Heat escapes

through the ice

5. The thickness h of a sheet of sea ice as a function of time t satisfies the equation

$$\frac{dh}{dt} = \frac{k}{LDh} \left(T_w - T_a \right)$$

Thin layer of water

freezes as heat escapes

water

for h > 0 where

- T_a is the air temperature,
- T_w is the water temperature,
- \bullet k is the thermal conductivity of the ice,
- L is the latent heat of the water, and
- D is the mass density of the water.

In this question we will assume that T_a , T_w , k, L, and D are constants.

We measure the thickness of a sheet of sea ice daily, and observe that it is $3~\mathrm{cm}$ on day 0, and $5~\mathrm{cm}$ on day 10.

Determine when the thickness of the sheet will be 13 cm.

$$\frac{dh}{dt} = \frac{A}{h} \implies h dh = A J t \implies \int h dh = \int A dt$$

$$\Rightarrow \frac{1}{2}h^{2} = At + C'$$

$$t=0$$

$$h=3$$

$$\frac{9}{2} = C'$$
and
$$\frac{25}{2} = 10A + C' \Rightarrow A = \frac{4}{5}$$

$$\frac{1}{2}h^{2} = \frac{4}{5}t + \frac{9}{3}$$

$$\frac{169}{2} = \frac{4}{5}t + \frac{9}{2} \implies t = 100 \text{ days}$$

The Hickness of the sheet will be 13 cm on day 100.