Elliptic Curves and Complex Multiplication

Michel Waldschmidt

September 11, 2003

Saint-Etienne, May 1982

Notes by A. Faisant, R. Lardon, G. Philibert

1 Introduction

A calculator can give you the decimal expansion

$$
e^{\pi \sqrt{163}}=262537412640768743.9999999999992 \ldots
$$

In spite of its appearance this number is not an integer since it is transcendent by the theorem of Gel'fond-Schneider:

$$
e^{\pi \sqrt{163}}=\left(e^{i \pi}\right)^{-i \sqrt{163}} \text { with }\left\{\begin{array}{l}
e^{i \pi} \text { algebraic, and } \\
-i \sqrt{163} \text { irrational and algebraic. }
\end{array}\right.
$$

In order to explain the fact that $e^{\pi \sqrt{163}}$ is very close to an integer one starts with the observation that $\mathbb{Q}(\sqrt{-163})$ has class number 1 ; this implies that the modular function $j(\tau)$ is an integer for $\tau=\frac{1}{2}(1+i \sqrt{163})$. Expressing $j(\tau)$ by a Laurent series

$$
j(\tau)=\frac{1}{q}+744+196884 q+21493760 q^{2}+\ldots
$$

where $q=e^{2 i \pi \tau}=-e^{-\pi \sqrt{163}}$. This gives
$\left|j(\tau)-\frac{1}{q}-744\right|=\left|-e^{\pi \sqrt{163}}-j(\tau)+744\right|=196884 q+21493760 q^{2}+\ldots$, and since $|q|<\frac{1}{2} 10^{-17}$, one deduces that the distance of $-e^{\pi \sqrt{163}}$ from the integer $j(\tau)-744$ is smaller than 10^{-12}.

There is an analogous situation for $\mathbb{Q}(\sqrt{-67})$: with $\tau=\frac{1}{2}(1+i \sqrt{67})$, we have $j(\tau)=-(5280)^{3}=147197952000$, and $e^{\pi \sqrt{67}}$ is very close to 147197952000 .

In general, we have $j(\tau)=\frac{1728 g_{2}^{3}}{g_{2}^{3}-27 g_{3}^{2}}$, where $g_{2}=60 G_{2}, g_{3}=140 G_{3}$, and where $G_{k}(z)$ is the Eisenstein series

$$
G_{k}(z)=z^{2 k} \sum_{(m, n) \in \mathbb{Z}^{2} \backslash\{(0,0)\}}(m+n z)^{-2 k},
$$

amd where the coefficient 1728 was inroduced so that the residue of $j(z)$ at infinity equal 1 .

1728 has the following bizarre property: $1729=12^{3}+1^{3}=10^{3}+9^{3}$, and 1729 is the smallest integer which can be written in two different ways as the sum of two cubes.

It is known (Siegel 1929) that the equation $x^{3}+1=489 y^{2}$ only has a finite number of integral solutions; one of them is quite large: $x=53360$ and $y=557403$, the reason for this being that $489=3 \cdot 163$ and that $\mathbb{Q}(\sqrt{-163})$ has class number 1 ([1]).

Similarly, if $h(-p)=1$, then the equation $x^{3}-p y^{2}=-1728$ has an integral solution obtained by letting x be the nearest integer to $e^{\pi \sqrt{p} / 3}$; this has to do with the fact that $j(\tau)$ is a perfect cube and that $\frac{1}{p}(1728-j(\tau))$ is a square ([1). The equation $x^{3}-p y^{2}=-1728$ can be transformed (for $p=163$) into $X^{3}+1=489 Y^{2}$ by putting $x=12 X$ and $y=72 Y$.

Finally, the polynomial $x^{2}-x+41$ discovered by Euler takes only prime values for $x=0,1, \ldots, 40$: this result is also connected to the fact that $\mathbb{Q}(\sqrt{-163})$ has class number 1: the discriminant of $x^{2}-x+41$ equals -163 .

