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Abstract. In this article we present an elementary method for investigating
the solvability of certain quartic diophantine equations (in modern language:

we show how to perform the second 2-descent on certain elliptic curves using
only the arithmetic of integers). Our method is based on an idea of Euler and

seems to be related to unpublished work of Mordell.

1. Hasse’s Local-Global Principle

One of the simplest examples of the Local-Global Principle is the fact that equa-
tions of the form ax2 + by2 = cz2 (in geometric language, these are conics in the
projective plane) with coefficients a, b, c ∈ Z (or, more generally, in Q) have a non-
trivial solution in Q if and only if they have a nontrivial solution in every completion
Qp, i.e., if and only if they have a solution in the reals R = Q∞ and modulo every
m ≥ 1 (see [9] for an elementary introduction to p-adic numbers).

More generally, a property P is said to satisfy the Local-Global Principle if the
following statement holds: P is true in Q if and only if the corresponding statement
holds in every completion of Q; more generally, Q may be replaced by any global
field, i.e., a number field or a finite extension of Fp(X). A trivial example of
a property for which the Local-Global Principle holds is the fact that a nonzero
rational number is a square in Q if and only if it is a square in every Qp.

2. Reichardt’s Example

The first counterexamples to the Hasse principle for curves of genus 1 were
constructed independently by Lind [8] and Reichardt [10]. In fact, the curve

(1) X4 − 17Y 4 = 2Z2

of genus 1 is such a counterexample. For proving this we have to show the following
claims:

1. (1) has nontrivial points in every completion Qp;
2. (1) does not have a nontrivial rational point.

The first claim is a special case of a quite general theorem of F.K.Schmidt (proved
using the theorem of Riemann-Roch and zeta functions for function fields) according
to which every curve of genus 1 defined over a finite field has at least one point;
for (1), these points defined over Fp can be lifted to points defined over Zp using
Hensel’s Lemma.

A more elementary proof uses Gauss sums to count the number of points of (1)
over finite fields. Finally, a completely elementary argument is given in [1].

The second claim can easily be proved using a slightly tricky calcluation involving
the quadratic reciprocity law. In his survey [2, p. 206] on curves of genus 1, Cassels
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proves this result using a technique that he says “was suggested by unpublished
work of Mordell”.

Cassels assumes that (1) has a nontrivial solution in rational numbers. Clearing
denominators we may assume that X, Y, Z are nonzero integers with gcd(X, Y ) =
gcd(X, Z) = gcd(Y, Z) = 1. Now we write (1) in the form

(2) (5X2 + 17Y 2)2 − (4Z)2 = 17(X2 + 5Y 2)2.

Since the left hand side is a difference of squares, it can be factored, and it is, as
Cassels says, “easily “checked that gcd(5X2 + 17Y 2 − 4Z, 5X2 + 17Y 2 + 4Z) is a
square or twice a square. Thus there exist nonzero integers U, V such that

5X2 + 17Y 2 ± 4Z = 17U2,

5X2 + 17Y 2 ∓ 4Z = V 2,

X2 + 5Y 2 = UV,

or

5X2 + 17Y 2 ± 4Z = 34U2,

5X2 + 17Y 2 ∓ 4Z = 2V 2,

X2 + 5Y 2 = 2UV.

Eliminating Z from the first two equations gives the systems

10X2 + 34Y 2 = 17U2 + V 2,

X2 + 5Y 2 = UV,

or

5X2 + 17Y 2 = 17U2 + V 2,

X2 + 5Y 2 = 2UV.

But since (5/17) = (10/17) = −1, none of these two systems of equations has a
nonzero integral solution.

In modern language, quartics of genus 1 like (1) that have nontrivial points
in every completion Qp but not in Q represent elements of order 2 in the Tate-
Shafarevich group of their Jacobian.

In his book [11, p. 317], Silverman uses this idea to study the curve Z2 +4Y 4 =
pX4 for primes p = c2 +d2 ≡ 1 mod 8 and says that it is “a simple matter to verify
the identity”

(3) (pX2 + 2dY 2)2 − c2Z2 = p(dX2 + 2Y 2)2.

Where does this factorization come from? And for which type of equations do
such factorizations exist? Cassels [2] mentions that Mordell considered equations
f(x2, y2, z), where f(x, y, z) is a quadratic form representing 0, but does not give
more details.

