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1 Introduction

A calculator can give you the decimal expansion

e™v103 = 262 537 412 640 768 743.9999999999992 . . .

In spite of its appearance this number is not an integer since it is transcendent
by the theorem of Gel’fond-Schneider:

mVIES _ (eiW)—i\/@ with e“.r algeb.raic,. and .
—i1/163 irrational and algebraic.

In order to explain the fact that e™v1%3 is very close to an integer one starts

with the observation that Q(v/—163) has class number 1; this implies that the
modular function j(7) is an integer for 7 = 1(1 4 ¢v/163). Expressing j(7) by
a Laurent series

1
§(T) = = + 744 + 196 884q + 21493 760¢> + . . .,
q

where q = %™ = —¢~ V163 This gives
1 63

(1) — = —744] = | — ™1 —j(7) + 744] = 196884q + 21493 760¢> + .. .,
q

and since |q| < %10_17, one deduces that the distance of —e™V163 from the
integer j(7) — 744 is smaller than 10712,
There is an analogous situation for Q(v/—67 ): with 7 = (14i/67), we have
§(7) = —(5280)® = 147197952000, and €™V is very close to 147 197 952 000.
In general, we have j(7) = gg?sgggg, where go = 60G2, g3 = 140G3, and
where Gj(2) is the Eisenstein series

Gi(z) = P z (m+ nz)f%,
(m,n)ez2\{(0,0)}
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amd where the coefficient 1728 was inroduced so that the residue of j(z) at
infinity equal 1.

1728 has the following bizarre property: 1729 = 123 + 13 = 103 + 93, and
1729 is the smallest integer which can be written in two different ways as the
sum of two cubes.

It is known (Siegel 1929) that the equation 2® + 1 = 489y? only has a
finite number of integral solutions; one of them is quite large: z = 53360 and
y = 557403, the reason for this being that 489 = 3 - 163 and that Q(v/—163)
has class number 1 ([I]).

Similarly, if h(—p) = 1, then the equation 2® — py? = —1728 has an integral
solution obtained by letting = be the nearest integer to e™v?/3; this has to do
with the fact that j(7) is a perfect cube and that %(1728 — j(7)) is a square
(). The equation x® — py? = —1728 can be transformed (for p = 163) into
X3 4+ 1 =489Y? by putting z = 12X and y = 72Y.

Finally, the polynomial 22 —z +41 discovered by Euler takes only prime val-
ues for x = 0,1,...,40: this result is also connected to the fact that Q(v/—163)
has class number 1: the discriminant of 22 — x + 41 equals —163.

These results show the intimate connections which connect the class numbers
of imaginary quadratic number fields and the modular invariant j. Weber has
shown that the abelian closure of Q (i.e. the maximal abelian extension of Q)
can be obtained by adjoining the numbers e?wir to Q, where r € Q. In other
words: by adjoining special values of the exponential function. Kronecker’s
‘Jugendtraum’ from 1880 consisted in the hope that the abelian closure of a
number field K can likewise be obtained by adjoining to K values of special
functions. This question was taken up by Hilbert in his 12th problem, which
consists of two parts: computation of the maximal unramified abelian extension,
then of the abelian closure. If, for example, K = Q(7) is imaginary quadratic,
its maximal unramified abelian extension is its Hilbert class field L = K(j(71)),
and its degree over K is just the class number of K. The solution of Hilbert’s
12th problem makes use of algebraic curves and special functions: if e.g. K
is imaginary quadratic, the curve is an elliptic curve and the function is the
modular function j. More generally, if K is a CM-field, i.e. a totally complex
quadratic extension of a totally real number field, then Shimura has shown that
the maximal unramified abelian extension of K can be obtained via varieties
with complex multiplication and special values of automorphic functions ([2]).

2 Endomorphisms of elliptic curves

An elliptic curve can be defined in five different ways:
1. a connected compact Lie group of dimension 1,
2. a complex torus C/L, where L is a lattice in C,
3. a Riemann surface of genus 1,

4. a non-singular cubic in Py(C),
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5. an algebraic group of dimension 1, with underlying projective algebraic
variety.

