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DIMENSIONAL ANALYSIS 

 

When working through a complicated derivation, it is important to be sure that the units on one side of 

the resulting equation are the same as those on the other side. For example, in a calculation of the 

distance travelled by an object, one could be certain that a mistake had been made if the result came out 

in units of mass. An analysis of this sort is usually called dimensional analysis - a technique used in the 

physical sciences and engineering to reduce physical properties such as acceleration, viscosity, energy, 

and others to their fundamental dimensions of length, mass, time and charge. Whether the actual units 

of the fundamental dimensions are in the cgs or mks system is irrelevant. This technique facilitates the 

study of interrelationships of systems and their properties, and avoids the nuisance of incompatible units.  

As an example of the use of dimensional analysis, suppose one reaches an equation of force  

𝑓 =
3

5
𝜌𝑣2 

where 𝜌 is the mass per unit volume, or density, and 𝑣 is the speed. Dimensional analysis will never tell 

whether the factor 3/5 is correct since it is dimensionless, that is, a pure number. However, let us see 

whether 𝜌𝑣2 has indeed dimensions of force. Using M, L, and T to denote mass, length, and time, we 

obtain  

𝜌 = [𝑀][𝐿]−3 ,   𝑣2 = [𝐿]2[𝑇]−2 

and hence 

𝜌𝑣2 = [𝑀][𝐿]−3[𝐿]2[𝑇]−2 = [𝑀][𝐿]−1[𝑇]−2. 

  

On the other hand, force is mass times acceleration, acceleration is velocity divided by time, and velocity 

is length per time; so that 

𝐹 = [𝑀][𝐿][𝑇]−2. 

 We thus reach the conclusion that there should be some mistake in the derivation since the dimensions 

on one side of the force equation are not consistent with the dimensions on the other side.  

As a second illustration of the use of dimensional analysis, consider the case of a spherical body moving 

slowly through a viscous medium such as oil. In such a case, the damping force opposing the motion is 

governed by Stoke's law 

𝑓𝑑𝑎𝑚𝑝 = −6𝜋𝜂𝑟𝑣 , 

where 𝜂 is the coefficient of viscosity of the medium, 𝑟 is the radius of the sphere, and 𝑣 is the velocity. 

Using dimensional analysis, the dimensions of the coefficient of viscosity can readily be achieved through 

the relation 𝜂 ∼ 𝑓 (𝑟𝑣)⁄ , i.e., 

𝜂 =
[𝑓]

[𝐿][𝑣]
=

[𝑀][𝐿][𝑇]−2

[𝐿][𝐿][𝑇]−1
= [𝑀][𝐿]−1[𝑇]−1. 
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MEASUREMENT 

Measurement is very important in the physical world. During observations of natural phenomena, we 

make measurements of various kinds. Measurement is an operation which assigns a value to a physical 

quantity in a selected unit system. In nature there are seven basic units. Unit of length (meter), of mass 

(kilogram), of time (second), and of the electronic charge (coulomb) are four of these basic units. All other 

units are combinations of these basic units. The full list of basic units and their relations with the derived 

units is tabulated on the cover of this manual.  

Measurements can be classified in two groups: In direct measurements, the quantity measured is 

compared with a known or standard quantity by the use of a measuring instrument. In indirect 

measurements, the measured quantity is calculated by using results of some direct measurements. For 

example, speed of a particle is calculated from the measured distance taken on a specified time interval. 

 

ERRORS 

 

Result of a measurement depends on measuring instruments and the observer. It is not possible to perform 

measurements exactly. Therefore, it is necessary to include an error term in measurements. Error is not a 

mistake in the measurement, but is the uncertainty in the measurement. It indicates how close the 

measured quantity is to its exact value. Closely related with the notion of error are two concepts called 

precision and accuracy. 

Precision of a measurement shows the reproducibility of the measurement, expressing the deviation from 

the average of many measurements using the same procedure. It is the degree of consistency and 

agreement among independent measurements of the same quantity, and also is the reliability or 

reproducibility of the result.  

Accuracy is the closeness of agreement between a measured value and a true or accepted value. Accuracy 

of a measuring tool is related with how well the measuring tool is calibrated. For example, one can measure 

length with one millimeter accuracy by using a ruler, however, it is possible to perform measurements 

within 0.05 millimeter accuracy by using a micrometer.  

The statement of uncertainty associated with a measurement should include factors that affect both the 

precision and accuracy of the measurement. 

Types of Errors 

Errors can be classified into two groups according to their nature as systematic and random errors.  

Systematic Errors: 

Systematic errors are those which arise from the measurement system and they are same for different 

measurements under same conditions. Main source of these type of errors is the calibration of measuring 

instruments. For example, if the zero setting of a voltmeter is shifted, all voltage readings are also shifted 

in a uni-directional manner, either all positive or all negative.  

Systematic errors must be eliminated, or at least reduced to a negligible magnitude. 

