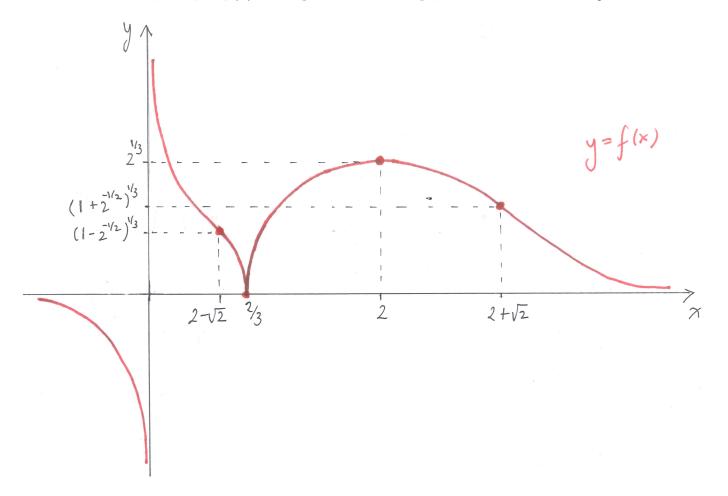
1. A function f that is defined and continuous for $x \neq 0$ satisfies the following conditions:

①
$$f(2-\sqrt{2}) = \sqrt[3]{1-1/\sqrt{2}}, \ f(2/3) = 0, \ f(2) = \sqrt[3]{2}, \ f(2+\sqrt{2}) = \sqrt[3]{1+1/\sqrt{2}}$$

③
$$f'(x) < 0$$
 for $x < 2/3$ and $x \neq 0$, and for $x > 2$; $f'(x) > 0$ for $2/3 < x < 2$

$$\bigoplus \lim_{x \to (2/3)^-} f'(x) = -\infty \,, \ \lim_{x \to (2/3)^+} f'(x) = \infty$$

- ⑤ f''(x) < 0 for x < 0, and for $2 \sqrt{2} < x < 2 + \sqrt{2}$ and $x \ne 2/3$; f''(x) > 0 for $0 < x < 2 \sqrt{2}$ and for $x > 2 + \sqrt{2}$
 - a. Sketch the graph of y = f(x) making sure that all important features are clearly shown.



b. Fill in the boxes to make the following a true statement. No explanation is required.

The function $f(x) = (ax + b)^c x^d$ satisfies the conditions ①-⑤ if a, b, c and d are chosen as

$$a = \boxed{3}$$
, $b = \boxed{-2}$, $c = \boxed{\frac{2}{3}}$ and $d = \boxed{-1}$