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1 Ramanujan’s τ-function

Definition

Let us put

D(x) = x

∞∏
m=1

(1− xm)24. (1)

The coefficient of xn (n ≥ 1) in the power series os D(x) is denoted by τ(n).
The function n 7−→ τ(n) is Ramanujan’s τ -function (cf. [5] and [16]). We have

D(x) =
∞∑

n=1

τ(n)xn. (2)

Here are a few values of τ , as computed by Lehmer [11]: τ(1) = 1, τ(2) = −24,
τ(3) = 252, τ(4) = −1472, τ(5) = 4830, τ(6) = −6048, . . . .

Some properties of τ

If we put
∆(z) = D(e2πiz), Im (z) > 0, (3)

then it is known that the function ∆ is, up to a constant factor, the unique
cusp form of weight 12 for the group SL (2,Z). In particular, the function ∆
is, for each prime number p, an eigenfunction of the Hecke operator Tp, with
corresponding eigenvalue τ(p) (cf. e.g. Hecke [6], p. 644–671). This implies
the following properties, which have been conjectured by Ramanujan [16] and
proved by Mordell [14]:

τ(mn) = τ(m)τ(n), if (m,n) = 1 (4)
τ(pn+1) = τ(pn)τ(p)− p11τ(pn−1), if p is prime. (5)

These formulas allow us to compute τ(n) from the values of τ(p) for primes p.
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The Dirichlet series attached to τ

The Dirichlet series attached to τ is defined by

Lτ (s) =
∞∑

n=1

τ(n)n−s. (6)

The formulas (4) and (5) are equivalent to the following:

Lτ (s) =
∏
p

1
1− τ(p)p−s + p11−2s

=
∏
p

1
Hp(p−s)

, (7)

where
Hp(X) = 1− τ(p)X + p11X2. (8)

Moreover, Hecke’s theory shows that Lτ (s) can be extended to a holomorphic
function on the complex plane, and that the function

(2π)−sΓ(s)Lτ (s) (9)

is invariant under the map s 7−→ 12− s.
We mention that the Conjecture of Ramanujan can be expressed by the

following equivalent assertions:

• the roots of the polynomial Hp(X) are conjugated complex numbers;

• the roots of the polynomial Hp(X) have absolute value p−11/2;

• we have |τ(p)| < 2p11/2.

2 Congruences involving τ

Results

There exist congruences for τ(n) modulo 211, 37, 53, 7, 23, and 691 (cf. Lehmer
[13]).

2.1 Powers of 2.

In [2], Bambah gave the value of τ(n) modulo 25:

τ(p) ≡ 1 + p11 mod 25, p > 2. (10)

Actually, this congruence holds modulo 28; more exactly, Lehmer [13] has shown

τ(p) ≡ 1 + p11 + 8(41 + x)(p− x)2+x mod 211, (11)

where x = (−1)(p−1)/2.
Swinnerton-Dyer (unpublished) has also obtained congruences modulo 212,

213, 214 for primes p ≡ 5, 3, 7 mod 8.
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2.2 Powers of 3.

In [15], τ(p) modulo 3 is given:

τ(p) ≡ 1 + p mod 3, p 6= 3. (12)

Lehmer [13] gave τ(p) mod 35; in particular,

τ(p) ≡ p2 + p9 mod 33. (13)

Swinnerton-Dyer (unpublished) obtained congruences modulo 36 and 37 for
primes p ≡ 1 mod 3 and p ≡ −1 mod 3, respectively.

2.3 Powers of 5.

According to [2], we have

τ(p) ≡ p+ p10 mod 52 (14)

Lehmer [13] gave a congruence modulo 53 (for primes p 6= 5):

τ(p) ≡ −24p(1 + p9)− 10p(1 + p5)− 90p2(1 + p3) mod 53;

this can also be written in the form

τ(p) ≡ p41 + p−30 mod 53, (p 6= 5). (15)

2.4 Powers of 7.

We have ([15])
τ(p) ≡ p+ p4 mod 7 (16)

Currently we do not know the value of τ(p) mod 72, except when p is a quadratic
non-residue modulo 7, and in this case τ(p) ≡ p + p10 mod 72 according to
Lehmer [13].

