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1 Introduction

A calculator can give you the decimal expansion

eπ
√

163 = 262 537 412 640 768 743.9999999999992 . . .

In spite of its appearance this number is not an integer since it is transcendent
by the theorem of Gel’fond-Schneider:

eπ
√

163 = (eiπ)−i
√

163 with

{
eiπ algebraic, and
−i
√

163 irrational and algebraic.

In order to explain the fact that eπ
√

163 is very close to an integer one starts
with the observation that Q(

√
−163 ) has class number 1; this implies that the

modular function j(τ) is an integer for τ = 1
2 (1 + i

√
163 ). Expressing j(τ) by

a Laurent series

j(τ) =
1
q

+ 744 + 196 884q + 21 493 760q2 + . . . ,

where q = e2iπτ = −e−π
√

163. This gives

|j(τ)− 1
q
− 744| = | − eπ

√
163 − j(τ) + 744| = 196 884q + 21 493 760q2 + . . . ,

and since |q| < 1
210−17, one deduces that the distance of −eπ

√
163 from the

integer j(τ)− 744 is smaller than 10−12.
There is an analogous situation for Q(

√
−67 ): with τ = 1

2 (1+i
√

67 ), we have
j(τ) = −(5280)3 = 147 197 952 000, and eπ

√
67 is very close to 147 197 952 000.

In general, we have j(τ) = 1728g3
2

g3
2−27g2

3
, where g2 = 60G2, g3 = 140G3, and

where Gk(z) is the Eisenstein series

Gk(z) = z2k
∑

(m,n)∈Z2\{(0,0)}

(m + nz)−2k,

1
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amd where the coefficient 1728 was inroduced so that the residue of j(z) at
infinity equal 1.

1728 has the following bizarre property: 1729 = 123 + 13 = 103 + 93, and
1729 is the smallest integer which can be written in two different ways as the
sum of two cubes.

It is known (Siegel 1929) that the equation x3 + 1 = 489y2 only has a
finite number of integral solutions; one of them is quite large: x = 53 360 and
y = 557 403, the reason for this being that 489 = 3 · 163 and that Q(

√
−163 )

has class number 1 ([1]).
Similarly, if h(−p) = 1, then the equation x3 − py2 = −1728 has an integral

solution obtained by letting x be the nearest integer to eπ
√

p/3; this has to do
with the fact that j(τ) is a perfect cube and that 1

p (1728 − j(τ)) is a square
([1]). The equation x3 − py2 = −1728 can be transformed (for p = 163) into
X3 + 1 = 489Y 2 by putting x = 12X and y = 72Y .

Finally, the polynomial x2−x+41 discovered by Euler takes only prime val-
ues for x = 0, 1, . . . , 40: this result is also connected to the fact that Q(

√
−163 )

has class number 1: the discriminant of x2 − x + 41 equals −163.
These results show the intimate connections which connect the class numbers

of imaginary quadratic number fields and the modular invariant j. Weber has
shown that the abelian closure of Q (i.e. the maximal abelian extension of Q)
can be obtained by adjoining the numbers e2πir to Q, where r ∈ Q. In other
words: by adjoining special values of the exponential function. Kronecker’s
‘Jugendtraum’ from 1880 consisted in the hope that the abelian closure of a
number field K can likewise be obtained by adjoining to K values of special
functions. This question was taken up by Hilbert in his 12th problem, which
consists of two parts: computation of the maximal unramified abelian extension,
then of the abelian closure. If, for example, K = Q(τ) is imaginary quadratic,
its maximal unramified abelian extension is its Hilbert class field L = K(j(τ)),
and its degree over K is just the class number of K. The solution of Hilbert’s
12th problem makes use of algebraic curves and special functions: if e.g. K
is imaginary quadratic, the curve is an elliptic curve and the function is the
modular function j. More generally, if K is a CM-field, i.e. a totally complex
quadratic extension of a totally real number field, then Shimura has shown that
the maximal unramified abelian extension of K can be obtained via varieties
with complex multiplication and special values of automorphic functions ([2]).

2 Endomorphisms of elliptic curves

An elliptic curve can be defined in five different ways:

1. a connected compact Lie group of dimension 1,

2. a complex torus C/L, where L is a lattice in C,

3. a Riemann surface of genus 1,

4. a non-singular cubic in P2(C),
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5. an algebraic group of dimension 1, with underlying projective algebraic
variety.