2.1 Homomorphisms

If M and L are two lattices one is interested in the analytic homomorphisms
C/M — C/L. To this end, it is convenient to observe that the canonical
surjection s, : C — C/L is the universal covering of C/L in the sense that, for
each analytic homomorphism ¢ : C — C/L, there exists a unique linear map
A : C — C which makes the following diagram commutative:

A

C C

SL

C/L

In fact, s, (0) = 0 and sy, is continuous in 0, hence locally injective in a vicinity
U of 0. Thus o = spjy : U — V is a bijection, and f := ¢~' o ¢ is analytic
and respects addition in a vicinity W of 0: for z,y,x +y € W. Taking the
derivative with respect to y this gives f'(z+y) = f'(y), and letting y = 0 yields
() = f'(0) = A, hence f(x) = Az (since f(0) = 0). Now sp(Az) = ¢(z) in
a vicinity of 0, hence everywhere, since the function sy (Az) — ¢(z) is analytic
and vanishes in a vicinity of 0.

If now f: C/L — C/M is an analytic homomorphism, then ¢ = fo sy, :
C — C/M factors through a A € C and one finds sy; o A = fosy.

A

C C

SL SM

C/L

C/M

This implies AL C M.

If f # 0, then f is surjective: for z + M € C/M one has f(zA™! = L) =
x + M; moreover, G = im f is a compact subgroup of C/M (since f is a
continuous homomorphism), hence G is closed. Now f is open (since it is
analytic and not constant), hence G is also open in C/M, which implies that
G = C/M by connectivity. Next ker f is finite (since it is discrete inside a
compactum — it is formed by isolated points): we say that f is an isogeny and
write deg f = # ker f.

Conversely, if AL C M for some A € C*, then f(z+ L) = Az + M defines an
isogeny C/L — C/M. Since in this case there also exists a 4 € C* such that
pM C L (this is a property of lattices), we see that there also exists an isogeny
C/M — C/L. We say that C/L and C/M are isogenous.
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2.2 Isomorphisms

Let f : C/L — C/M be an analytic isomorphism. By what we have seen
above f factors through a linear map C — C : z —— Az via the canoncical
surjections C — C/L and C — C/M with A € C and AL C M. The inverse
isomorphism f~!:C/M — C/L factors through z — %z; hence A\™'M C L.
We deduce that AL = M.

We will show that the modular invariant actually characterizes the isomor-
phism classes of elliptic curves:

o) = 2+ T (oo )

weLX*
©1(2)? = 4pr(2)’ — g2(L)pL(2) — g3(L),
g2(L) = 60 Z w™ and  g3(L) = 140 Z wS.
welLX weLX

If AL = M, then

We define
e the discriminant: A(L) = g3(L) — 27g3(L),
e the modular invariant: j(L) = 1728¢g3(L)/A(L).

Taking the preceding properties into account, we find

The lattice L = w1Z + wyZ can be written in the form L = wi(Z + 72),
where 7 = wo/wy and Im7 > 0. Thus j(L) = j(Z + 7Z) =: j(7); this defines a
map j : H — C of the upper half plane H = {z € C : Imz > 0} to C. It can be
shown that j is analytic and surjective. As for injectivity, we have the following
result: if 71 = 70 mod SL(Z), ie. if = ‘gj—j:db with a,b,¢,d € Z such that
ad — bc =1, then

(7}1> - CTgler(cbl (cl)’

hence Z+nZ = ﬁ]'_i_d(z#»TQZ), and this implies j(71) = j(72). It can be shown

that the converse is also true: j(m1) = j(72) implies that 7 = 75 mod SL(Z)
(see [3)).
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2.3 Endomorphisms

If L = M then the endomorphisms of C/L correspond to A € C such that
AL C L. The associated g-function therefore enjoys properties which come
from the structure of an algebraic variety. More exactly we have

Proposition 2.1. If A\L C L, then

i) A is a rational integer or an algebraic integer in an imaginary quadratic
number field;

it) pr(Az) is a rational function of pr(z) such that the degree of the numer-
ator is N2 if X € Z, and N X if \ is imaginary quadratic; the degree of the
denominator is A2 — 1 and N\ — 1, respectively.

