Objective:

The aim of this experiment is to teach how to report experimental measurements together with associated errors and correct number of significant figures in table and graph form.

Equipment:

- 1. Ruler with millimeter divisions.
- 2. A Vernier calliper with 0.1 mm divisions.
- 3. A micrometer with 0.01 mm divisions.

5

7 8 9 10 11 12 13 14 15

4. Balance.

Procedure:

Part A: Measurements and Errors

- **1.** Measure the length *L*, breadth *B* and thickness *T* of the rectangular object given using appropriate measuring devices. Estimate the error (uncertainty, which is the smallest division of the measuring device) in your measurements (ΔL in length *L*, ΔB in breadth *B*, and ΔT in thickness *T*) and record them properly with their absolute errors in Table 1.
- 2. Calculate the percentage error of your measurements and record them in Table 2. (Refer to the section on "Measurement and Errors" of the lab manual for definition of percentage error.)
- **3.** Calculate the volume V of the given object. Calculate the error ΔV in volume. Calculate the percentage error of volume.
- **4.** Weigh the metal plate and record its weight *W*. Estimate the error ΔW in your measurement and calculate the percentage error of weight.
- **5.** Calculate the density ρ of the metal plate and the error $\Delta \rho$ in density. Calculate the percentage error of density.

Part B: Graphs

Measure the thickness of an ordinary A4 paper by the following method.

- **1.** Take some number of papers, stack them on top of each other and measure the thickness of the stack using a Vernier calliper. Estimate the error (uncertainty) in your measurements.
- 2. Repeat the process described above for different number of papers in the stack five times and complete table.
- **3.** Draw a graph from the values you have recorded. The independent variable N should be placed on the *x*-axis and the dependent variable T should be placed on the *y*-axis. We expect the relation between N and T to be a linear one. Indicate the best and the worst possible lines.
- **4.** Find the slope *m* of the best possible line and the slope \acute{m} of the worst possible line and calculate the maximum possible error $\Delta m = |m \acute{m}|$.
- 5. Find the thickness of a single paper and estimate your error.

PHYS101 EXPERIMENT 1. MEASUREMENT AND ERRORS

Name & Surname:	ID#:	Section:
-----------------	------	----------

Data & Results Part A: [20]

Length ()		Breadth ()		Thickness (
L	ΔL	В	ΔB	Т	ΔT

Table a1: Dimensional measurements

$100(\Delta L/L)$	$100(\Delta B/B)$	$100(\Delta T/T)$

Table a2: Percentage errors

V ()	ΔV ()	$100(\Delta V/V)$

Table a3: Volume with errors

PHYS101 EXPERIMENT 1. MEASUREMENT AND ERRORS

Name & Surname:	ID#:	Section:
-----------------	------	----------

W ()	ΔW ()	$100(\Delta W/W)$

Table a4: Weight with errors

ρ()	Δρ()	$100(\Delta \rho / \rho)$

Table a5: Density with errors

Data & Results Part B: [10]

Number of Papers N			
Thickness of Stack $T\pm\Delta T$ ()			

PHYS101 EXPERIMENT 1. MEASUREMENT AND ERRORS

Name & Surname:	ID#:	Section:

PLOT: [25]

Slope:

y-intercept:

Conclusion: [15]