- **a.** If f(2x) = f(x) for all x, then f is constant on $(-\infty, \infty)$.
 - ☐ TRUE

b. If f is continuous on $(-\infty, \infty)$, then f has a derivative on $(-\infty, \infty)$.

☐ TRUE

 \square False, because it does not hold for $f(x) = |\gamma|$

c. If f is continuous on $(-\infty, \infty)$, then f has an antiderivative on $(-\infty, \infty)$.

X TRUE

 \square False, because it does not hold for f(x) =

d. If f is continuous on $(-\infty, \infty)$, then $\int f(x) dx = \frac{1}{2} f(x)^2 + C$ on $(-\infty, \infty)$.

☐ TRUE

e. If $\int_{-1}^{1} f(x) dx = 0$, then $\int_{-1}^{1} f(x)^{3} dx = 0$.

☐ TRUE

 \nearrow False, because it does not hold for $f(x) = \begin{cases} -1 & \text{if } x < \frac{1}{2} \\ 3 & \text{if } x > \frac{1}{2} \end{cases}$