These results show the intimate connections which connect the class numbers of imaginary quadratic number fields and the modular invariant j. Weber has shown that the abelian closure of \mathbb{Q} (i.e. the maximal abelian extension of \mathbb{Q}) can be obtained by adjoining the numbers $e^{2} \pi i r$ to \mathbb{Q}, where $r \in \mathbb{Q}$. In other words: by adjoining special values of the exponential function. Kronecker's 'Jugendtraum' from 1880 consisted in the hope that the abelian closure of a number field K can likewise be obtained by adjoining to K values of special functions. This question was taken up by Hilbert in his 12 th problem, which consists of two parts: computation of the maximal unramified abelian extension, then of the abelian closure. If, for example, $K=\mathbb{Q}(\tau)$ is imaginary quadratic, its maximal unramified abelian extension is its Hilbert class field $L=K(j(\tau))$, and its degree over K is just the class number of K. The solution of Hilbert's 12 th problem makes use of algebraic curves and special functions: if e.g. K is imaginary quadratic, the curve is an elliptic curve and the function is the modular function j. More generally, if K is a CM-field, i.e. a totally complex quadratic extension of a totally real number field, then Shimura has shown that the maximal unramified abelian extension of K can be obtained via varieties with complex multiplication and special values of automorphic functions ([2]).

2 Endomorphisms of elliptic curves

An elliptic curve can be defined in five different ways:

1. a connected compact Lie group of dimension 1 ,
2. a complex torus \mathbb{C} / L, where L is a lattice in \mathbb{C},
3. a Riemann surface of genus 1 ,
4. a non-singular cubic in $\mathbb{P}_{2}(\mathbb{C})$,
5. an algebraic group of dimension 1, with underlying projective algebraic variety.

2.1 Homomorphisms

If M and L are two lattices one is interested in the analytic homomorphisms $\mathbb{C} / M \longrightarrow \mathbb{C} / L$. To this end, it is convenient to observe that the canonical surjection $s_{L}: \mathbb{C} \longrightarrow \mathbb{C} / L$ is the universal covering of \mathbb{C} / L in the sense that, for each analytic homomorphism $\phi: \mathbb{C} \longrightarrow \mathbb{C} / L$, there exists a unique linear map $\lambda: \mathbb{C} \longrightarrow \mathbb{C}$ which makes the following diagram commutative:

In fact, $s_{L}(0)=0$ and s_{L} is continuous in 0 , hence locally injective in a vicinity U of 0 . Thus $\sigma=s_{L \mid U}: U \longrightarrow V$ is a bijection, and $f:=\sigma^{-1} \circ \phi$ is analytic and respects addition in a vicinity W of 0 : for $x, y, x+y \in W$. Taking the derivative with respect to y this gives $f^{\prime}(x+y)=f^{\prime}(y)$, and letting $y=0$ yields $f^{\prime}(x)=f^{\prime}(0)=\lambda$, hence $f(x)=\lambda x$ (since $f(0)=0$). Now $s_{L}(\lambda x)=\phi(x)$ in a vicinity of 0 , hence everywhere, since the function $s_{L}(\lambda x)-\phi(x)$ is analytic and vanishes in a vicinity of 0 .

If now $f: \mathbb{C} / L \longrightarrow \mathbb{C} / M$ is an analytic homomorphism, then $\phi=f \circ s_{L}$: $\mathbb{C} \longrightarrow \mathbb{C} / M$ factors through a $\lambda \in \mathbb{C}$ and one finds $s_{M} \circ \lambda=f \circ s_{L}$.

This implies $\lambda L \subseteq M$.
If $f \neq 0$, then f is surjective: for $x+M \in \mathbb{C} / M$ one has $f\left(x \lambda^{-1}=L\right)=$ $x+M$; moreover, $G=\operatorname{im} f$ is a compact subgroup of \mathbb{C} / M (since f is a continuous homomorphism), hence G is closed. Now f is open (since it is analytic and not constant), hence G is also open in \mathbb{C} / M, which implies that $G=\mathbb{C} / M$ by connectivity. Next $\operatorname{ker} f$ is finite (since it is discrete inside a compactum - it is formed by isolated points): we say that f is an isogeny and write $\operatorname{deg} f=\# \operatorname{ker} f$.

Conversely, if $\lambda L \subseteq M$ for some $\lambda \in \mathbb{C}^{\times}$, then $f(x+L)=\lambda x+M$ defines an isogeny $\mathbb{C} / L \longrightarrow \mathbb{C} / M$. Since in this case there also exists a $\mu \in \mathbb{C}^{\times}$such that $\mu M \subseteq L$ (this is a property of lattices), we see that there also exists an isogeny $\mathbb{C} / M \longrightarrow \mathbb{C} / L$. We say that \mathbb{C} / L and \mathbb{C} / M are isogenous.