2.1 Homomorphisms

If M and L are two lattices one is interested in the analytic homomorphisms
C/M −→ C/L. To this end, it is convenient to observe that the canonical
surjection sL : C −→ C/L is the universal covering of C/L in the sense that, for
each analytic homomorphism φ : C −→ C/L, there exists a unique linear map
λ : C −→ C which makes the following diagram commutative:

C
λ - C

@
@

@
@

@
φ

R
C/L

sL

?

In fact, sL(0) = 0 and sL is continuous in 0, hence locally injective in a vicinity
U of 0. Thus σ = sL|U : U −→ V is a bijection, and f := σ−1 ◦ φ is analytic
and respects addition in a vicinity W of 0: for x, y, x + y ∈ W . Taking the
derivative with respect to y this gives f ′(x+y) = f ′(y), and letting y = 0 yields
f ′(x) = f ′(0) = λ, hence f(x) = λx (since f(0) = 0). Now sL(λx) = φ(x) in
a vicinity of 0, hence everywhere, since the function sL(λx) − φ(x) is analytic
and vanishes in a vicinity of 0.

If now f : C/L −→ C/M is an analytic homomorphism, then φ = f ◦ sL :
C −→ C/M factors through a λ ∈ C and one finds sM ◦ λ = f ◦ sL.

C
λ - C

@
@

@
@

@
φ

R
C/L

sL

?

f
- C/M

sM

?

This implies λL ⊆ M .
If f 6= 0, then f is surjective: for x + M ∈ C/M one has f(xλ−1 = L) =

x + M ; moreover, G = im f is a compact subgroup of C/M (since f is a
continuous homomorphism), hence G is closed. Now f is open (since it is
analytic and not constant), hence G is also open in C/M , which implies that
G = C/M by connectivity. Next ker f is finite (since it is discrete inside a
compactum – it is formed by isolated points): we say that f is an isogeny and
write deg f = #ker f .

Conversely, if λL ⊆ M for some λ ∈ C×, then f(x+L) = λx+M defines an
isogeny C/L −→ C/M . Since in this case there also exists a µ ∈ C× such that
µM ⊆ L (this is a property of lattices), we see that there also exists an isogeny
C/M −→ C/L. We say that C/L and C/M are isogenous.
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2.2 Isomorphisms

Let f : C/L −→ C/M be an analytic isomorphism. By what we have seen
above f factors through a linear map C −→ C : z 7−→ λz via the canoncical
surjections C −→ C/L and C −→ C/M with λ ∈ C and λL ⊆ M . The inverse
isomorphism f−1 : C/M −→ C/L factors through z 7−→ 1

λz, hence λ−1M ⊆ L.
We deduce that λL = M .

We will show that the modular invariant actually characterizes the isomor-
phism classes of elliptic curves:

℘L(z) = z−2 +
∑

ω∈L×

( 1
(z − ω)2

− 1
ω2

)
,

℘′L(z)2 = 4℘L(z)3 − g2(L)℘L(z)− g3(L),

g2(L) = 60
∑

ω∈L×

ω−4 and g3(L) = 140
∑

ω∈L×

ω−6.

If λL = M , then 
℘M (λz) = ℘λL(λz) = λ−2℘L(z),
g2(M) = λ−4g2(L),
g3(M) = λ−6g3(L).

We define

• the discriminant: ∆(L) = g3
2(L)− 27g2

3(L),

• the modular invariant: j(L) = 1728g3
2(L)/∆(L).

Taking the preceding properties into account, we find

j(M) = j(L).

The lattice L = ω1Z + ω2Z can be written in the form L = ω1(Z + τZ),
where τ = ω2/ω1 and Im τ > 0. Thus j(L) = j(Z + τZ) =: j(τ); this defines a
map j : H −→ C of the upper half plane H = {z ∈ C : Im z > 0} to C. It can be
shown that j is analytic and surjective. As for injectivity, we have the following
result: if τ1 ≡ τ2 mod SL 2(Z), i.e. if τ1 = aτ2+b

cτ2+d with a, b, c, d ∈ Z such that
ad− bc = 1, then ( 1

τ1

)
=

1
cτ2 + d

(d c
b a

)
,

hence Z+τ1Z = 1
cτ2+d (Z+τ2Z), and this implies j(τ1) = j(τ2). It can be shown

that the converse is also true: j(τ1) = j(τ2) implies that τ1 ≡ τ2 mod SL 2(Z)
(see [3]).
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2.3 Endomorphisms

If L = M then the endomorphisms of C/L correspond to λ ∈ C such that
λL ⊆ L. The associated ℘-function therefore enjoys properties which come
from the structure of an algebraic variety. More exactly we have

Proposition 2.1. If λL ⊆ L, then

i) λ is a rational integer or an algebraic integer in an imaginary quadratic
number field;

ii) ℘L(λz) is a rational function of ℘L(z) such that the degree of the numer-
ator is λ2 if λ ∈ Z, and Nλ if λ is imaginary quadratic; the degree of the
denominator is λ2 − 1 and Nλ− 1, respectively.

