SMALL NORMS IN QUADRATIC FIELDS

FRANZ LEMMERMEYER

1. Introduction

The computation of units in algebraic number fields usually is a rather hard task. Therefore, families of number fields with an explicitly given system of independent units have been of interest to mathematicians in connection with the computation of

- inhomogeneous minima of number fields;
- unramified extensions of number fields;
- capitulation of ideal classes therein;
- complete solution of Thue and index form equations, etc.

The first such number fields have been given by Richaud, namely the quadratic number fields of R-D-type (named after Richaud and Degert). These number fields have the form $k=\mathbb{Q}(\sqrt{m})$, where $m=t^{2}+r,|r| \leq t, r \mid 4 t$. In ACH] it was shown how to prove the class numbers of such fields to be strictly bigger than 1 by making use of a lemma due to Davenport. Hasse [H] has extended this result to other quadratic fields of R-D-type without being able to handle all cases. The most complete effort to this date is by Zhang [Zh2], who used a continued fraction approach (see [Zh] for sketches of some of the proofs). In this paper we intend to show how to prove Zhang's results using a geometric idea; this has the advantage that it can be generalized to a family of cubic (and possibly quartic) fields. For some history and an extensive list of references, see the forthcoming book of Mollin (M).

2. Quadratic Fields

In order to show how the proof works in a simple case, we first will look at quadratic fields $k=\mathbb{Q}(\sqrt{m})$. Let $\varepsilon>1$ be its fundamental unit; for $\alpha \in \mathrm{k}$ we let α^{\prime} denote the conjugate of α. In particular, we have $N \xi=\xi \xi^{\prime}$, where $N=N_{k / \mathbb{Q}}$ denotes the absolute norm.

Now let $\xi \in \mathrm{k}$ and a real positive number c be given; we can find a unit $\eta \in E_{k}$ such that

$$
\begin{equation*}
c \leq|\xi \eta|<c \varepsilon . \tag{1}
\end{equation*}
$$

Letting $n=|N \xi|$ we find $\left|\xi^{\prime} \eta^{\prime}\right|=n /|\xi \eta|$, so equation (1) yields

$$
\begin{equation*}
\frac{n}{c \varepsilon} \leq\left|\xi^{\prime} \eta^{\prime}\right|<\frac{n}{c} \tag{2}
\end{equation*}
$$

Writing $\alpha=\xi \eta=a+b \sqrt{m}$ gives $|2 a|=\left|\alpha+\alpha^{\prime}\right| \leq|\alpha|+\left|\alpha^{\prime}\right|<c \varepsilon+\frac{n}{c}$, and correspondingly, $|2 b \sqrt{m}|=\left|\alpha-\alpha^{\prime}\right| \leq|\alpha|+\left|\alpha^{\prime}\right|<c \varepsilon+\frac{n}{c}$. Because we want the
coefficients a and b to be as small as possible, we have to choose c in such a way that $c \varepsilon+n / c$ becomes a minimum. Putting $c=\sqrt{n / \varepsilon}$ we get

$$
\begin{equation*}
|2 a|<2 \sqrt{n \varepsilon}, \quad|2 b \sqrt{m}|<2 \sqrt{n \varepsilon} \tag{3}
\end{equation*}
$$

Making use of a lemma due to Cassels, we can improve these bounds:
Lemma 1. Suppose that the positive real numbers x, y satisfy the inequalities $x \leq$ $s, y \leq s$, and $x y \leq t$. Then, $x+y \leq s+t / s$.

Proof. $0 \leq(x-s)(y-s)=x y-s(x+y)+s^{2} \leq s^{2}+t-s(x+y)$.
Putting $x=|\alpha|$ and $y=\left|\alpha^{\prime}\right|$ in Lemma 1 we find

$$
|2 a| \leq|\alpha|+\left|\alpha^{\prime}\right|<\sqrt{n \varepsilon}+\sqrt{n / \varepsilon}
$$

and likewise

$$
|2 b \sqrt{m}|<\sqrt{n \varepsilon}+\sqrt{n / \varepsilon}
$$

We have proved
Proposition 2. Let $k=\mathbb{Q}(\sqrt{m})$ be a real quadratic number field, $\varepsilon>1$ a unit in k, and $0 \neq n=|N \xi|$ for $\xi \in k$. Then there is a unit $\eta=\varepsilon^{j}$ such that $\xi \eta=a+b \sqrt{m}$ and

$$
|a|<\frac{\sqrt{n}}{2}(\sqrt{\varepsilon}+1 / \sqrt{\varepsilon}), \quad|b|<\frac{\sqrt{n}}{2 \sqrt{m}}(\sqrt{\varepsilon}+1 / \sqrt{\varepsilon})
$$