Proof. 1) If L = w1Z + woZ contains AL, then
{/\wl = awq + bws
Aws = cwy + dwa
with a,b,c,d € Z. This implies
wy as—; +b

w1 ’
Wo o+ d

or, by putting 7 = wy Jwa: er? + (d —a)T — b =0.

If A is not a rational integer, then ¢ # 0, and 7 is a quadratic imaginary
number (imaginary, since w;/wy cannot be real). Since A = ¢ + d, we get
A2 — (a+ d)X + ad — be = 0; this shows that X is an integer in Q(7).

ii) For w € L, we have p(A(z + w)) = p(Az + \w) = p(Az), since AL C L.
Hence p(Az) is an elliptic function for L, and it is even (since p is). Moreover,
for ¢ € 3L, we find p(A({ — 2)) = p(A(£+ z)), so if £ is a zero or a pole its order
is even.

Let S be a set of representatives modulo L for the set of poles and zeros of
p(Xz); we put So = SN1L. For 8 € Sy, the number ng = ord(p(Az), 3) is even.
If 6 €S\ S2 we also have —3 € S\ S3, and we can write S\ 53 as a disjoint
union S; US_, where z € S mod L if and only if —z € S_ mod L.

Now write n, = ord(p(Az),a) for all & € C. The order of p(Az) in z =0 is

—2, hence
2 Z Na + Znan:O.

aeS4 a€eS;

Now put

f(2)= 1] ((z) = p@)™ T (o(2) = pla))/2.

aeS4 €Sy

Then f is an elliptic function for the lattice L:
for € S4, ord(f,a) =n, = ord(p(Az), a),
for « € Sy, ord(f,a) =n, = ord(p(Az), @),
foraeL, ord(f,a)=3cq, 2na+> ,es, Ma =ord(p(A2), a).
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Thus f has the same poles and zeros as p(Az), and we conclude that p(Az) =
¢- f(z) for some ¢ € C. Now f is a rational function in p(z); if M and N denote
the degree of numerator and denominator, then we have

1

M = ZaEZ+ No + ZaEZz 3N«
1

N = Zaem Na — ZQEPQ 2N,

where Sy = Z, U Py, So = Z3 U P», and where Z denotes the zeros and P the

poles. We find
1
M — N = Z na—l—z inazl.

a€eSy a€S;

We can also easily calculate the number of distinct poles of p(Az):
. . . 1
a€ P ifand only if \a€e L, ie. a€ —L,
!

hence the number of poles is #(xL/L) = (L : AL), that is, A? if A € Z and
N(A) otherwise, and each of these poles is a double pole.

The number of poles of p(Az) counted with multiplicity is therefore 2(M —
N)+2N = 2N + 2, and this concludes the proof. 0

If #L is imaginary quadratic, the set of A such that AL C L is an order in
K = Q(7): it is the endomorphism ring of L. We are particularly interested in
the case where this order is the ring of integers Ok of K, that is, the case where
L is an ideal in Ok.

Conversely, if K = Q(7) is an imaginary quadratic number field, then to
each order O of K there exists an elliptic curve E such that End (E) = O, for
example the curve E = C/O. We say that E is an elliptic curve with complex
multiplication.