In this article we will present an elementary method for factoring quartics of
the form aX4 + bY 4 = cZ2 with local solutions everywhere; its main idea can be
traced back to Euler, and quite likely is closely related to Mordell’s unpublished
work referred to above. We will show that Euler’s trick can be used to construct
counterexamples to the Hasse principle using only elementary number theory; in
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previous articles (see e.g. [5, 6, 7]), techniques from algebraic number theory were
used.

Here is the broad outline: we start with a quartic of type aX4 + bY 4 = cZ2 with
nontrivial solutions everywhere locally. Then the underlying conic f(x, y, z) =
ax2 + by2 − cz2 = 0 has local solutions everywhere, hence has a nontrivial rational
point (ξ, η, ζ). The existence of this point implies, by “Euler’s trick”, that the conic
can be factored in the form f(x, y, z) = AB − mC2 for some m ∈ Z depending
on a, b, c and ξ, η, ζ, where A,B,C are linear forms. By carefully examining the
possibilities for the greatest common divisor gcd(A,B) of the factors on the left
hand side and invoking unique factorization we are then able to derive a finite list
auxiliary equations; if we can show that none of these have solutions with x or
y a square, then we will have proved that the original quartic does not have any
nontrivial rational solutions.

We also remark that this method could very well have been used by Pépin (see
[5]), although there is no evidence that he did.

3. Second 2-Descents and Tate-Shafarevich Groups

Although the statements and the proofs of the results of this article are com-
pletely elementary, the big picture involves some more advanced notions from the
theory of elliptic curves. It is well known that the 2-descent on elliptic curves
y2 = (x − a)(x − b)(x − c) with three rational points (a, 0), (b, 0), (c, 0) of or-
der 2 can be performed only using elementary number theory. If an elliptic curve
E : y2 = x(x2 + ax + b) has only one rational point (0, 0) of order 2, then mul-
tiplication by 2 gives an isogeny E −→ E that can be factored into two isogenies
φ : E −→ E′ and φ′ : E′ −→ E of degree 2. The first descent via φ leads to a set
of auxiliary quartics

(4) T (b1) : N2 = b1M
4 + aM2e2 + b2e

4, b1b2 = b

with the property that each rational point on E gives rise to a rational point on one
of the finitely many curves T (b1), and that conversely every rational point on one
of the T (b1) provides us with a rational point on E. Thus for showing that E(Q)
is trivial (i.e., only contains the point at infinity) it is sufficient to check that none
of the T (b1) have a rational point. This often can be achieved by showing that
none of the T (b1) have solutions in every Qp. This can be done using elementary
number theory: see [1].

Occasionally, however, it will happen that some T (b1) is everywhere locally solv-
able and still has no rational point. In such a case, T (b1) represents an element of
order 2 in the Tate-Shafarevich group qq(E) of E over Q.

Checking that a given T (b1) is everywhere locally solvable is easy; making sure
that there is no rational point on T (b1) is usually done by a second 2-descent. In
this article we will explain how to do this by generalizing the examples of Cassels
and Silverman presented above.

4. Euler’s Trick

One way of deriving formulas giving Pythagorean triples is the following: write
the Pythagorean equation x2 + y2 = z2 in the form y2 = z2 − x2 = (z + x)(z − x)
and then use unique factorization. This method does not seem to work for simple
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equations like

(5) x2 + y2 = 2z2;

Euler [3], however, saw that in this case multiplication by 2 saves the day because

(2z)2 = 2x2 + 2y2 = (x + y)2 + (x− y)2,

hence (2z − x − y)(2z + x + y) = (x − y)2, and now the solution proceeds exactly
as for Pythagorean triples.

Remarks in his Algebra [4, art. 181] show that Euler was aware that this trick
always works for conics ax2 + cy2 = z2 with a nontrivial rational point:

So oft es aber möglich ist, [die Form ax2 + cy2 zu einem Quadrat
zu machen,] kann diese Form in eine andere verwandelt werden,
in welcher a = 1 ist. Es kann z.B. die Form 2p2 − q2 zu einem
Quadrat werden, sie läßt sich aber auch in solcher Art darstellen:
(2p + q)2 − 2(p + q)2.1

Euler’s claim can be justified quite easily. In fact, consider the conic ax2 +by2 =
cz2. Multiplying through by a shows that it is sufficient to consider equations of
the form x2 + ay2 = bz2. Assume now that (ξ, η, ζ) is a nontrivial solution of this
equation (such solutions exist by the Local-Global Principle if and only if the conic
has nontrivial points in every completion of Q). Then multiplying bz2 = x2 + ay2

through by bζ2 gives

(bζz)2 = bζ2x2 + abζ2y2

= (ξ2 + aη2)x2 + (aξ2 + a2η2)y2

= (ξx + aηy)2 + a(ξy − ηx)2.

