$$0 f(0) = 6, f(3) = 0$$

2
$$f'(x) > 0$$
 for $x < 0$ and for $3 < x$; $f'(x) < 0$ for $0 < x < 3$

3
$$f''(x) > 0$$
 for $x < 0$ and for $0 < x < 3$; $f''(x) < 0$ for $3 < x$

$$\lim_{x \to -\infty} f(x) = 4, \lim_{x \to \infty} f(x) = 4$$

$$\lim_{x \to 0^{-}} f'(x) = 1, \lim_{x \to 0^{+}} f'(x) = -5; \lim_{x \to 3^{-}} f'(x) = -4/5, \lim_{x \to 3^{+}} f'(x) = 4/5$$

a. Sketch the graph of y = f(x) making sure that all important features are clearly shown.

b. Fill in the boxes to make the following a true statement. No explanation is required.

The function $f(x) = \frac{|x-a|}{b|x|+c}$ satisfies the conditions **1**-**3** if a, b and c are chosen as

$$a = \boxed{3}$$
, $b = \boxed{\frac{1}{4}}$ and $c = \boxed{\frac{1}{2}}$