$
(d) Current density on the disk must satisfy $\partial \rho / \partial t=-\nabla \cdot \vec{J} \Longrightarrow-\partial \sigma / \partial t=\frac{1}{r} \frac{\partial}{\partial r}\left(r K_{r}\right)$ $\frac{1}{r} \frac{\partial}{\partial r}\left(r K_{r}\right)=-\sigma_{o} \omega \cos (\omega t) \Longrightarrow \frac{\partial}{\partial r}\left(r K_{r}\right)=-r \sigma_{o} \omega \cos (\omega t) \Longrightarrow r K_{r}=\left(R^{2}-r^{2}\right) \sigma_{o} \omega \cos (\omega t) / 2$
since the current must go to zero at the edge of the disk.
We then have $K_{r}=\left(R^{2}-r^{2}\right) \sigma_{o} \omega \cos (\omega t) / 2 r$. So, the current is going radially outward as charge increases.
(e) Current at the center of the disk will be $I=\left.K_{r}(2 \pi r)\right|_{r=0}=\pi R^{2} \sigma_{o} \omega \cos (\omega t)$ which may also be determined from the change in the total charge on a disk:
$I=\frac{d}{d t} \sigma \pi R^{2}=\pi R^{2} \sigma_{o} \omega \cos (\omega t)$.
3. (a) $\rho_{m}=-\nabla \cdot \vec{M}=-2 \alpha x$
(b) $\sigma_{m}=\vec{M} \cdot \hat{S}=\alpha x^{2} \hat{x} \cdot \hat{r}=\alpha x^{2} \cos \phi=\alpha R^{2} \cos ^{3} \phi$
(c) $\cos ^{3} \phi=\cos \phi \cos ^{2} \phi=\cos \phi[\cos (2 \phi)+1] / 2=(1 / 4) \cos (3 \phi)+(3 / 4) \cos \phi$
$V_{m \text { in }}=A r \cos \phi+C r^{3} \cos (3 \phi)$
$V_{m \mathrm{Out}}=D r^{-1} \cos \phi+E r^{-3} \cos (3 \phi)$

$V_{m \text { in }}(R)=V_{m o u t}(R)$	$V_{\min }^{\prime}(R)-V_{m \text { out }}^{\prime}(R)=\sigma_{m}$	Solution	
$A R=D / R$	$A+D / R^{2}=3 \alpha R^{2} / 4$	$A=3 \alpha R^{2} / 8$	$D=3 \alpha R^{4} / 8$
$C R^{3}=E / R^{3}$	$3 C R^{2}+3 E / R^{4}=\alpha R^{2} / 4$	$C=\alpha / 24$	$E=\alpha R^{6} / 24$

