Bilkent University

Quiz \# 09
Math 102 Section 08 Calculus II
15 April 2024 Monday
Instructor: Ali Sinan Sertöz

Name \& Lastname: \qquad
Department: \qquad Student ID: \qquad

Q-1) Let $z=z(x, y), x=x(u, v), y=y(u, v), u=u(s, t)$ and $v=v(s, t)$ be differentiable functions of their variables. We have the following data:

$$
\begin{array}{llll}
u(3,7)=9 & v(3,7)=11 & u(7,3)=-9 & u(7,3)=-10 \\
u_{s}(3,7)=12 & v_{s}(3,7)=-1 & u_{t}(3,7)=2 & v_{t}(3,7)=-3 \\
x(9,11)=-3 & y(9,11)=3 & x(3,7)=12 & y(3,7)=-8 \\
x_{u}(9,11)=4 & y_{u}(9,11)=5 & x_{u}(3,7)=-12 & y_{u}(3,7)=6 \\
x_{v}(9,11)=-6 & y_{v}(9,11)=7 & x_{v}(3,7)=4 & y_{v}(3,7)=14 \\
z(-3,3)=16 & z(9,11)=17 & z(3,7)=18 & z(12,-8)=19 \\
z_{x}(-3,3)=-2 & z_{y}(-3,3)=9 & z_{x}(9,11)=2 & z_{y}(9,11)=-9 \\
z_{x}(3,7)=5 & z_{y}(3,7)=13 & z_{x}(12,-8)=-5 & z_{y}(12,-8)=-7
\end{array}
$$

Fill in the following boxes with numbers using this table. No questions asked!

The linearization of z as a function of x and y at the point $(x, y)=(12,-8)$ is

The linearization of z as a function of s and t at the point $(s, t)=(3,7)$ is

Grading: Each correctly filled box is 1 point. Grader: melis.gezer@bilkent.edu.tr

