• Give an example of a plane that contains the x-axis, but does not contain the y- and z-axes by writing its equation in the box below. [The box should contain nothing except the equation!]

2 Give an example of a line that does not intersect the xy-plane, but intersects each of the yz- and xz-planes at exactly one point by writing its parametric equations in the box below.

[The box should contain nothing except the parametric equations!]

$$x = t$$

$$y = t$$

$$z = 1$$

1b. The positions of two points P_1 and P_2 in the space as a function of time t are given by:

$$\mathbf{r}_1 = \overrightarrow{OP_1} = (4t - 1)\mathbf{i} + t^2\mathbf{j} + t\mathbf{k}$$
 and $\mathbf{r}_2 = \overrightarrow{OP_2} = 3t\mathbf{i} + t\mathbf{j} + t^3\mathbf{k}$

Find all times t when there is a plane \mathcal{P} such that

- $\mathcal{C} \bullet$ The plane \mathcal{P} passes through the points P_1 and P_2 at time t, and

$$P_{1}P_{2} = (1-t)^{2} + (t-t^{2})^{2} + (t^{3}-t)^{2}$$

$$P_{1}P_{2} = (1-t)_{2} + (t-t)_{3}^{3} + (t-t)_{3}^{3} + (t-t)_{3}^{3} + (t-t)_{4}^{3} + (t-t)_{5}^{3} + (t-$$