Similarly,

(aηY )2 = abη2z2 − aη2x2

= b(bζ2 − ξ2)z2 − (bζ2 − ξ2)x2

= (ξx + bζz)2 − b(ξz + ζx)2,

or

(ξX)2 = bξ2z2 − aξ2y2

= b(bζ2 − aη2)z2 − a(bζ2 − aη2)y2

= (bζz + aηy)2 − ab(ηz + ζy)2.

Thus “Euler’s trick” provides us with three different factorizations of the form
AB = mC2, which we have collected in the following table:

In Euler’s example (5) we have (ξ, η, ζ, a, b) = (1, 1, 1, 1, 2), and the third fac-
torization gives z2 = (2x + y)2 − 2(x + y)2, which is the factorization that Euler
presented in the quote given above.

1Whenever it is possible [to make the form ax2+cy2 into a square,] this form can be transformed

into one in which a = 1. For example, we can make 2p2−q2 into a square, and it can be represented
in the following form: (2p + q)2 − 2(p + q)2.
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A B C m

I bζz + aηy + ξx bζz − aηy − ξx ξy − ηx a

II bζz + aηy + ξx bζz − aηy + ξx ξz + ζx b

III bζz + aηy + ξx bζz + aηy − ξx ηz + ζy ab

Table 1. Factorizations AB = mC2 derived from Euler’s Trick

5. Bounding the GCD

For applying unique factorization we have to determine the greatest common
divisor of the factors A and B in Table 1. First observe that we may assume that
a and b are squarefree since we can subsume squares into y2 or z2. As a warning
we remark that this cannot be done for the original quartic!

Lemma 1. Assume that a and b are squarefree. If C : x2 + ay2 = bz2 has a
nontrivial solution (ξ′, η′, ζ ′), then it has an integral point (ξ, η, ζ) with gcd(ξ, η) =
gcd(ξ, ζ) = gcd(η, ζ) = 1.

Proof. Multiplying through by the square of the gcd’s of a nontrivial solution we
may clearly assume that there is an integral solution. Put d = gcd(ξ, y). Then
d2 | bζ2, and since b is squarefree, we easily conclude that d | ζ. �

For bounding d = gcd(A,B) we need to make several assumptions: we will
assume that gcd(y, z) = 1, which we are allowed to do by Lemma 1; we will call a
solution (x, y, z) primitive if gcd(x, y) = gcd(y, z) = gcd(z, x) = 1. In particular we
may assume that (ξ, η, ζ) is primitive. The gcd of the two factors is then described
by the following

Theorem 2. Assume that (ξ, η, ζ) is a primitive solution of C : x2 + ay2 = bz2,
where a and b are coprime and squarefree integers. Then for any primitive solution
(x, y, z) of C, we have gcd(A,B) = δu2, where δ | 2ab

m .
More exactly, δ and u are integers satisfying the following conditions:

case bound for δ bound for u

I δ | 2b u | gcd(ζ, z)

II δ | 2a u | gcd(η, y)

III δ | 2 u | gcd(ξ, x)

For the proof we will use without comment several trivial properties of the gcd;
in the following, a, b, d, m, n denote integers:

1. gcd(a, b) | gcd(ma + nb);
2. d | a and d | b imply d | gcd(a, b);
3. d2 | am2 for squarefree a implies d | m;
4. d | A + B and d2 | AB imply d | A−B.
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Proof of Thm. 2. The proofs for the three cases are completely analogous; thus it
will be sufficient to give the proof only for case I. In this case, recall that

A = bζz + aηy + ξx

B = bζz − aηy − ξx

C = ξy − ηx

Here is what we will do: let d = gcd(A,B) and write gcd(ζ, z) = 2ju for some
odd integer u. Then we will prove that

d | 2j+1bu2,(6)

u2 | d;(7)

these relations clearly imply our claims.

Proof of (6). We clearly have

d | (A + B) = 2bζz,(8)

d | (A−B) = 2(aηy + ξx),(9)

d2 | AB = a(ηx− ξy)2.(10)

Since a is squarefree, the last relation implies

(11) d | (ηx− ξy).

Multiplying (9) and (10) through by ξ and 2η, respectively, gives d | 2ξ(aηy + ξx)
and d | 2aη(ηx− ξy). Adding these relations shows that d | 2(ξ2 + aη2)x = 2bζ2x.
Together with (8) this implies that d | 2 gcd(bζ2x, bζz) = 2bζ gcd(ζ, z) | 2bζ2:

(12) d | 2bζ2.

