a. f has a derivative on $(-\infty, \infty)$. ☐ TRUE \nearrow False, because it does not hold for $f(x) = \bigcirc$ **b.** f has an antiderivative on $(-\infty, \infty)$. X TRUE \square False, because it does not hold for f(x) = - c. $\frac{d}{dx} \int_0^1 f(x) dx = f(x)$ for all $0 \le x \le 1$. ☐ TRUE \nearrow False, because it does not hold for $f(x) = \boxed{1}$ **d.** If f is increasing on $(-\infty, \infty)$, then f^2 is increasing on $(-\infty, \infty)$. ☐ TRUE False, because it does not hold for f(x) = **e.** If f is decreasing on $(-\infty, \infty)$, then e^f is decreasing on $(-\infty, \infty)$. TRUE \square False, because it does not hold for f(x) =