2.5 Powers of 23.

This result differs in form from the preceding congruences. We have (cf. Wilton
[21]), for p 6= 23:

τ(p) ≡

 0 mod 23 if (−23/p) = −1
2 mod 23 if (−23/p) = +1 and p = u2 + 23v2

−1 mod 23 if (−23/p) = +1 and p 6= u2 + 23v2
(17)

Remark. Let K = Q(
√
−23 ). Then (−23/p) = +1 means that p splits in K

into two distinct prime ideals p and p′; p has the form u2 + 23v2 if and only if
p is principal (recall that K has class number 3).
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2.6 Powers of 691.

We know (Ramanujan [16])

τ(p) ≡ 1 + p11 mod 691. (18)

These are the known congruences for τ(p); of course, one can deduce con-
gruences for τ(n), n ∈ N, by using the equations (4) and (5).

Proofs

I will only give short indications; for more details, see [2],[12], [13], [15], [16],
[21].

Consider the Eisenstein series of weight 6 and 12:

E6(x) = 1− 504
∑∞

n=1 σ5(n)xn

E12(x) = 1 + 65520
691

∑∞
n=1 σ11(n)xn

}
where σq(n) =

∑
d|n

dq. (19)

Since the square of E6 is a modular form of weight 12, it must be a linear
combination of E12 and D, and we find

E2
6 = E12 −

a

691
D, with a ≡ 65520 mod 691. (20)

Multiplying through by 691, we get

0 ≡ 65520
( ∞∑

n=1

σ11(n)xn −
∞∑

n=1

τ(n)xn
)

mod 691, (21)

and this implies
τ(n) ≡ σ11(n) mod 691. (22)

If n = p is prime, this gives the congruence (18).

The congruences modulo 2α, 3β , 5γ , 7 can be derived by analogous (but
more complicated) arguments, using the functions

Φr,s(x) =
∑
m,n

mrnsxmn

of Ramanujan (cf. Lehmer [13]).

The congruence mod 23 results easily from the following (cf. Wilton [21]):

∞∏
m=1

(1− xm)24 ≡ θ(x)θ(x23) mod 23, (23)

where

θ(x) =
∞∏

m=1

(1− xm) =
∞∑
−∞

(−1)rx(3r2+r)/2.
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Zeros of τ

Do there exist primes p such that τ(p) = 0? There are no examples known. In
any case, the congruences given above imply (cf. Lehmer [12, 13]):

If τ(p) = 0, then


p ≡ −1 mod 2113753691,
p ≡ −1, 19, 31 mod 72,

(p/23) = −1.

 (24)

In particular, the density of the set of primes p such that τ(p) = 0 is at most
10−12, and the smallest possible p has at least 15 digits.

3 The `-adic representations attached to τ

Notation

Let Q denote an algebraic closure of Q; for every prime `, let K` denote the
maximal subfield of Q which is unramified outside `. A finite subfield of Q is
contained in K` if and only if its discriminant is (up to sign) a power of `.

The extension K`/Q is normal; let Gal (K`/Q) denote its Galois group.
In the terminology of Grothendieck, Gal (K`/Q) is the fundamental group of
Spec (Z)\{`}. If p is a prime 6= `, we associate to p its Frobenius automorphism
Fp, which is an element of Gal (K`/Q) defined up to conjugation.

For a ring k and an integer N , let ρ : Gal (K`/Q) −→ GL (N, k) be a linear
representation of degree N of Gal (K`/Q) in k. For all primes p 6= `, the element
ρ(Fp) ∈ GL (N, k) is defined up to conjugation; in particular, the polynomial
Pp,ρ(X) = det(1− ρ(Fp)X) is well defined.