For O = Ok we have End (E) = Ok whenever E = C/a, where a is an ideal
in Og; since a ~ b if and only if the corresponding curves are isomorphic, we
see that there exist h non-isomorphic curves with End (E) = Ok, where h is
the class number of K. We conclude that we also have (Q(j(7) : Q) < h (see

[41)-

2.4 Automorphisms

They correspond to A such that AL = L; if the curve does not have complex
multiplication, then A = 41 are the only such A; if the curve has CM and
if End (E) = O is the maximal order in K = Q(7), then the automorphisms
correspond to the units of O = Og. Dirichlet’s unit theorem asserts that the
only units in Ok are the roots of unity contained in K (since K is imaginary
quadratic), and this group is {£1} except for the following two cases:

1) K = Q(i): here the roots of unity are £1 and +i. O = Ok = Z[i] is the
only order of K possessing units different from £1, and O is the endomorphism
ring of the curve E = C/Z[i]. For the lattice L = Z[i] we find g3(L) = 0 (observe
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that g3(L) = g3(iL) = i %g3(L) since iL = L), hence j(L) = j(i) = 1728¢3 /g3 =
1728 does not depend on go. Thus all curves y? = 423 — gox are isomorphic. If
one chooses go = 4, one has y? = 42® — 4z = 4x(z—1)(z+1); if M = w1 (ZDBiZ)

is the corresponding lattice, then it is known that w; = 2 floo \/ﬁu‘ffﬁ. This
gives
L(3)?

< gt
“ _/1 VB —t  2/2r

This number is the lemniscatic constant w. We deduce that go(Z[i]) = 4w?,

hence we get
Z 1 1P
YA 15 962
(oo MW 15 20
2) K = Q(p), where p = €>/3: here the roots of unity are +1, +p and +p?.
O = Ok = Z][p] is the only order of K possessing units different from +1, and
O is the endomorphism ring of the curve E = C/Z[p]. For the lattice L = Z[p]
we find g2(L) = 0 (since ga(pL) = p~*ga2(L)), hence j(p) = 0 does not depend
on g3, and all the curves y? = 423 — g3 are isomorphic. If one chooses g3 = 4,
one gets y2 = 42° — 4. Let M = wy(Z @ pZ) be the corresponding lattice; then
we find

*dt r(1)3

from which we deduce that

1118
S 1 _TG)
6 8.6 °
(oo (P 2T

These formulas can be generalized: if K is an imaginary quadratic number
field with an order O, and if F is an elliptic curve with complex multiplication
by O, then the corresponding lattice L determines a vector space L ® Q which
is invariant under the action of K and thus has the form L ® Q = K - Q for
some 2 € C* defined up to elements of K*. In particular, if O = Ok, then Q

is given by the formula of Chowla-Selberg:

Q= avr H F(g)we(a)/ﬂzl

0<a<d
(a,d)=1

Here

o is an element of Q;

w is the number of roots of unity in K;
h is the class number of K;

¢ is the Dirichlet character modulo d;

d is the discriminant of K.

Thus, for y? = 42® — 4z, one gets w = ay/7l'(3)I'(2), which is in agreement
with the formula given above.
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3 Examples of curves with complex multiplica-
tion

Let K be a complex quadratic number field, Ox = Z[w] its ring of integers.
For determining the curves with complex multiplication by Og one can use a
method described by Stark: write down a ‘sufficiently long’ part of the Laurent
expansion of p(z), then compute p(wz) and express it by p(z) ([4]):

1 2
p(z)zz—z—i—Sng +...,

1 2 2
p(wz)zm—i—SGgw 224

Now write

0(w?) = —50(2) + A(2).
Now we compute % and proceed similarly, and get a development of p(wz) as
a continued fraction. We write down this series tu sufficient precision (cf. the
proposition); more exactly, if |[Nw| = m then we have to develop p(z) to the
order 4m — 2 to be able to express the relation which shows us that the curve
has complex multiplication by w.
For example, if | Nw| = 2, we write p(z) to the order 6:

1
p(z) = ? + 3G222 + 5G3Z4 + 7G4ZG +...