Proof. i) If L = ω1Z + ω2Z contains λL, then{
λω1 = aω1 + bω2

λω2 = cω1 + dω2

with a, b, c, d ∈ Z. This implies

ω1

ω2
=

aω1
ω2

+ b

cω1
ω2

+ d
,

or, by putting τ = ω1/ω2: cτ2 + (d− a)τ − b = 0.
If λ is not a rational integer, then c 6= 0, and τ is a quadratic imaginary

number (imaginary, since ω1/ω2 cannot be real). Since λ = cτ + d, we get
λ2 − (a + d)λ + ad− bc = 0; this shows that λ is an integer in Q(τ).

ii) For ω ∈ L, we have ℘(λ(z + ω)) = ℘(λz + λω) = ℘(λz), since λL ⊆ L.
Hence ℘(λz) is an elliptic function for L, and it is even (since ℘ is). Moreover,
for ` ∈ 1

2L, we find ℘(λ(`− z)) = ℘(λ(` + z)), so if ` is a zero or a pole its order
is even.

Let S be a set of representatives modulo L for the set of poles and zeros of
℘(λz); we put S2 = S∩ 1

2L. For β ∈ S2, the number nβ = ord(℘(λz), β) is even.
If β ∈ S \ S2 we also have −β ∈ S \ S2, and we can write S \ S2 as a disjoint
union S+ ∪ S−, where z ∈ S+ mod L if and only if −z ∈ S− mod L.

Now write nα = ord(℘(λz), α) for all α ∈ C. The order of ℘(λz) in z = 0 is
−2, hence

2
∑

α∈S+

nα +
∑

α∈S2

nα − 2 = 0.

Now put
f(z) =

∏
α∈S+

(℘(z)− ℘(α))nα

∏
α∈S2

(℘(z)− ℘(α))nα/2.

Then f is an elliptic function for the lattice L:
for α ∈ S+, ord(f, α) = nα = ord(℘(λz), α),
for α ∈ S2, ord(f, α) = nα = ord(℘(λz), α),
for α ∈ L, ord(f, α) =

∑
α∈S+

2nα +
∑

α∈S2
nα = ord(℘(λz), α).
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Thus f has the same poles and zeros as ℘(λz), and we conclude that ℘(λz) =
c ·f(z) for some c ∈ C. Now f is a rational function in ℘(z); if M and N denote
the degree of numerator and denominator, then we have{

M =
∑

α∈Z+
nα +

∑
α∈Z2

1
2nα

N =
∑

α∈P+
nα −

∑
α∈P2

1
2nα,

where S+ = Z+ ∪ P+, S2 = Z2 ∪ P2, and where Z denotes the zeros and P the
poles. We find

M −N =
∑

α∈S+

nα +
∑

α∈S2

1
2
nα = 1.

We can also easily calculate the number of distinct poles of ℘(λz):

α ∈ P if and only if λα ∈ L, i.e. α ∈ 1
α

L,

hence the number of poles is #( 1
λL/L) = (L : λL), that is, λ2 if λ ∈ Z and

N(λ) otherwise, and each of these poles is a double pole.
The number of poles of ℘(λz) counted with multiplicity is therefore 2(M −

N) + 2N = 2N + 2, and this concludes the proof.

If ω1
ω2

is imaginary quadratic, the set of λ such that λL ⊆ L is an order in
K = Q(τ): it is the endomorphism ring of L. We are particularly interested in
the case where this order is the ring of integers OK of K, that is, the case where
L is an ideal in OK .

Conversely, if K = Q(τ) is an imaginary quadratic number field, then to
each order O of K there exists an elliptic curve E such that End (E) = O, for
example the curve E = C/O. We say that E is an elliptic curve with complex
multiplication.

For O = OK we have End (E) = OK whenever E = C/a, where a is an ideal
in OK ; since a ∼ b if and only if the corresponding curves are isomorphic, we
see that there exist h non-isomorphic curves with End (E) = OK , where h is
the class number of K. We conclude that we also have (Q(j(τ) : Q) ≤ h (see
[4]).