2.2 Isomorphisms

Let $f: \mathbb{C} / L \longrightarrow \mathbb{C} / M$ be an analytic isomorphism. By what we have seen above f factors through a linear map $\mathbb{C} \longrightarrow \mathbb{C}: z \longmapsto \lambda z$ via the canoncical surjections $\mathbb{C} \longrightarrow \mathbb{C} / L$ and $\mathbb{C} \longrightarrow \mathbb{C} / M$ with $\lambda \in \mathbb{C}$ and $\lambda L \subseteq M$. The inverse isomorphism $f^{-1}: \mathbb{C} / M \longrightarrow \mathbb{C} / L$ factors through $z \longmapsto \frac{1}{\lambda} z$, hence $\lambda^{-1} M \subseteq L$. We deduce that $\lambda L=M$.

We will show that the modular invariant actually characterizes the isomorphism classes of elliptic curves:

$$
\begin{aligned}
\wp_{L}(z) & =z^{-2}+\sum_{\omega \in L^{\times}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) \\
\wp_{L}^{\prime}(z)^{2} & =4 \wp_{L}(z)^{3}-g_{2}(L) \wp_{L}(z)-g_{3}(L) \\
g_{2}(L) & =60 \sum_{\omega \in L^{\times}} \omega^{-4} \quad \text { and } \quad g_{3}(L)=140 \sum_{\omega \in L^{\times}} \omega^{-6} .
\end{aligned}
$$

If $\lambda L=M$, then

$$
\left\{\begin{array}{l}
\wp_{M}(\lambda z)=\wp_{\lambda L}(\lambda z)=\lambda^{-2} \wp_{L}(z) \\
g_{2}(M)=\lambda^{-4} g_{2}(L) \\
g_{3}(M)=\lambda^{-6} g_{3}(L)
\end{array}\right.
$$

We define

- the discriminant: $\Delta(L)=g_{2}^{3}(L)-27 g_{3}^{2}(L)$,
- the modular invariant: $j(L)=1728 g_{2}^{3}(L) / \Delta(L)$.

Taking the preceding properties into account, we find

$$
j(M)=j(L)
$$

The lattice $L=\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}$ can be written in the form $L=\omega_{1}(\mathbb{Z}+\tau \mathbb{Z})$, where $\tau=\omega_{2} / \omega_{1}$ and $\operatorname{Im} \tau>0$. Thus $j(L)=j(\mathbb{Z}+\tau \mathbb{Z})=: j(\tau)$; this defines a $\operatorname{map} j: \mathbb{H} \longrightarrow \mathbb{C}$ of the upper half plane $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$ to \mathbb{C}. It can be shown that j is analytic and surjective. As for injectivity, we have the following result: if $\tau_{1} \equiv \tau_{2} \bmod \mathrm{SL}_{2}(\mathbb{Z})$, i.e. if $\tau_{1}=\frac{a \tau_{2}+b}{c \tau_{2}+d}$ with $a, b, c, d \in \mathbb{Z}$ such that $a d-b c=1$, then

$$
\binom{1}{\tau_{1}}=\frac{1}{c \tau_{2}+d}\left(\begin{array}{ll}
d & c \\
b & a
\end{array}\right),
$$

hence $\mathbb{Z}+\tau_{1} \mathbb{Z}=\frac{1}{c \tau_{2}+d}\left(\mathbb{Z}+\tau_{2} \mathbb{Z}\right)$, and this implies $j\left(\tau_{1}\right)=j\left(\tau_{2}\right)$. It can be shown that the converse is also true: $j\left(\tau_{1}\right)=j\left(\tau_{2}\right)$ implies that $\tau_{1} \equiv \tau_{2} \bmod \operatorname{SL}_{2}(\mathbb{Z})$ (see [3]).

2.3 Endomorphisms

If $L=M$ then the endomorphisms of \mathbb{C} / L correspond to $\lambda \in \mathbb{C}$ such that $\lambda L \subseteq L$. The associated \wp-function therefore enjoys properties which come from the structure of an algebraic variety. More exactly we have

Proposition 2.1. If $\lambda L \subseteq L$, then
i) λ is a rational integer or an algebraic integer in an imaginary quadratic number field;
ii) $\wp_{L}(\lambda z)$ is a rational function of $\wp_{L}(z)$ such that the degree of the numerator is λ^{2} if $\lambda \in \mathbb{Z}$, and $N \lambda$ if λ is imaginary quadratic; the degree of the denominator is $\lambda^{2}-1$ and $N \lambda-1$, respectively.

