- **5.** A function f, which is defined and continuous for all $x \neq 2$, satisfies the following conditions:
 - (1) f(0) = 2, $f(\sqrt{6} 2) = (22 + 8\sqrt{6})/25$
 - ② $\lim_{x \to 2^{-}} f(x) = \infty$, $\lim_{x \to 2^{+}} f(x) = -\infty$, $\lim_{x \to -\infty} f(x) = 0$, $\lim_{x \to \infty} f(x) = 0$
 - ③ f'(x) > 0 for x < 0, and for $x > \sqrt{6} 2$ and $x \neq 2$; and f'(x) < 0 for $0 < x < \sqrt{6} 2$
 - $\lim_{x \to 0^{-}} f'(x) = 4, \lim_{x \to 0^{+}} f'(x) = -2$
 - (5) f''(x) > 0 for x < 2 and $x \neq 0$, f''(x) < 0 for x > 2
 - a. Sketch the graph of y = f(x) making sure that all important features are clearly shown.

b. Fill in the boxes to make the following a true statement. No explanation is required.

The function $f(x) = \frac{ax+b}{x^2+c|x|+d}$ satisfies the conditions ①-⑤ at all points in its domain if a, b, c and d are chosen as

$$a = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \quad b = \begin{bmatrix} -2 \\ -2 \end{bmatrix}, \quad c = \begin{bmatrix} -\frac{3}{2} \\ -1 \end{bmatrix} \text{ and } d = \begin{bmatrix} -1 \\ -1 \end{bmatrix}.$$