Random Errors: 

Remaining type of errors are random errors, which are due to random fluctuations in the experimental 

situation. They are bidirectional, meaning that they can be either positive or negative. For example, to 

measure the length of a line segment AB, it is necessary to align the zero line of the ruler to coincide exactly 

with point A, but one can never be sure about the perfect alignment. Moreover, interpolation of the 
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position of the end point B is also uncertain due to estimation of position and the parallax. Parallax is an 

optical error that arises when a meter is read from one side rather than straight on. Random errors can be 

treated by statistical methods. If one makes the measurement many times and then calculates the average 

of the independent measurements, random errors will be reduced, since the positive and negative 

contributions will cancel each other. 

Estimation of Errors 

Since the result of a measurement cannot be exact, it is important to estimate the error in recording a 

measurement. Error estimates help one to know how close the measurements are to the exact value.  

The upper band of error can be equal to the least count or to the smallest readable scale division of the 

instrument. For example, in a measurement with a ruler in which the smallest division is one millimetre, 

maximum possible error is one millimeter. 

One can make a better estimation using this ruler, such as ±0.5 mm, but ±0.2 mm is an overestimation 

since the naked eye can not resolve such a small quantity. 

Recording Measurements 

Recording a quantity in a measurement consists of the measured value, the uncertainty in it, and, obviously, 

the unit. Generally, the last digit in the measured value is the estimated one. Then the error term follows. 

If the error is bidirectional, ± sign is used. Otherwise, only the proper sign is included. Finally, the unit of 

the measurement is given (𝑥 ± ∆𝑥 unit). Consider the length of a line segment measured by a ruler with 

one millimeter smallest division. We write 𝐿 = 10.65 ± 0.05 cm, where 10.6 is measured exactly and the 

last digit (5) is estimated. Then follows the error and the unit. The meaning of this result is that the value 

of L is somewhere between 10.6 cm and 10.7 cm.  

Significant Figures 

Only those figures or digits of a numerical quantity which are the result of an actual measurement, or 

calculation from an actual measurement are said to be significant. That is, digits including the last one, 

which is the estimated one, are the significant ones. One should avoid using extra figures.  

One must be careful about the figure 0 (zero), for it may or may not be significant. If it serves only to place 

the decimal point, i.e., 0.0017m, or in converting units, i.e., 1700𝜇m, it is not significant. If it is the result 

of an actual measurement, i.e., 1.70 mm, it is significant. Whether the zero is significant or not can be 

clarified by using scientific notation. In scientific notation, quantities are recorded by using powers of 10 

and a prefactor having one nonzero digit in front of the decimal point. All digits placed in front of the power 

of ten should be significant figures. For example, if a measurement of a length 110𝑐𝑚 is expressed as 

1.10 × 102𝑐𝑚, this measurement has three significant figures, whereas if it is expressed as 1.100 ×

102𝑐𝑚, it has four significant figures.  

Calculated quantities must also have the same number of significant figures as the operands. When adding 

or subtracting, it is useless to keep any more decimal places than are present in the number having the 

fewest decimal places (least significant figure). For example, 

 

31.32    

0.05138    

3.5    

+ 

34.87138    
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where a bar over a digit shows the estimated figures. Considering the doubtful figures, the result is given 

as 34.9 . Or, one can directly write 

31.3   

  0.1    

  3.5    

+ 

34.9    

 

When multiplying or dividing, the result should have the same number of significant figures as the term 

with the fewest significant figures. For example: 

1.254    

2.4    
× 

  5016    

2508    

+ 

3.0096   
  

So, the result is 3.0 . 

 

Expressing Error 

The error in the measured quantity can be expressed in two ways: 

i) Absolute Error: Estimated error can be given in an absolute scale. Then, it has the same unit as the 

measured quantity. So, the result of the measurement is expressed as 

 x x  unit. 

ii) Percentage Error: Another way is to use the ratio to give the relative error with respect to the measured 

quantity. Because of the ratio, percentage error is unitless. 

 (100)
x

x unit
x


 . 

 

Operations with Measured Quantities 

Addition and Subtraction: Assuming that we are going to add the quantities x x  and y y  . So, we 

have to evaluate 

 ( ) ( )R R x x y y        . 

Maximum possible error results if both of the added quantities contribute in the same direction, i.e., 

 ( )R R x y x y         

or 

 ( )R R x y x y       . 
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Similar arguments are valid for the subtraction. Therefore, in the result of addition or subtraction, absolute 

errors are added. 

 ( ) ( )R R x y x y        . 

 

Multiplication and Division: Assume that R is the result of the multiplication of x x  and y y  . Let us 

first examine multiplication. 

 ( )( )R R x x y y        

Considering the positive sign, we have 

 ( )( ) 1
x y x y

R R x x y y xy
x y xy

    
        

 
. 

Neglecting the second order term 
x y

xy

 
, which is much smaller than 

x

x


 and 

y

y


, we have 

 
x y

R R xy xy
x y

  
    

 
, 

meaning that the maximum percentage error is 

 
R x y

R x y

  
  . 

