4. A sequence $\{a_n\}_{n=1}^{\infty}$ satisfies

$$a_1 = 1$$
, $a_2 = A$, and $a_n = \frac{a_{n-1} + a_{n-2}}{a_{n-1} - a_{n-2}} \cdot a_{n-1}$ for $n \ge 3$,

where A is a real number such that $A \neq 1$, $A \neq 0$, $A \neq -1$.

a. In the following, fill in the switches statement.

If
$$A = \boxed{2}$$
, then $a_3 = \boxed{6}$ and $a_4 = \boxed{12}$.

b. In each of the following, fill in the _____ with a real number that will make the corresponding sentence into a true statement.

$$\square \bullet \text{ If } A = \boxed{2}$$
, then $\lim_{n \to \infty} a_n = \infty$.

$$\square$$
 2 If $A = \boxed{-2}$, then $\lim_{n \to \infty} a_n = 0$.

$$\boxtimes$$
 If $A = \sqrt{2-1}$, then $\lim_{n \to \infty} a_n \neq 0$ and $\lim_{n \to \infty} |a_n| \neq \infty$.

c. Now choose exactly one of the statements you made in **Part b** by putting a X in the corresponding \Box , and prove it fully and carefully by using correct mathematical reasoning and notation.

If
$$A = \sqrt{2} - 1$$
, then $a_3 = \frac{\sqrt{2} - 1 + 1}{\sqrt{2} - 1 - 1} \cdot (\sqrt{2} - 1) = -1$, $a_4 = \frac{-1 + \sqrt{2} - 1}{-1 - (\sqrt{2} - 1)} \cdot (-1) = 1 - \sqrt{2}$, $a_5 = \frac{1 - \sqrt{2} + (-1)}{1 - \sqrt{2} - (-1)} \cdot (1 - \sqrt{2}) = 1$, $a_6 = \frac{1 + 1 - \sqrt{2}}{1 - (1 - \sqrt{2})} \cdot 1 = \sqrt{2} - 1$.

Itence the pattern $1, \sqrt{2} - 1, -1, 1 - \sqrt{2}, 1, \sqrt{2} - 1, \dots$ repeats.

Therefore $\lim_{n \to \infty} a_n \neq 0$ and $\lim_{n \to \infty} |a_n| \neq \infty$.