Proof. i) If $L=\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}$ contains λL, then

$$
\left\{\begin{array}{l}
\lambda \omega_{1}=a \omega_{1}+b \omega_{2} \\
\lambda \omega_{2}=c \omega_{1}+d \omega_{2}
\end{array}\right.
$$

with $a, b, c, d \in \mathbb{Z}$. This implies

$$
\frac{\omega_{1}}{\omega_{2}}=\frac{a \frac{\omega_{1}}{\omega_{2}}+b}{c \frac{\omega_{1}}{\omega_{2}}+d}
$$

or, by putting $\tau=\omega_{1} / \omega_{2}: c \tau^{2}+(d-a) \tau-b=0$.
If λ is not a rational integer, then $c \neq 0$, and τ is a quadratic imaginary number (imaginary, since ω_{1} / ω_{2} cannot be real). Since $\lambda=c \tau+d$, we get $\lambda^{2}-(a+d) \lambda+a d-b c=0$; this shows that λ is an integer in $\mathbb{Q}(\tau)$.
ii) For $\omega \in L$, we have $\wp(\lambda(z+\omega))=\wp(\lambda z+\lambda \omega)=\wp(\lambda z)$, since $\lambda L \subseteq L$. Hence $\wp(\lambda z)$ is an elliptic function for L, and it is even (since \wp is). Moreover, for $\ell \in \frac{1}{2} L$, we find $\wp(\lambda(\ell-z))=\wp(\lambda(\ell+z))$, so if ℓ is a zero or a pole its order is even.

Let S be a set of representatives modulo L for the set of poles and zeros of $\wp(\lambda z)$; we put $S_{2}=S \cap \frac{1}{2} L$. For $\beta \in S_{2}$, the number $n_{\beta}=\operatorname{ord}(\wp(\lambda z), \beta)$ is even. If $\beta \in S \backslash S_{2}$ we also have $-\beta \in S \backslash S_{2}$, and we can write $S \backslash S_{2}$ as a disjoint union $S_{+} \cup S_{-}$, where $z \in S_{+} \bmod L$ if and only if $-z \in S_{-} \bmod L$.

Now write $n_{\alpha}=\operatorname{ord}(\wp(\lambda z), \alpha)$ for all $\alpha \in \mathbb{C}$. The order of $\wp(\lambda z)$ in $z=0$ is -2 , hence

$$
2 \sum_{\alpha \in S_{+}} n_{\alpha}+\sum_{\alpha \in S_{2}} n_{\alpha}-2=0
$$

Now put

$$
f(z)=\prod_{\alpha \in S_{+}}(\wp(z)-\wp(\alpha))^{n_{\alpha}} \prod_{\alpha \in S_{2}}(\wp(z)-\wp(\alpha))^{n_{\alpha} / 2} .
$$

Then f is an elliptic function for the lattice L :

$$
\begin{cases}\text { for } \alpha \in S_{+}, & \operatorname{ord}(f, \alpha)=n_{\alpha}=\operatorname{ord}(\wp(\lambda z), \alpha) \\ \text { for } \alpha \in S_{2}, & \operatorname{ord}(f, \alpha)=n_{\alpha}=\operatorname{ord}(\wp(\lambda z), \alpha) \\ \text { for } \alpha \in L, & \operatorname{ord}(f, \alpha)=\sum_{\alpha \in S_{+}} 2 n_{\alpha}+\sum_{\alpha \in S_{2}} n_{\alpha}=\operatorname{ord}(\wp(\lambda z), \alpha)\end{cases}
$$

Thus f has the same poles and zeros as $\wp(\lambda z)$, and we conclude that $\wp(\lambda z)=$ $c \cdot f(z)$ for some $c \in \mathbb{C}$. Now f is a rational function in $\wp(z)$; if M and N denote the degree of numerator and denominator, then we have

$$
\left\{\begin{array}{l}
M=\sum_{\alpha \in Z_{+}} n_{\alpha}+\sum_{\alpha \in Z_{2}} \frac{1}{2} n_{\alpha} \\
N=\sum_{\alpha \in P_{+}} n_{\alpha}-\sum_{\alpha \in P_{2}} \frac{1}{2} n_{\alpha},
\end{array}\right.
$$

where $S_{+}=Z_{+} \cup P_{+}, S_{2}=Z_{2} \cup P_{2}$, and where Z denotes the zeros and P the poles. We find

$$
M-N=\sum_{\alpha \in S_{+}} n_{\alpha}+\sum_{\alpha \in S_{2}} \frac{1}{2} n_{\alpha}=1
$$

We can also easily calculate the number of distinct poles of $\wp(\lambda z)$:

$$
\alpha \in P \text { if and only if } \lambda \alpha \in L, \text { i.e. } \alpha \in \frac{1}{\alpha} L
$$

hence the number of poles is $\#\left(\frac{1}{\lambda} L / L\right)=(L: \lambda L)$, that is, λ^{2} if $\lambda \in \mathbb{Z}$ and $N(\lambda)$ otherwise, and each of these poles is a double pole.

