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1. Introduction

The computation of units in algebraic number fields usually is a rather hard task.
Therefore, families of number fields with an explicitly given system of independent
units have been of interest to mathematicians in connection with the computation
of

• inhomogeneous minima of number fields;
• unramified extensions of number fields;
• capitulation of ideal classes therein;
• complete solution of Thue and index form equations, etc.

The first such number fields have been given by Richaud, namely the quadratic
number fields of R-D-type (named after Richaud and Degert). These number fields
have the form k = Q(

√
m ), where m = t2 + r, |r| ≤ t, r|4t. In [ACH] it was

shown how to prove the class numbers of such fields to be strictly bigger than 1
by making use of a lemma due to Davenport. Hasse [H] has extended this result
to other quadratic fields of R-D-type without being able to handle all cases. The
most complete effort to this date is by Zhang [Zh2], who used a continued fraction
approach (see [Zh] for sketches of some of the proofs). In this paper we intend to
show how to prove Zhang’s results using a geometric idea; this has the advantage
that it can be generalized to a family of cubic (and possibly quartic) fields. For
some history and an extensive list of references, see the forthcoming book of Mollin
[M].

2. Quadratic Fields

In order to show how the proof works in a simple case, we first will look at
quadratic fields k = Q(

√
m ). Let ε > 1 be its fundamental unit; for α ∈ k we let

α′ denote the conjugate of α. In particular, we have Nξ = ξξ′, where N = Nk/Q
denotes the absolute norm.

Now let ξ ∈ k and a real positive number c be given; we can find a unit η ∈ Ek

such that

(1) c ≤ | ξη | < cε.

Letting n = |Nξ| we find |ξ′η′| = n/|ξη|, so equation (1) yields

(2)
n

cε
≤ | ξ′η′ | < n

c
.

Writing α = ξη = a + b
√

m gives |2a| = |α + α′| ≤ |α| + |α′| < cε + n
c , and

correspondingly, |2b
√

m | = |α − α′| ≤ |α| + |α′| < cε + n
c . Because we want the
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coefficients a and b to be as small as possible, we have to choose c in such a way
that cε + n/c becomes a minimum. Putting c =

√
n/ε we get

(3) |2a| < 2
√

nε, |2b
√

m | < 2
√

nε.

Making use of a lemma due to Cassels, we can improve these bounds:

Lemma 1. Suppose that the positive real numbers x, y satisfy the inequalities x ≤
s, y ≤ s, and xy ≤ t. Then, x + y ≤ s + t/s.

Proof. 0 ≤ (x− s)(y − s) = xy − s(x + y) + s2 ≤ s2 + t− s(x + y).

Putting x = |α| and y = |α′| in Lemma 1 we find

|2a| ≤ |α|+ |α′| <
√

nε +
√

n/ε,

and likewise
|2b
√

m | <
√

nε +
√

n/ε.

We have proved

Proposition 2. Let k = Q(
√

m ) be a real quadratic number field, ε > 1 a unit in
k, and 0 6= n = |Nξ | for ξ ∈ k. Then there is a unit η = εj such that ξη = a+b

√
m

and

|a| <
√

n

2
(
√

ε + 1/
√

ε ), |b| <
√

n

2
√

m
(
√

ε + 1/
√

ε ).

Suppose that we are looking for a ξ ∈ Z[
√

m ] with given norm ±n. If we know a
unit ε > 1, we can use Proposition 2 to find a power η of ε such that ξη = a+ b

√
m

has bounded integral coefficients a, b. Moreover, the bounds do not depend on ξ.
In order to test if a given n is a norm in k/Q, we therefore have to compute only
the norms of a finite number of elements of k. Similar results are valid in case {1, θ}
is an integral basis of the ring Ok of integers in k, where θ = 1

2 (1 +
√

m ).
After these preparations, it is an easy matter to prove the following result orig-

inally due to Davenport:

Proposition 3. Let m,n, t be natural numbers such that m = t2 + 1 ; if the dio-
phantine equation |x2−my2| = n has solutions in Z with n < 2t, then n is a perfect
square.

Proof. Let ξ = x + y
√

m; then |Nξ | = n, and since ε = t + u
√

m > 1 is a unit in
Z[
√

m ], we can find a power η of ε such that ξη = a + b
√

m has coefficients a, b
which satisfy the bounds in Proposition 2.2. Since 2t < ε < 2

√
m, we find

|b| ≤
√

n

2
√

m

(√
ε +

1√
ε

)
< 1 +

1
t
.