2.4 Automorphisms

They correspond to λ such that λL = L; if the curve does not have complex
multiplication, then λ = ±1 are the only such λ; if the curve has CM and
if End (E) = O is the maximal order in K = Q(τ), then the automorphisms
correspond to the units of O = OK . Dirichlet’s unit theorem asserts that the
only units in OK are the roots of unity contained in K (since K is imaginary
quadratic), and this group is {±1} except for the following two cases:

1) K = Q(i): here the roots of unity are ±1 and ±i. O = OK = Z[i] is the
only order of K possessing units different from ±1, and O is the endomorphism
ring of the curve E = C/Z[i]. For the lattice L = Z[i] we find g3(L) = 0 (observe
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that g3(L) = g3(iL) = i−6g3(L) since iL = L), hence j(L) = j(i) = 1728g3
2/g3

2 =
1728 does not depend on g2. Thus all curves y2 = 4x3 − g2x are isomorphic. If
one chooses g2 = 4, one has y2 = 4x3−4x = 4x(x−1)(x+1); if M = ω1(Z⊕ iZ)
is the corresponding lattice, then it is known that ω1 = 2

∫∞
1

dt√
4t3−4t

. This
gives

ω1 =
∫ ∞

1

dt√
t3 − t

=
Γ( 1

4 )2

2
√

2π
.

This number is the lemniscatic constant ω. We deduce that g2(Z[i]) = 4ω4,
hence we get ∑

(m,n) 6=(0,0)

1
(m + in)4

=
1
15

Γ( 1
4 )8

26π2
.

2) K = Q(ρ), where ρ = e2πi/3: here the roots of unity are ±1, ±ρ and ±ρ2.
O = OK = Z[ρ] is the only order of K possessing units different from ±1, and
O is the endomorphism ring of the curve E = C/Z[ρ]. For the lattice L = Z[ρ]
we find g2(L) = 0 (since g2(ρL) = ρ−4g2(L)), hence j(ρ) = 0 does not depend
on g3, and all the curves y2 = 4x3 − g3 are isomorphic. If one chooses g3 = 4,
one gets y2 = 4x3 − 4. Let M = ω1(Z⊕ ρZ) be the corresponding lattice; then
we find

ω1 = 2
∫ ∞

1

dt√
4t3 − 4

=
Γ( 1

3 )3

24/3π
,

from which we deduce that∑
(m,n) 6=(0,0)

1
(m + ρn)6

=
Γ( 1

3 )18

28π6
.

These formulas can be generalized: if K is an imaginary quadratic number
field with an order O, and if E is an elliptic curve with complex multiplication
by O, then the corresponding lattice L determines a vector space L⊗Q which
is invariant under the action of K and thus has the form L ⊗ Q = K · Ω for
some Ω ∈ C× defined up to elements of K×. In particular, if O = OK , then Ω
is given by the formula of Chowla-Selberg:

Ω = α
√

π
∏

0<a<d
(a,d)=1

Γ
(a

d

)wε(a)/4h

.

Here

α is an element of Q;

w is the number of roots of unity in K;

h is the class number of K;

ε is the Dirichlet character modulo d;

d is the discriminant of K.

Thus, for y2 = 4x3 − 4x, one gets ω = α
√

πΓ( 1
4 )Γ( 3

4 ), which is in agreement
with the formula given above.
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3 Examples of curves with complex multiplica-
tion

Let K be a complex quadratic number field, OK = Z[ω] its ring of integers.
For determining the curves with complex multiplication by OK one can use a
method described by Stark: write down a ‘sufficiently long’ part of the Laurent
expansion of ℘(z), then compute ℘(ωz) and express it by ℘(z) ([4]):

℘(z) =
1
z2

+ 3G2z
2 + . . . ,

℘(ωz) =
1

ω2z2
+ 3G2ω

2z2 + . . .

Now write

℘(ωz) =
1
ω2

℘(z) + A(z).

Now we compute 1
A and proceed similarly, and get a development of ℘(ωz) as

a continued fraction. We write down this series tu sufficient precision (cf. the
proposition); more exactly, if |Nω| = m then we have to develop ℘(z) to the
order 4m − 2 to be able to express the relation which shows us that the curve
has complex multiplication by ω.

For example, if |Nω| = 2, we write ℘(z) to the order 6:

℘(z) =
1
z2

+ 3G2z
2 + 5G3z

4 + 7G4z
6 + . . .

℘(ωz) =
1

ω2z2
+ 3G2ω

2z2 + 5G3ω
4z4 + 7G4ω

6z6 + . . .

