a. f has a derivative on $(-\infty, \infty)$.

☐ TRUE

 \nearrow False, because it does not hold for $f(x) = \bigcirc$

b. f has an antiderivative on $(-\infty, \infty)$.

X TRUE

 \square False, because it does not hold for f(x) =

- c. $\frac{d}{dx} \int_0^1 f(x) dx = f(x)$ for all $0 \le x \le 1$.

☐ TRUE

 \nearrow False, because it does not hold for $f(x) = \boxed{1}$

d. If f is increasing on $(-\infty, \infty)$, then f^2 is increasing on $(-\infty, \infty)$.

☐ TRUE

False, because it does not hold for f(x) =

e. If f is decreasing on $(-\infty, \infty)$, then e^f is decreasing on $(-\infty, \infty)$.

TRUE

 \square False, because it does not hold for f(x) =