The number of poles of $\wp(\lambda z)$ counted with multiplicity is therefore $2(M-$ $N)+2 N=2 N+2$, and this concludes the proof.

If $\frac{\omega_{1}}{\omega_{2}}$ is imaginary quadratic, the set of λ such that $\lambda L \subseteq L$ is an order in $K=\mathbb{Q}(\tau)$: it is the endomorphism ring of L. We are particularly interested in the case where this order is the ring of integers \mathcal{O}_{K} of K, that is, the case where L is an ideal in \mathcal{O}_{K}.

Conversely, if $K=\mathbb{Q}(\tau)$ is an imaginary quadratic number field, then to each order \mathcal{O} of K there exists an elliptic curve E such that $\operatorname{End}(E)=\mathcal{O}$, for example the curve $E=\mathbb{C} / \mathcal{O}$. We say that E is an elliptic curve with complex multiplication.

For $\mathcal{O}=\mathcal{O}_{K}$ we have $\operatorname{End}(E)=\mathcal{O}_{K}$ whenever $E=\mathbb{C} / \mathfrak{a}$, where \mathfrak{a} is an ideal in \mathcal{O}_{K}; since $\mathfrak{a} \sim \mathfrak{b}$ if and only if the corresponding curves are isomorphic, we see that there exist h non-isomorphic curves with $\operatorname{End}(E)=\mathcal{O}_{K}$, where h is the class number of K. We conclude that we also have $(\mathbb{Q}(j(\tau): \mathbb{Q}) \leq h$ (see (4).

2.4 Automorphisms

They correspond to λ such that $\lambda L=L$; if the curve does not have complex multiplication, then $\lambda= \pm 1$ are the only such λ; if the curve has CM and if $\operatorname{End}(E)=\mathcal{O}$ is the maximal order in $K=\mathbb{Q}(\tau)$, then the automorphisms correspond to the units of $\mathcal{O}=\mathcal{O}_{K}$. Dirichlet's unit theorem asserts that the only units in \mathcal{O}_{K} are the roots of unity contained in K (since K is imaginary quadratic), and this group is $\{ \pm 1\}$ except for the following two cases:

1) $K=\mathbb{Q}(i)$: here the roots of unity are ± 1 and $\pm i$. $\mathcal{O}=\mathcal{O}_{K}=\mathbb{Z}[i]$ is the only order of K possessing units different from ± 1, and \mathcal{O} is the endomorphism ring of the curve $E=\mathbb{C} / \mathbb{Z}[i]$. For the lattice $L=\mathbb{Z}[i]$ we find $g_{3}(L)=0$ (observe
that $g_{3}(L)=g_{3}(i L)=i^{-6} g_{3}(L)$ since $\left.i L=L\right)$, hence $j(L)=j(i)=1728 g_{2}^{3} / g_{2}^{3}=$ 1728 does not depend on g_{2}. Thus all curves $y^{2}=4 x^{3}-g_{2} x$ are isomorphic. If one chooses $g_{2}=4$, one has $y^{2}=4 x^{3}-4 x=4 x(x-1)(x+1)$; if $M=\omega_{1}(\mathbb{Z} \oplus i \mathbb{Z})$ is the corresponding lattice, then it is known that $\omega_{1}=2 \int_{1}^{\infty} \frac{d t}{\sqrt{4 t^{3}-4 t}}$. This gives

$$
\omega_{1}=\int_{1}^{\infty} \frac{d t}{\sqrt{t^{3}-t}}=\frac{\Gamma\left(\frac{1}{4}\right)^{2}}{2 \sqrt{2 \pi}}
$$

This number is the lemniscatic constant ω. We deduce that $g_{2}(\mathbb{Z}[i])=4 \omega^{4}$, hence we get

$$
\sum_{(m, n) \neq(0,0)} \frac{1}{(m+i n)^{4}}=\frac{1}{15} \frac{\Gamma\left(\frac{1}{4}\right)^{8}}{2^{6} \pi^{2}}
$$