=
1
ω2

℘(z) + 3G2(ω2 − ω−2)z2 + 5G3(ω4 − ω−2)z4 + 7G4(ω6 − ω−2)z6

=
1
ω2

℘(z) + A(z)

Thus

A = 3G2(ω2 − ω−2)z2

[
1 +

5G3(ω4 − ω−2)
3G2(ω2 − ω−2)

z2 +
7G4(ω6 − ω−2)
3G2(ω2 − ω−2)

z4 + . . .

]
= az2

[
1− a1z

2 − a2z
4 − . . .

]
1
A

=
1
a
· 1
z2

[
1 + a1z

2 + (a2 + a2
1)z

4 + . . .
]

=
1
a
℘(z) +

a1

a
+

1
a
(a2 + a2

1 − 3G2)z2 + . . .

So if there is complex multiplication by ω with Nω = 2, then we must have
a2 + a2

1 = 3G2, hence
1
A

=
1
a
℘(z) +

a1

a
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and

℘(ωz) =
ω−2℘(z)2 + a1ω

−2℘(z) + a

℘(z) + a1
.

It is convenient to take y2 = 4x3 − g2x − g3 with g2 = g3 = g, which implies
that 7G3 = 3G2; the relation a2 + a2

1 = 3G2 then takes the form

G2 =
1

a4 + 5

(5a6

7s4

)2

where sn = ωn − 1,

hence
g =

60
a4 + 5

(5a6

7s4

)2

.

First example: K = Q(
√
−2 ), ω = i

√
−2, s4 = 3, a6 = −9, g = 3353

2·72 , hence

j =
1728g

g − 27
= 203 = 8000.

The function ℘ is associated to an ideal class of OK ; since h = 1 we have
L ∼ OK , but we can also remark that, since j has only one possible value, we
necessarily have h = 1.

℘L(ωz) =
− 1

2℘L(z)2 − 15
14℘L(z)− 34·52

24·72

℘L(z) + 15
7

.

If L = λOK we have
λ4g2(OK) = g = λ6g3(OK),

and in particular

g2(OK)3 =
153

2 · 72
g3(OK)2.

Second example: K = Q(
√
−7 ): here OK = Z ⊕ Zω with ω = 1+i

√
7

2 and
Nω = 2. We find g = 53

7 and j = (−15)3 = −3375, hence h = 1.
This method seems to be of limited use; for example, with K = Q(

√
−5 )

and ω =
√
−5 we would have to compute ℘(z) to order 18 and would have

to invert four series. Nevertheless, here the class number is h = 2, and there
are two curves such that End (E) = Z[

√
−5 ]; their modular invariants can be

computed and turn out to equal (see [5])

j(OK) = (50 + 26
√

5 )3, j(a) = (50− 26
√

5 )3.

4 The Main Theorem of Complex Multiplica-
tion

We have seen that for K = Q(
√
−d ) there are h(K) non-isomorphic elliptic

curves E such that End (E) = OK . If C1, . . . , Ch are the ideal classes, then it
is quite easy to see that the values j(C1), . . . , j(Ch) are conjugated algebraic
numbers of degree ≤ h; on the other hand it is more delicate to show that these
numbers are distinct and algebraic integers of degree h.
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Theorem 4.1. i) H = K(j(Ci)) does not depend on i; the values j(Ci) are
conjugated over K, and H is the Hilbert class field of K (the maximal unramified
abelian extension of K; it has degree (H : K) = h(K)).
ii) There exists a bijection between the ideal class group G of K and the Galois
group of H/K; this bijection is in fact an isomorphism given by a 7−→ σa ∈
Gal (H/K), where σa(j(Ci)) = j([a]−1Ci).
iii) j(a) is real if and only if a has order dividing 2 in G; in particular, j(OK)
is real, and (Q(j(OK)) : Q) = h.

It is also possible to describe the maximal abelian extension of K; it is given
by adjoining all elements

τ
( 1

n
(aω1 + bω2)

)
, a, b ∈ Z, n ∈ N

to the Hilbert class field H of K. Here the function τ is defined as follows: let
e be the order of End (OK) (thus e is almost always 2, and sometimes 4 or 6).
One defines g(e) by

g(2) = 2735g2g3∆−1; g(4) = 2834g2
2∆−1; g(6) = 2936g3∆−1.

Now one puts
τ(u) = (−℘(u))e/2g(e).

If one gives the weight 2 to ℘, 4 to g2 and 6 to g3, then τ is homogeneous
of weight 0; this justifies taking g2g3℘∆−1. But if g2g3 = 0, one has to take
g2
2℘∆−1 if g3 = 0, and g3℘

3∆−1 if g2 = 0. The function τ only depends on j
and not on g2 or g3 (see e.g. Lang, Elliptic functions, Theorem 7, p. 20).
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