1
plwz) = ——= + 3Gow?2? 4 5Gaw* 2t + TG4w25 + ...
w2z
1
2¥

—(z) +AG2)

(2) + 3G (w? — w™ )22 + 5G3(w* —w™2) 2 + TG4 (Wb —w™2)2°

_ 5G3(w* — w™2) TG4(wb — w™2)
A=3Gyw? —w )22 |14 222 2 L
3G —w )2 { =) gt T

:aZQ{l—alzZ—agz‘Lf...}

1
.;{1+a122+(a2+a%)z4+...}

QIR

a 1
p(z) + El + g(ag +a? —3G)2% + ...
So if there is complex multiplication by w with Nw = 2, then we must have
as + a? = 3Gs, hence

1 1 ay
A= PO
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and
w?p(2)* + aw?p(2) + a

p(z) + a1
It is convenient to take y? = 423 — gox — g3 with go = g3 = g, which implies
that 7G5 = 3Gs; the relation as + a% = 3(5 then takes the form

p(wz) =

1 5(16 2
Gy = (—) here s, = w" — 1,
2= 57, where s w
hence
_ _60 (5&)2
9= g +5\Tsq/
First example: K = Q(v/-2),w =1ivV—2, 84 =3, a6 = -9, 9 = %, hence
. 1728¢g 3
= = 20° = 8000.
qg—27

The function p is associated to an ideal class of Ok; since h = 1 we have
L ~ Og, but we can also remark that, since j has only one possible value, we
necessarily have h = 1.

42
—119L(2) ~ e

pr(z) + %2

pr(wz) =

If L = MOk we have

Mga(Ok) = g = \3(0k),
and in particular
3 15° 2
92(0k)” = 2_7293((9K) :

Second example: K = Q(v/—7): here Ox = Z ® Zw with w = H‘%ﬁ and
Nw =2. We find g = § and j = (—15)3 = —3375, hence h = 1.

This method seems to be of limited use; for example, with K = Q(v/=5)
and w = /=5 we would have to compute p(z) to order 18 and would have
to invert four series. Nevertheless, here the class number is h = 2, and there
are two curves such that End (E) = Z[y/—5]; their modular invariants can be
computed and turn out to equal (see [5])

§(Ok) = (504+26v5)%,  j(a) = (50 — 26v/5)3.

4 The Main Theorem of Complex Multiplica-
tion

We have seen that for K = Q(v/—d) there are h(K) non-isomorphic elliptic
curves F such that End (E) = Og. If C1,...,C} are the ideal classes, then it
is quite easy to see that the values j(C1),...,j(Ch) are conjugated algebraic
numbers of degree < h; on the other hand it is more delicate to show that these
numbers are distinct and algebraic integers of degree h.
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Theorem 4.1. i) H = K(j§(C;)) does not depend on i; the values j(C;) are
conjugated over K, and H is the Hilbert class field of K (the mazimal unramified
abelian extension of K ; it has degree (H : K) = h(K)).

it) There exists a bijection between the ideal class group G of K and the Galois
group of H/K; this bijection is in fact an isomorphism given by a — o4 €
Gal (H/K), where a4(§(C;)) = j([a] 1Cy).

iii) j(a) is real if and only if a has order dividing 2 in G; in particular, j(Ok)
is real, and (Q(j(Ok)) : Q) = h.

It is also possible to describe the maximal abelian extension of K; it is given
by adjoining all elements

1
T(g(awl —l—bwg)), a,beZ,neN

to the Hilbert class field H of K. Here the function 7 is defined as follows: let
e be the order of End (Ok) (thus e is almost always 2, and sometimes 4 or 6).
One defines ¢(¢) by

g(z) — 2735995 AL 9(4) _ 283495A—1; 9(6) = 29364, AL,
Now one puts
7(u) = (—p(u)*?¢'.

If one gives the weight 2 to p, 4 to g2 and 6 to g3, then 7 is homogeneous
of weight 0; this justifies taking gogspA~!. But if gogs = 0, one has to take
g3pA~Lif g3 = 0, and g3p A~ if go = 0. The function 7 only depends on j
and not on gs or g3 (see e.g. Lang, Elliptic functions, Theorem 7, p. 20).
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