2) $K=\mathbb{Q}(\rho)$, where $\rho=e^{2 \pi i / 3}$: here the roots of unity are $\pm 1, \pm \rho$ and $\pm \rho^{2}$. $\mathcal{O}=\mathcal{O}_{K}=\mathbb{Z}[\rho]$ is the only order of K possessing units different from ± 1, and \mathcal{O} is the endomorphism ring of the curve $E=\mathbb{C} / \mathbb{Z}[\rho]$. For the lattice $L=\mathbb{Z}[\rho]$ we find $g_{2}(L)=0$ (since $\left.g_{2}(\rho L)=\rho^{-4} g_{2}(L)\right)$, hence $j(\rho)=0$ does not depend on g_{3}, and all the curves $y^{2}=4 x^{3}-g_{3}$ are isomorphic. If one chooses $g_{3}=4$, one gets $y^{2}=4 x^{3}-4$. Let $M=\omega_{1}(\mathbb{Z} \oplus \rho \mathbb{Z})$ be the corresponding lattice; then we find

$$
\omega_{1}=2 \int_{1}^{\infty} \frac{d t}{\sqrt{4 t^{3}-4}}=\frac{\Gamma\left(\frac{1}{3}\right)^{3}}{2^{4 / 3} \pi}
$$

from which we deduce that

$$
\sum_{(m, n) \neq(0,0)} \frac{1}{(m+\rho n)^{6}}=\frac{\Gamma\left(\frac{1}{3}\right)^{18}}{2^{8} \pi^{6}}
$$

These formulas can be generalized: if K is an imaginary quadratic number field with an order \mathcal{O}, and if E is an elliptic curve with complex multiplication by \mathcal{O}, then the corresponding lattice L determines a vector space $L \otimes \mathbb{Q}$ which is invariant under the action of K and thus has the form $L \otimes \mathbb{Q}=K \cdot \Omega$ for some $\Omega \in \mathbb{C}^{\times}$defined up to elements of K^{\times}. In particular, if $\mathcal{O}=\mathcal{O}_{K}$, then Ω is given by the formula of Chowla-Selberg:

$$
\Omega=\alpha \sqrt{\pi} \prod_{\substack{0<a<d \\(a, d)=1}} \Gamma\left(\frac{a}{d}\right)^{w \varepsilon(a) / 4 h}
$$

Here
α is an element of $\overline{\mathbb{Q}}$;
w is the number of roots of unity in K;
h is the class number of K;
ε is the Dirichlet character modulo d;
d is the discriminant of K.
Thus, for $y^{2}=4 x^{3}-4 x$, one gets $\omega=\alpha \sqrt{\pi} \Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right)$, which is in agreement with the formula given above.

3 Examples of curves with complex multiplication

Let K be a complex quadratic number field, $\mathcal{O}_{K}=\mathbb{Z}[\omega]$ its ring of integers. For determining the curves with complex multiplication by \mathcal{O}_{K} one can use a method described by Stark: write down a 'sufficiently long' part of the Laurent expansion of $\wp(z)$, then compute $\wp(\omega z)$ and express it by $\wp(z)(4])$:

$$
\begin{aligned}
\wp(z) & =\frac{1}{z^{2}}+3 G_{2} z^{2}+\ldots \\
\wp(\omega z) & =\frac{1}{\omega^{2} z^{2}}+3 G_{2} \omega^{2} z^{2}+\ldots
\end{aligned}
$$

Now write

$$
\wp(\omega z)=\frac{1}{\omega^{2}} \wp(z)+A(z) \text {. }
$$

Now we compute $\frac{1}{A}$ and proceed similarly, and get a development of $\wp(\omega z)$ as a continued fraction. We write down this series tu sufficient precision (cf. the proposition); more exactly, if $|N \omega|=m$ then we have to develop $\wp(z)$ to the order $4 m-2$ to be able to express the relation which shows us that the curve has complex multiplication by ω.