From bz2 = x2 + ay2 we get bξ2z2 = ξ2x2 + aξ2y2 = (bζ2 − aη2)x2 + aξ2y2, hence

(13) b(ξ2z2 − ζ2x2) = a(ξy − ηx)(ξy + ηx).

Multiplying through by 2 we see that d divides the right hand side because of (11),
and the term 2bζ2x2 on the left hand side decause of (12). Thus d | 2bξ2z2. This
relation and (12) now imply d | gcd(2bζ2, 2bξ2z2) = 2b gcd(ζ2, ξ2z2) = 2b gcd(ζ, z)2:

(14) d | 2b gcd(ζ, z)2.

Proof of (7). From u2 | ζ2, u2 | z2 and (13) we get

u2 | a(ξy − ηx)(ξy + ηx).

Next observe that gcd(ζ, z) is coprime to a: in fact, if q is a prime divid-
ing gcd(a, ζ), then q | ξ2, hence q | ζ, and this contradicts the assumption that
gcd(ξ, ζ) = 1. Thus we have u2 | (ξy − ηx)(ξy + ηx).

Now we claim that no prime q | u divides the second factor. Otherwise q would
divide both factors, hence ξy and ηx. Since q | ζ we have q - ξη, hence q | x and
q | y: contradiction. This implies that u2 | (ξy − ηx).

But then u2 | A + B and u2 | AB, hence u2 | A − B and therefore u2 | A and
u2 | B. But then u2 | d as claimed. �

The bounds for the gcd’s given at the end of Theorem 2 are best possible: they
are attained for (x, y, z) = (ξ, η,−ζ).
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6. Silverman’s example

Let p = c2 +d2 ≡ 1 mod 8 be a prime, and consider the quartic X2 +4Y 4 = pZ4.
Its underlying conic has equation ξ2 +η2 = pζ2, where we have set ξ = X, η = 2Y 2

and ζ = Z2. Here a = 1, b = p, and with p = c2 + d2 we get the solution
(x, y, z) = (c, d, 1). Euler’s factorizations are given by

(pζ + cξ + dη)(pζ − cξ − dη) = (dξ − cη)2,

(cξ + pζ + dη)(cξ + pζ − dη) = p(cζ + ξ)2,

(pζ + dη + cξ)(pζ + dη − cξ) = p(dζ + η)2.

Introducing the original variables again, the third factorization gives

p(dZ2 + 2Y 2)2 = (pZ2 + 2dY 2 + cX)(pZ2 + 2dY 2 − cX).

Assuming that (X, Y, Z) is primitive, Theorem 2 tells us that

gcd(pZ2 + 2dY 2 + cX, pZ2 + 2dY 2 − cX) = 2je2

for some odd integer e (note that z = 1 here).2 Unique factorization then implies
(replacing Z by −Z if necessary)

pZ2 + 2dY 2 + cX = δpu2,

pZ2 + 2dY 2 − cX = δv2,

dZ2 + 2Y 2 = δuv,

where δ ∈ {1, 2}. Eliminating X yields the pair of equations

2pZ2 + 4dY 2 = δ(v2 + pu2),

dZ2 + 2Y 2 = δuv.

Now we distinguish two cases:

(1) δ = 1: reducing the equations modulo 8 and using 4 | d we find 2Z2 ≡
u2 + v2 mod 8. This implies u ≡ v mod 2, and the second equation shows
that uv is even. Thus both u and v are even, and then the first equation
shows that 2 | Z, the second that 2 | Y : contradiction.

(2) δ = 2: then we find Z2 ≡ u2 + v2 mod 8. If Z is even, then both u and
v must be even, and then the second equation implies that Y is also even,
which again contradicts (Y,Z) = 1. Thus Z is odd, hence one of u, v is odd
and the other is divisible by 4 (because of v2 ≡ X2 − u2 ≡ 0 mod 8). But
then Y must be even, and the second equation gives d ≡ 0 mod 8.

We have proved:

Theorem 3. Let p = c2 + d2 ≡ 1 mod 8 be prime. If the diophantine equation
X2 + 4Y 4 = pZ4 has a nontrivial solution in integers, then d ≡ 0 mod 8.

2Silverman claims that “it is not difficult to check” that the gcd is a square or twice a square,

and that it equals a power of 2 times gcd(X, c)2. Actually, the gcd equals 2ju2 for some u |
gcd(X, c).
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7. Pépin’s Results

In [5], the theorem below was proved (under the additional assumption that α
be prime) using genus theory; here we will show how Euler’s trick can be used to
give an elementary proof.

