a. If
$$\lim_{x\to 0} f(x) = f(0)$$
, then $\lim_{x\to 0} \frac{f(x) - f(0)}{x}$ exists.

☐ TRUE

 \nearrow False, because it does not hold for f(x) =

b. If the graph of y = f(x) has an inflection point at (0, f(0)) and $f(0) \neq 0$, then the graph of y = 1/f(x) has an inflection point at (0, 1/f(0)).

☐ TRUE

c. If f is continuous on [-1,1], then $\int_{-1}^{1} (f(x))^2 dx = \left(\int_{-1}^{1} f(x) dx\right)^2$.

☐ TRUE

False, because it does not hold for f(x) = 1

d. If f is continuous on $(-\infty, \infty)$ and $\int_{-x}^{x} f(t) dt = 0$ for all x > 0, then f is an odd function.

TRUE

 \square False, because it does not hold for f(x)=

e. If f is integrable on [-a, a] and $\int_{-a}^{a} f(t) dt = 0$ for all a > 0, then f(0) = 0.

☐ TRUE