Suppose that we are looking for a $\xi \in \mathbb{Z}[\sqrt{m}]$ with given norm $\pm n$. If we know a unit $\varepsilon>1$, we can use Proposition 2 to find a power η of ε such that $\xi \eta=a+b \sqrt{m}$ has bounded integral coefficients a, b. Moreover, the bounds do not depend on ξ. In order to test if a given n is a norm in k / \mathbb{Q}, we therefore have to compute only the norms of a finite number of elements of k. Similar results are valid in case $\{1, \theta\}$ is an integral basis of the ring \mathcal{O}_{k} of integers in k, where $\theta=\frac{1}{2}(1+\sqrt{m})$.

After these preparations, it is an easy matter to prove the following result originally due to Davenport:

Proposition 3. Let m, n, t be natural numbers such that $m=t^{2}+1$; if the diophantine equation $\left|x^{2}-m y^{2}\right|=n$ has solutions in \mathbb{Z} with $n<2 t$, then n is a perfect square.
Proof. Let $\xi=x+y \sqrt{m}$; then $|N \xi|=n$, and since $\varepsilon=t+u \sqrt{m}>1$ is a unit in $\mathbb{Z}[\sqrt{m}]$, we can find a power η of ε such that $\xi \eta=a+b \sqrt{m}$ has coefficients a, b which satisfy the bounds in Proposition 2.2. Since $2 t<\varepsilon<2 \sqrt{m}$, we find

$$
|b| \leq \frac{\sqrt{n}}{2 \sqrt{m}}\left(\sqrt{\varepsilon}+\frac{1}{\sqrt{\varepsilon}}\right)<1+\frac{1}{t} .
$$

Since the assertion is trivial if $t=1$, we may assume that $t \geq 2$, and now the last inequality gives $|b| \leq 1$. If $b=0,|N \xi|=a^{2}$ would be a square; therefore, $b= \pm 1$, and this yields $\alpha=\xi \eta=a \pm \sqrt{m}$. Now $|N \xi|=|N \alpha|=\left|a^{2}-m\right|$ is minimal for values of a near \sqrt{m}, and we find

$$
\begin{aligned}
\left|a^{2}-m\right| & =2 t \quad \text { if } a=t-1 \\
\left|a^{2}-m\right| & =1 \quad \text { if } a=t \\
\left|a^{2}-m\right| & =2 t \quad \text { if } a=t+1
\end{aligned}
$$

This proves the claim.
Using the idea in the proof of Proposition 3 one can easily show more:

Proposition 4. Let m, n, t be natural numbers such that $m=t^{2}+1$; if the diophantine equation $\left|x^{2}-m y^{2}\right|=n$ has solutions in \mathbb{Z} with $n<4 t+3$, then $n=4 t-3$, $n=2 t$, or n is a perfect square.

In ACH], Proposition 3 was used to show that the ideal class group of $k=$ $\mathbb{Q}(\sqrt{m})$ has non-trivial elements (i.e. classes that do not belong to the genus class group) if $m=t^{2}+1$ and $t=2 l q$ for $l>1$ and prime q : since $m \equiv 1 \bmod q, q$ splits in k, i.e. we have $(q)=\mathfrak{p p}^{\prime \prime}$. If \mathfrak{p} were principal, the equation $x^{2}-m y^{2}= \pm 4 q$ would have solutions in \mathbb{Z}; but since $4 q<2 t=4 l q$ is no square, this contradicts Proposition 2

If we consider the case $m=t^{2}+2$ instead of $m=t^{2}+1$, then the method used above does not seem to work: for example, the equation $x^{2}-m y^{2}=-2$ is solvable (put $x=t, y=1$) and 2 is no square. Therefore, we have to modify our proof in order to get non-trivial results.

