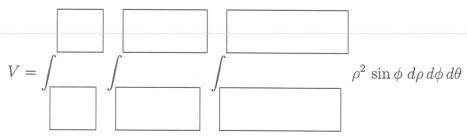
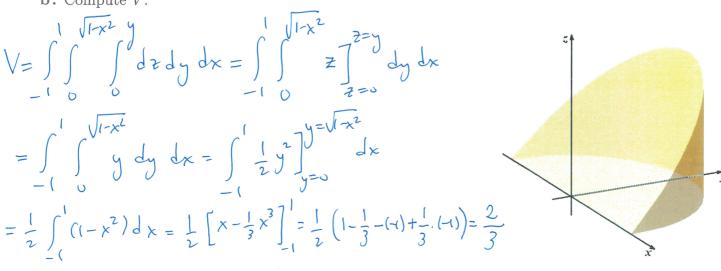

- 2. Let V be the volume of the solid bounded by the cylinder $x^2 + y^2 = 1$ on the sides, the plane z = yat the top, and the xy-plane at the bottom.
- a. Only three of **1-4** will be graded. Mark the ones you want to be graded by putting a **X** in the corresponding \square s.
 - \bullet \boxtimes Express V in terms of iterated integrals in Cartesian coordinates by filling in the rectangles.



$$V = \int_{0}^{1} \int_{z}^{z} \int_{z}^{z} dx \, dy \, dz$$


 \bullet Express V in terms of iterated integrals in cylindrical coordinates by filling in the rectangles.

$$V = \int_{0}^{\pi} \int_{0}^{\pi} r \, dz \, dr \, d\theta$$

 \bullet \square Express V in terms of iterated integrals in spherical coordinates by filling in the rectangles.

b. Compute V.