For example, if $|N \omega|=2$, we write $\wp(z)$ to the order 6 :

$$
\begin{aligned}
\wp(z) & =\frac{1}{z^{2}}+3 G_{2} z^{2}+5 G_{3} z^{4}+7 G_{4} z^{6}+\ldots \\
\wp(\omega z) & =\frac{1}{\omega^{2} z^{2}}+3 G_{2} \omega^{2} z^{2}+5 G_{3} \omega^{4} z^{4}+7 G_{4} \omega^{6} z^{6}+\ldots \\
& =\frac{1}{\omega^{2}} \wp(z)+3 G_{2}\left(\omega^{2}-\omega^{-2}\right) z^{2}+5 G_{3}\left(\omega^{4}-\omega^{-2}\right) z^{4}+7 G_{4}\left(\omega^{6}-\omega^{-2}\right) z^{6} \\
& =\frac{1}{\omega^{2}} \wp(z)+A(z)
\end{aligned}
$$

Thus

$$
\begin{aligned}
A & =3 G_{2}\left(\omega^{2}-\omega^{-2}\right) z^{2}\left[1+\frac{5 G_{3}\left(\omega^{4}-\omega^{-2}\right)}{3 G_{2}\left(\omega^{2}-\omega^{-2}\right)} z^{2}+\frac{7 G_{4}\left(\omega^{6}-\omega^{-2}\right)}{3 G_{2}\left(\omega^{2}-\omega^{-2}\right)} z^{4}+\ldots\right] \\
& =a z^{2}\left[1-a_{1} z^{2}-a_{2} z^{4}-\ldots\right] \\
\frac{1}{A} & =\frac{1}{a} \cdot \frac{1}{z^{2}}\left[1+a_{1} z^{2}+\left(a_{2}+a_{1}^{2}\right) z^{4}+\ldots\right] \\
& =\frac{1}{a} \wp(z)+\frac{a_{1}}{a}+\frac{1}{a}\left(a_{2}+a_{1}^{2}-3 G_{2}\right) z^{2}+\ldots
\end{aligned}
$$

So if there is complex multiplication by ω with $N \omega=2$, then we must have $a_{2}+a_{1}^{2}=3 G_{2}$, hence

$$
\frac{1}{A}=\frac{1}{a} \wp(z)+\frac{a_{1}}{a}
$$

and

$$
\wp(\omega z)=\frac{\omega^{-2} \wp(z)^{2}+a_{1} \omega^{-2} \wp(z)+a}{\wp(z)+a_{1}} .
$$

It is convenient to take $y^{2}=4 x^{3}-g_{2} x-g_{3}$ with $g_{2}=g_{3}=g$, which implies that $7 G_{3}=3 G_{2}$; the relation $a_{2}+a_{1}^{2}=3 G_{2}$ then takes the form

$$
G_{2}=\frac{1}{a_{4}+5}\left(\frac{5 a_{6}}{7 s_{4}}\right)^{2} \quad \text { where } \quad s_{n}=\omega^{n}-1
$$

hence

$$
g=\frac{60}{a_{4}+5}\left(\frac{5 a_{6}}{7 s_{4}}\right)^{2} .
$$

First example: $K=\mathbb{Q}(\sqrt{-2}), \omega=i \sqrt{-2}, s_{4}=3, a_{6}=-9, g=\frac{3^{3} 5^{3}}{2 \cdot 7^{2}}$, hence

$$
j=\frac{1728 g}{g-27}=20^{3}=8000
$$

The function \wp is associated to an ideal class of \mathcal{O}_{K}; since $h=1$ we have $L \sim \mathcal{O}_{K}$, but we can also remark that, since j has only one possible value, we necessarily have $h=1$.

$$
\wp_{L}(\omega z)=\frac{-\frac{1}{2} \wp_{L}(z)^{2}-\frac{15}{14} \wp_{L}(z)-\frac{3^{4} \cdot 5^{2}}{2^{4} \cdot 7^{2}}}{\wp_{L}(z)+\frac{15}{7}} .
$$

If $L=\lambda \mathcal{O}_{K}$ we have

$$
\lambda^{4} g_{2}\left(\mathcal{O}_{K}\right)=g=\lambda^{6} g_{3}\left(\mathcal{O}_{K}\right)
$$

and in particular

$$
g_{2}\left(\mathcal{O}_{K}\right)^{3}=\frac{15^{3}}{2 \cdot 7^{2}} g_{3}\left(\mathcal{O}_{K}\right)^{2}
$$

Second example: $K=\mathbb{Q}(\sqrt{-7})$: here $\mathcal{O}_{K}=\mathbb{Z} \oplus \mathbb{Z} \omega$ with $\omega=\frac{1+i \sqrt{7}}{2}$ and $N \omega=2$. We find $g=\frac{5^{3}}{7}$ and $j=(-15)^{3}=-3375$, hence $h=1$.