Since the assertion is trivial if t = 1, we may assume that t ≥ 2, and now the last
inequality gives |b| ≤ 1. If b = 0, |Nξ| = a2 would be a square; therefore, b = ±1,
and this yields α = ξη = a ±

√
m. Now |Nξ| = |Nα| = |a2 − m| is minimal for

values of a near
√

m, and we find
|a2 −m| = 2t if a = t− 1;
|a2 −m| = 1 if a = t;
|a2 −m| = 2t if a = t + 1.

This proves the claim.

Using the idea in the proof of Proposition 3 one can easily show more:



SMALL NORMS IN QUADRATIC FIELDS 3

Proposition 4. Let m,n, t be natural numbers such that m = t2 + 1; if the dio-
phantine equation |x2−my2| = n has solutions in Z with n < 4t+3, then n = 4t−3,
n = 2t, or n is a perfect square.

In [ACH], Proposition 3 was used to show that the ideal class group of k =
Q(
√

m ) has non-trivial elements (i.e. classes that do not belong to the genus class
group) if m = t2 + 1 and t = 2lq for l > 1 and prime q: since m ≡ 1 mod q, q splits
in k, i.e. we have (q) = pp′′. If p were principal, the equation x2 − my2 = ±4q
would have solutions in Z; but since 4q < 2t = 4lq is no square, this contradicts
Proposition 2.

If we consider the case m = t2 + 2 instead of m = t2 + 1, then the method used
above does not seem to work: for example, the equation x2−my2 = −2 is solvable
(put x = t, y = 1) and 2 is no square. Therefore, we have to modify our proof in
order to get non-trivial results.

Proposition 5. Let m,n, t be natural numbers such that m = t2 + 2 and t ≥ 12;
if the diophantine equation |x2 −my2| = n has solutions in Z and if neither n nor
2n are perfect squares, then n = 2t± 1, 4t− 7, 4t− 2, or n ≥ 4t + 2.

Proof. Let ξ = x + y
√

m,n = |Nξ|, and suppose that neither n nor 2n are perfect
squares. Letting δ = t+

√
m, we find δ2 = 2ε, where ε is a unit in Z[

√
m ]. Obviously

we can find a power η of ε such that√
n
√

ε/ε ≤ |ξη| <
√

n
√

ε.

Now we distinguish two cases:
1.:

√
n/
√

ε ≤ |ξη| <
√

n
√

ε : Writing ξη = a + b
√

m, we find that |b| ≤ 1.
If b = 0, then b is a square, so assume b = ±1. Then the same reasoning
as in Proposition 3 shows that either n = 2, i.e. 2n is a square, or that
n = 2t± 1, n = 4t− 2 or n ≥ 4t + 2.

2.:
√

n
√

ε/ε ≤ | ξη | <
√

n
√

ε : Multiplying ξη with δ we get√
2n/

√
ε ≤ | ξηδ | <

√
2n
√

ε.

As in case 1. above, we find |b| ≤ 1, where ξηδ = a + b
√

m; if b = 0, then
2n = |N(ξηδ)| = a2 is a square. If b = ±1, then a2 − mb2 must be even
(because |Nξδ| is even), or |Nξδ| = 4t± 2,= 8t− 14, or ≥ 8t + 14 (because
12t− 34 ≥ 8t + 14 for all t ≥ 12).

Exactly as after the proof of Proposition 3, we can deduce results about the
ideal class group of Q(

√
m ) from Proposition 5 if m = t2 + 2. Moreover we remark

that we have treated these two cases only to explain the method; similar results
can be proved for other quadratic fields of R-D-type. As an example, we give the
corresponding result for m = t2 − 2:

Proposition 6. Let m,n, t be natural numbers such that m = t2 − 2 and t ≥ 12;
if the diophantine equation N(ξ) = |x2 − my2| = n has solutions ξ = a + b

√
m ∈

Z[
√

m ], then either ξ = nη for some n ∈ Z and some unit η ∈ Z[
√

m ], or n =
2t± 3, 4t− 9, 4t± 6, or n ≥ 4t + 6, and ξ is associated to one of {t± 1±

√
m, t±

2±
√

m, 2t− 1± 2
√

m, 2t± 2± 2
√

m}.
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