A similar argument gives 

 
x y

R R xy xy
x y

  
    

 
 

Therefore, as a result of a multiplication, percentage errors are added and we have 

 
x y

R R xy xy
x y

  
    

 
. 

Writing the above expression in the form 

  R R xy x y x y       , 

we see that if R x y , then the absolute error in R is R x y x y     , resembling the product rule 

where   behaves like the derivative.  

Division is very similar to multiplication. Writing 

   
1x x

R R x x y y
y y

 
       

 
, 

and expanding 

  
1 21

1 ( )
y

y y O
y y
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and keeping only first order terms, we have 

   2

1
1

y x x x y
R R x x

y y y y y

     
         

   
. 

Writing the above result as 

 
x x x y

R R
y y x y

  
    

 
, 

we see that for multiplication and division, percentage error in the result is the sum of the percentage 

errors of the individual terms. 

 

GRAPHS AND GRAPHICAL PROCEDURES  

A common method of expressing a relation between two variable quantities is by a Cartesian graph 

(named after Rene Descartes). A Cartesian axis system consists of two mutually perpendicular lines usually 

called, respectively, the x and y axes. The coordinates of a point are obtained by projecting perpendicularly 

on these axes and assigning values by means of a scale on the axes. If f(x) is a function of x, then for a 

value of x there will be a y value, where y = f(x), and the function f(x) is graphed by marking the points 

with these coordinates, x and y. Such a graph permits the ready appreciation of certain characteristics of 

the function. Also a number of different functions can be readily compared by their graphs.  

It is clear that nothing is essentially changed if the values that are marked on the axes are not proportional 

to the distances from the origin but more or less arbitrary scales are used. Points, the coordinates of which 

satisfy a given equation, can be plotted as before and a curve can be drawn from which corresponding 

values can be read. The form of the curve can be altered and in some cases simplified. A basic idea is to 

use such scales that the graphs of the equations under consideration become straight lines, which are 

easy to draw. For instance, the equation  

𝑎𝑓(𝑥) + 𝑏𝑔(𝑦) + 𝑐 = 0 

 

that restricts a linear relationship in a function of 𝑥 and a function of 𝑦 in which 𝑎, 𝑏, 𝑐  are constants, 

becomes a straight line in an 𝑋𝑌 plane, i.e.,  

𝑎𝑋 + 𝑏𝑌 + 𝑐 = 0, 

  

if the distances 𝑋 and 𝑌 along the axes to the marks x and y are determined by the functions 

  

𝑋 = 𝑓(𝑥) and 𝑌 = 𝑔(𝑦). 

  

Well known examples based on this idea are the logarithmic and semi-logarithmic plots.  

The former plots use the scales 

𝑋 = log 𝑥 and 𝑌 = log 𝑦 
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and are convenient for plotting graphs of the relations of the form 𝑦𝑚 = 𝑎𝑥𝑛, because this may be written 

as 

𝑚 log 𝑦 = 𝑛 log 𝑥 + log 𝑎 

  

and the graph in the scales 𝑋 and 𝑌 is a straight line.  

The semi-logarithmic plots have scales such that one axis is linear and the other is logarithmic. They are 

useful in plotting the results of experiments in which one quantity is an exponential function of the other 

(𝑚 or 𝑛 equal to 1).  

A logarithmic scale can also be used to compare quantities of greatly varying size. An example of this is 

the line scale for the frequency of electromagnetic waves, in which the frequency of interest ranges from 

1 Hertz to 1019 Hertz.  

Notes on Graph Plotting:  

 Give precise explanatory title to the graph. 

 In plotting a graph, label the coordinates along each axis. Give quantity and units. 

 Scale the axes so that the gathered data can be marked easily and the paper is used as much 

efficiently as possible. Do not use the data points as the scaling of the graph. They do not 

necessarily have to be on the scaled points all the time. 

 Experimentally determined points can be located by using a dot. For each measured point the 

positive and negative maximum possible errors must be marked with error bars. In many 

experiments, the result of a set of data yields a straight-line graph when plotted. In practice, 

however, the measured points will be scattered because of the error they contain. Draw best and 

worst straight lines passing through the data points by observation.  

 When more than one curve is drawn, it is desirable to distinguish between them by using different 

symbols, dotted or dashed lines. 

 The process of matching an equation to a set of data points is called curve fitting. Curve fitting 

often requires the assumption of a certain type of equation, such as linear, power law, 

exponential etc. The principal questions that arise when fitting a curve are: (a) Should the curve 

pass through every point? or (b) Should it be drawn smoothly neat, but not necessarily through 

every point? Actually, very little is known of what occurs between points. When checking a law or 

other functional relation, there is usually a reason to suppose that a uniform curve (or straight 

line) will result. If one or even two points are quite far from the apparent curve, then one should 

check the experimental data to see if a mistake has been made. If none appears, the point may 

be, in general, disregarded.  

 

 


