a.	$\int 1$	$=$ $\left\{1,\right.$	1	1	1	1)	:.
	$\left\{\frac{1}{n}\right\}_{n=1}^{\infty} =$		$\overline{2}$	$, \frac{1}{3}$	$, -\frac{1}{4}$	$, \cdots, \overline{n}, \cdots$	}	is

- \(\) a convergent sequence
- \square a divergent sequence
- \square a convergent series
- \square a divergent series
- \square none of these

b.
$$\sum_{n=1}^{\infty} \frac{1}{2^{n-1}} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-1}} + \dots$$
 is

- \square a convergent sequence
- \square a divergent sequence
- \(\) a convergent series
- \square a divergent series
- \square none of these

c.
$$\sum_{n=1}^{\infty} 1 = 1 + 1 + 1 + 1 + \dots + 1 + \dots$$
 is

- \square a convergent sequence
- \square a divergent sequence
- \square a convergent series
- 🛮 a divergent series
- \square none of these

d.
$$\{(-1)^{n-1}\}_{n=1}^{\infty} = \{1, -1, 1, -1, \dots, (-1)^{n-1}, \dots\}$$
 is

- \square a convergent sequence
- a divergent sequence
- \square a convergent series
- \square a divergent series
- \square none of these

e.
$$\sum_{n=1}^{\infty} (-1)^{n-1} = 1 - 1 + 1 - 1 + \dots + (-1)^{n-1} + \dots$$
 is

- □ a convergent sequence
- \square a divergent sequence
- \square a convergent series
- a divergent series
- \square none of these

f.
$$\{1\}_{n=1}^{\infty} = \{1, 1, 1, 1, \dots, 1, \dots\}$$
 is

- \boxtimes a convergent sequence \square a divergent sequence
- \square a convergent series
- \square a divergent series
- \square none of these

g.
$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} + \dots$$
 is

- \square a convergent sequence
- \square a divergent sequence
- \square a convergent series
- a divergent series
- \square none of these

h.
$$\left\{\frac{1}{2^{n-1}}\right\}_{n=1}^{\infty} = \left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots, \frac{1}{2^{n-1}}, \dots\right\}$$
 is

- a convergent sequence
- \square a divergent sequence
- \square a convergent series
- \square a divergent series
- \square none of these

i. Mark only "none of these" in this part.

- \square a convergent sequence
- \square a divergent sequence
- \square a convergent series
- \square a divergent series

none of these