Theorem 4. Let a, b, α, β, γ be integers such that p = α2a2 + 2βab + γb2 is an odd
prime. Then the conic x2 +my2 = pz2, where m = α2γ−β2, has the integral point
(α2a + βb, b, α).

If, in addition, α ≡ 3 mod 4, and if m ≡ 1 mod 8 is a product of primes ≡
1 mod 4, then the equation

(15) pX4 −mY 2 = Z2

does not have any nontrivial rational solutions.

7.1. Preliminaries. We now prove a few simple properties that we will use later
on:

If we put z = X, y = Y and x2 = Z, then (15) becomes

(16) x2 + my2 = pz2.

Lemma 5. If m ≡ 1 mod 4, then any nontrivial solution of (16) with gcd(x, y) = 1
satisfies z ≡ 1 mod 2, and we have p ≡ 1 mod 4.

Proof. If 2 | z, then x ≡ y mod 2, and since gcd(x, y) = 1 both x and y are odd.
But then we find the contradiction 0 ≡ pz2 ≡ x2 + my2 ≡ 2 mod 4.

Now px4 ≡ my2 + z2 ≡ y2 + z2 mod 4 implies p ≡ 1 mod 4. �

7.2. Euler’s Trick. We start with the factorization

(17) m((α2a + βb)y − bx)2 = (pα2z)2 − ((α2a + βb)x + mby)2.

Now we put

A = pαz − x(α2a + βb)−mby,

B = pαz + x(α2a + βb) + mby,

C = (α2a + βb)y − bx

and get AB = mC2.

7.3. Unique Factorization. Since a = m and b = p, Theorem 2 shows that
gcd(A,B) = δu2 for some integer δ | 2p.

Note that since A+B = 2pαz > 0 (since z = X2 is a square) and AB = mC2 > 0,
we must have A,B > 0. Since m ≡ 1 mod 8 is a product of primes ≡ 1 mod 4, we
get the equations A = δµr2, B = δνs2 with µν = m. Now we have to consider the
following cases:

(1) δ ≡ 1 mod 4, i.e., δ ∈ {1, p}. Then 2pαZ = A + B = δ(µr2 + νs2); now r
and s must have the same parity, and since we know that their gcd is odd,
we must have r ≡ s ≡ 1 mod 2. This implies pαZ ≡ 1

2µ + ν ≡ 1 mod 4
(note that µ, ν ≡ 1 mod 4 and µν ≡ 1 mod 8 imply that µ + ν ≡ 2 mod 8),
hence Z ≡ 3 mod 4, and Z cannot be a square.

(2) δ ≡ 2 mod 4, i.e., δ ∈ {2, 2p}. Here pαZ = 1
2 (A + B) = δ′(µr2 + νs2) with

δ′ ∈ {1, p}. As above we get Z ≡ 3 mod 4, and again Z cannot be a square.
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α β γ m p
3 1 2 17 9a2 + 2ab + 2b2

3 2 5 41 9a2 + 4ab + 5b2

3 5 10 65 9a2 + 10ab + 10b2

7 1 2 97 49a2 + 2ab + 2b2

Table 2. Some of Pépin’s Results

The following examples were claims made by Pépin:

Let us now check the local solvability of (15). By a standard result (see [1] for
an elementary proof), we only have to check solvability in Qq for primes q | 2pm.

Note that the solvability of x2 + my2 = pz2 implies that (p/q) = 1 for every
prime q | m. Thus putting (X, Y, Z) = (1, 0,

√
p ) is a nontrivial solution of (15) in

Qq for all q | m.
Moreover, the fact that p ≡ 1 mod 4 and (p/q) = 1 for all q | m implies (−m/p) =

+1, hence (X, Y, Z) = (0, 1,
√
−m ) is a nontrivial solution of (15) in Qp.

It remains to check solvability in Q2. A necessary and sufficient condition is
the solvability of Z2 ≡ pX4 mod 8, hence (15) has solutions in Q2 if and only if
p ≡ 1 mod 8.

Theorem 6. Pépin’s claims listed in Table 2 above produce counterexamples to the
Hasse principle for those primes p for which 4 | b, or a ≡ 3 mod 4 and 2 - b.
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chungen, J. Reine Angew. Math. 184 (1942), 12–18

[11] J. Silverman, The arithmetic of elliptic curves, Springer-Verlag 1986