This method seems to be of limited use; for example, with $K=\mathbb{Q}(\sqrt{-5})$ and $\omega=\sqrt{-5}$ we would have to compute $\wp(z)$ to order 18 and would have to invert four series. Nevertheless, here the class number is $h=2$, and there are two curves such that $\operatorname{End}(E)=\mathbb{Z}[\sqrt{-5}]$; their modular invariants can be computed and turn out to equal (see [5])

$$
j\left(\mathcal{O}_{K}\right)=(50+26 \sqrt{5})^{3}, \quad j(\mathfrak{a})=(50-26 \sqrt{5})^{3} .
$$

4 The Main Theorem of Complex Multiplication

We have seen that for $K=\mathbb{Q}(\sqrt{-d})$ there are $h(K)$ non-isomorphic elliptic curves E such that $\operatorname{End}(E)=\mathcal{O}_{K}$. If C_{1}, \ldots, C_{h} are the ideal classes, then it is quite easy to see that the values $j\left(C_{1}\right), \ldots, j\left(C_{h}\right)$ are conjugated algebraic numbers of degree $\leq h$; on the other hand it is more delicate to show that these numbers are distinct and algebraic integers of degree h.

Theorem 4.1. i) $H=K\left(j\left(C_{i}\right)\right)$ does not depend on i; the values $j\left(C_{i}\right)$ are conjugated over K, and H is the Hilbert class field of K (the maximal unramified abelian extension of K; it has degree $(H: K)=h(K)$).
ii) There exists a bijection between the ideal class group G of K and the Galois group of H / K; this bijection is in fact an isomorphism given by $\mathfrak{a} \longmapsto \sigma_{\mathfrak{a}} \in$ $\operatorname{Gal}(H / K)$, where $\sigma_{\mathfrak{a}}\left(j\left(C_{i}\right)\right)=j\left([\mathfrak{a}]^{-1} C_{i}\right)$.
iii) $j(\mathfrak{a})$ is real if and only if \mathfrak{a} has order dividing 2 in G; in particular, $j\left(\mathcal{O}_{K}\right)$ is real, and $\left(\mathbb{Q}\left(j\left(\mathcal{O}_{K}\right)\right): \mathbb{Q}\right)=h$.

It is also possible to describe the maximal abelian extension of K; it is given by adjoining all elements

$$
\tau\left(\frac{1}{n}\left(a \omega_{1}+b \omega_{2}\right)\right), a, b \in \mathbb{Z}, n \in \mathbb{N}
$$

to the Hilbert class field H of K. Here the function τ is defined as follows: let e be the order of End $\left(\mathcal{O}_{K}\right)$ (thus e is almost always 2, and sometimes 4 or 6). One defines $g^{(e)}$ by

$$
g^{(2)}=2^{7} 3^{5} g_{2} g_{3} \Delta^{-1} ; \quad g^{(4)}=2^{8} 3^{4} g_{2}^{2} \Delta^{-1} ; \quad g^{(6)}=2^{9} 3^{6} g_{3} \Delta^{-1}
$$

Now one puts

$$
\tau(u)=(-\wp(u))^{e / 2} g^{(e)}
$$

If one gives the weight 2 to $\wp, 4$ to g_{2} and 6 to g_{3}, then τ is homogeneous of weight 0 ; this justifies taking $g_{2} g_{3} \wp \Delta^{-1}$. But if $g_{2} g_{3}=0$, one has to take $g_{2}^{2} \wp \Delta^{-1}$ if $g_{3}=0$, and $g_{3} \wp^{3} \Delta^{-1}$ if $g_{2}=0$. The function τ only depends on j and not on g_{2} or g_{3} (see e.g. Lang, Elliptic functions, Theorem 7, p. 20).

References

[1] S. Chowla, Remarks on class-invariants and related topics, Seminar on Complex Multiplication, Lecture Notes Math. 21, Springer Verlag 1957 2
[2] G. Shimura, Automorphic functions and Number Theory, Lecture Notes Math. 54, Springer Verlag 1968 2
[3] S. Lang, Elliptic Curves, Diophantine Analysis, Springer Verlag 19784
[4] H.M. Stark, Class numbers of complex quadratic fields, Modular Functions one Variable I, Lecture Notes Math. 320, 153-174; Springer Verlag 1973 6. 8
[5] E. Reyssat, M.F. Vigneras, Courbes elliptiques, Notes du cours de B. Gross à l'Université de Paris 7 (1980-1981) 9

Translated by Franz Lemmermeyer

