Do not forget to write your full name and your Bilkent ID number, and sign on the upper right corner of your paper.

Midterm Exam Question 3.

Determine whether each of the following series converges or diverges:

a.
$$\sum_{n=1}^{\infty} \left(\sqrt{n^2 + n} - n \right)$$

a.
$$\sum_{n=1}^{\infty} (\sqrt{n^2 + n} - n)$$
 b. $\sum_{n=1}^{\infty} (\sqrt{n^2 + n} - n)^n$

Show all your work!

Explain your reasoning fully and in detail using correct mathematical notation and terminology, and in well-formed mathematical and English sentences!

and terminology, and in well-formed mathematical and English sentences!

$$a_{n} = \sqrt{h^{2} + n} - n \implies | n = | n = | \sqrt{h^{2} + n} - n| = | m = | m$$

=
$$\ln \frac{1}{\sqrt{1+\frac{1}{n}+1}} = \frac{1}{2} \neq 0 = \sum_{h=1}^{\infty} (\sqrt{n^{2}m-n}) \text{ diverge, by nTT.}$$

(b)
$$a_n = (\sqrt{n^2 + n} - n)^n$$

$$L = \lim_{n \to \infty} |a_n|^{1/n} = \lim_{n \to \infty} |(\sqrt{n^2 + n} - n)|^n = \lim_{n \to \infty} (\sqrt{n^2 + n} - n) = \frac{1}{2}$$

Since
$$L=\frac{1}{2}<1$$
, $\sum_{n\geq 1}^{\infty}\left(\sqrt{n^2+n}-n\right)^n$ converges by nRT .