Proposition 5. Let m, n, t be natural numbers such that $m=t^{2}+2$ and $t \geq 12$; if the diophantine equation $\left|x^{2}-m y^{2}\right|=n$ has solutions in \mathbb{Z} and if neither n nor $2 n$ are perfect squares, then $n=2 t \pm 1,4 t-7,4 t-2$, or $n \geq 4 t+2$.
Proof. Let $\xi=x+y \sqrt{m}, n=|N \xi|$, and suppose that neither n nor $2 n$ are perfect squares. Letting $\delta=t+\sqrt{m}$, we find $\delta^{2}=2 \varepsilon$, where ε is a unit in $\mathbb{Z}[\sqrt{m}]$. Obviously we can find a power η of ε such that

$$
\sqrt{n \sqrt{\varepsilon}} / \varepsilon \leq|\xi \eta|<\sqrt{n \sqrt{\varepsilon}}
$$

Now we distinguish two cases:
1.: $\quad \sqrt{n / \sqrt{\varepsilon}} \leq|\xi \eta|<\sqrt{n \sqrt{\varepsilon}}$: Writing $\xi \eta=a+b \sqrt{m}$, we find that $|b| \leq 1$. If $b=0$, then b is a square, so assume $b= \pm 1$. Then the same reasoning as in Proposition 3 shows that either $n=2$, i.e. $2 n$ is a square, or that $n=2 t \pm 1, n=4 t-2$ or $n \geq 4 t+2$.
2.: $\quad \sqrt{n \sqrt{\varepsilon}} / \varepsilon \leq|\xi \eta|<\sqrt{n \sqrt{\varepsilon}}$: Multiplying $\xi \eta$ with δ we get

$$
\sqrt{2 n / \sqrt{\varepsilon}} \leq|\xi \eta \delta|<\sqrt{2 n \sqrt{\varepsilon}}
$$

As in case 1. above, we find $|b| \leq 1$, where $\xi \eta \delta=a+b \sqrt{m}$; if $b=0$, then $2 n=|N(\xi \eta \delta)|=a^{2}$ is a square. If $b= \pm 1$, then $a^{2}-m b^{2}$ must be even (because $|N \xi \delta|$ is even), or $|N \xi \delta|=4 t \pm 2,=8 t-14$, or $\geq 8 t+14$ (because $12 t-34 \geq 8 t+14$ for all $t \geq 12$).

Exactly as after the proof of Proposition 3, we can deduce results about the ideal class group of $\mathbb{Q}(\sqrt{m})$ from Proposition 5 if $m=t^{2}+2$. Moreover we remark that we have treated these two cases only to explain the method; similar results can be proved for other quadratic fields of R-D-type. As an example, we give the corresponding result for $m=t^{2}-2$:
Proposition 6. Let m, n, t be natural numbers such that $m=t^{2}-2$ and $t \geq 12$; if the diophantine equation $N(\xi)=\left|x^{2}-m y^{2}\right|=n$ has solutions $\xi=a+b \sqrt{m} \in$ $\mathbb{Z}[\sqrt{m}]$, then either $\xi=n \eta$ for some $n \in \mathbb{Z}$ and some unit $\eta \in Z[\sqrt{m}]$, or $n=$ $2 t \pm 3,4 t-9,4 t \pm 6$, or $n \geq 4 t+6$, and ξ is associated to one of $\{t \pm 1 \pm \sqrt{m}, t \pm$ $2 \pm \sqrt{m}, 2 t-1 \pm 2 \sqrt{m}, 2 t \pm 2 \pm 2 \sqrt{m}\}$.

References

[ACH] N. C. Ankeny, S. Chowla, H. Hasse, On the class number of the real subfield of a cyclotomic field, J. Reine Angew. Math. 217 (1965), 217-220 13
[H] H. Hasse, Über mehrklassige, aber eingeschlechtige reell-quadratische Zahlkörper, El. Math. 20 (1965), 49-59 1
[M] R. Mollin, Quadratics, CRC 1
[Zh] Xian-ke Zhang, Determination of solutions and solvabilities of diophantine equations and quadratic fields, preprint 1
[Zh2] Xian-ke Zhang, Solutions of the diophantine equations related to real quadratic fields, Chin. Sci. Bull 37 (1992), 885-889 1

Bilkent University, Dept. Mathematics, 06800 Bilkent, Ankara
E-mail address: hb3@ix.urz.uni-heidelberg.de, franz@fen.bilkent.edu.tr

