- 4. In each of the following, if there exists a function f that satisfies the given conditions, give an example of such a function; otherwise, just write DOES NOT EXIST inside the box. No explanation is required. No partial points will be given.
 - a. f is continuous on $(-\infty, \infty)$ and f does not have an antiderivative on $(-\infty, \infty)$.

$$f(x) =$$

b. f is positive and differentiable on $(-\infty, \infty)$ and $\int \frac{dx}{f(x)} \neq \ln(f(x)) + C$.

c. f is continuous on $[0, \pi]$ and $\int_0^{\pi} |f(x)| dx \neq \left| \int_0^{\pi} f(x) dx \right|$.

d. f is differentiable on $(0,\infty)$, $\lim_{x\to\infty} f'(x)=0$, and $\lim_{x\to\infty} f(x)$ does not exist.

$$f(x) = \sqrt{\chi}$$

e. f is differentiable on $(0,\infty)$, $\lim_{x\to\infty} f(x) = 0$, and $\lim_{x\to\infty} f'(x)$ does not exist.

$$f(x) = \frac{Si_{h}(x^{2})}{x}$$