$y'=Sx^4-2x\Rightarrow$ (The slope of the tangent line at P)= $y'|_{x=1}=3$ We want to show that there is a point Q on the graph such that
the slope of the tangent line at Q is $-\frac{1}{3}$.

That is, we want to show that the equation $Sx^4-2x^2=-\frac{1}{3}$ has a real solution.

Let $f(x)=15x^9-6x+1$. Then f(x)=1>0 and $f(\frac{1}{2})=-\frac{17}{16}<0$.

Since f is a polynomial, f is continuous on $[0,\frac{1}{2}]$.

Therefore, by IVT, there is a point c in $(0,\frac{1}{2})$ such that f(c)=0.

Hence the equation f has a real solution.

2b. In one of the following figures, the graphs of two functions f and g together with their derivatives f' and g' are shown; while in the other, the graphs of two functions h and k together with their second derivatives h'' and k'' are shown. Identify each by filling in the boxes with f, g, f', g', h, k, h'', and k''.

