Do not forget to write your full name and your Bilkent ID number, and sign on the upper right corner of your paper.

Midterm Exam Question 2.

Determine the exact sum of each of the following series:

a.
$$\sum_{n=1}^{\infty} \frac{n+1}{n 2^n}$$

a.
$$\sum_{n=1}^{\infty} \frac{n+1}{n \, 2^n}$$
 b. $\sum_{n=1}^{\infty} \frac{n+1}{n(n+2) \, 2^n}$

In this question you might want to use the fact that:

his question you might want to use the fact that:
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n \text{ for } -1 < x \le 1 \implies \ln\left(\frac{1}{x}\right) = -\frac{2}{n} \frac{1}{n^2} = 7 \ln 2 = \frac{1}{n} \ln 2$$

$$2 = -\frac{1}{2}$$

Show all your work!

Explain your reasoning fully and in detail using correct mathematical notation and terminology, and in well-formed mathematical and English sentences!

and terminology, and in well-formed mathematical and English sentences!

(a)
$$\frac{\alpha}{n+1} = \frac{\alpha}{n^2} + \frac{\alpha}{n^2} +$$

$$\frac{1-1/2}{2} = \frac{n+1}{n \cdot (n+2)^{2}} = \frac{n+1}{n \cdot (n+2)} \cdot \frac{1}{2n} = \frac{n+1}{2} \cdot \frac{1}{2n+2} \cdot \frac{1}{2n}$$

$$\frac{n+1}{n \cdot (n+2)^{2}} = \frac{n+1}{n \cdot (n+2)} \cdot \frac{1}{2n} = \frac{n+1}{2} \cdot \frac{1}{2n+2} \cdot \frac{1}{2n}$$

$$h=1$$

$$h=1$$

$$h=1$$

$$\frac{1}{2} = \frac{1}{2} \ln 2 + 2 \ln 2 - 1 - \frac{1}{4}$$

$$\frac{1}{2} = \frac{1}{2} \ln 2 + 2 \ln 2 - 1 - \frac{1}{4}$$

$$\frac{1}{2} \ln 2 = \frac{1}{2} \ln 2 - \frac{5}{4}$$

$$\ln 2 = \frac{5}{2} \ln 2 - \frac{5}{4}$$