In the following, we are mainly interested in the case where the ring k is
Z/`nZ, Z` = lim

←−
Z/`nZ, or Q` = Z`[ 1` ] and where the homomorphism ρ is

continuous.

A conjecture

It’s the following:

Conjecture 1. For each prime `, there exists a continuous linear representation

ρ` : Gal (K`/Q) −→ Aut (V`),

where V` is a Q`-vector space of dimension 2 which satisfies the following con-
dition:
(C) For each prime p 6= `, the polynomial Pp,ρ(X) equals the polynomial Hp(X)
defined in Sect. 1.

This condition (C) can also be expressed as
(C’) For each prime p 6= `, we have

Tr (ρ`(Fp)) = τ(p) and det(ρ`(Fp)) = p11. (25)
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In the terminology of [17] (Chap. I, §2), the ρ` form a strictly compatible system
of `-adic rational representations of Q, whose exceptional set is empty.

Remarks.
1. Let χ` : Gal (K`/Q) −→ Q×` be the `-adic representation of degree 1 given
by the action of Gal (K`/Q) on the ln-th roots of unity (cf. [17], Chap. I, Sect.
1.2); we have χ`(Fp) = p. The second part of the condition (25) is therefore
equivalent to

det(ρ`) = χ11
` . (26)

2. Let c ∈ Gal (K`/Q) be the element of order 2 induced by complex conjuga-
tion; c is defined up to conjugation. According to (26), we have det(ρ`(c)) = −1.
We conclude that ρ`(c) has eigenvalues +1 and −1.
3. The representation ρ` which exists according to the conjecture above is unique
up to conjugation. This follows from [17] (Chap. I, Sect. 2.3), combined with
the fact that ρ` is irreducible (cf. Sect. 5 below).

Representations mod `n

We first observe that, if ρ` : Gal (K`/Q) −→ Aut (V`) exists, then there is a
lattice in V` which is stable under im (ρ`) (cf. [17], Chap. I, Sect. 1.1). In
other words, we can view ρ` as a homomorphism of Gal (K`/Q) with image in
GL(2,Z`), not only in GL(2,Q`) (Remark, however, that uniqueness is lost:
different lattices can give rise to non-isomorphic representations). By reduction
modulo `n, we obtain representations mod `n

ρ`,n : Gal (K`/Q) −→ GL(2,Z/`nZ)

such that
Tr (ρ`,n(Fp)) ≡ τ(p) mod `n,
det(ρ`,n(Fp)) ≡ p11 mod `n.

}
(27)

for all p 6= `.
Thus, for certain `n we know τ(p) modulo `n explicitly (cf. Sect. 2). A first

verification of the conjecture consists therefore in trying to find representations
mod `n with the properties listed above for those values of `n. This is what we
will do now.

Representations corresponding to the congruences of Sec-
tion 2

There are no difficulties mod 28, 33, 53, 7 and 691. In each case, we have

τ(p) ≡ pa + p11−a mod `n

for p 6= ` with a = 0, 2, 41, 1 and 0, respectively. Each triangular representation(
φ ∗
0 ψ

)
,
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where φ, ψ : Gal (K`/Q) −→ (Z/`nZ)× are congruent modulo `n to χa
` and

χ11−a
` , respectively, answers the question.

The case ` = 23 and n = 1 can be interpreted as follows: let E be the field
obtained by adjoining to Q the roots of the polynomial x3 − x− 1 = 0. This is
a normal extension of Q, ramified only at 23; its Galois group is the group S3,
the symmetric group of order 6. It is known that E is the Hilbert class field of
the field Q(

√
−23 ). Let r be the unique irreducible representation of degree 2

of S3; for s ∈ S3, we have

Tr (r(s)) = 0, 2, or − 1,

according as s has order 2, 1 or 3. Moreover, since Gal (E/Q) is a quotient
of Gal (K`/Q), we can consider r as a representation of Gal (K`/Q). Equation
(17) shows that ρ23 and r have the same characteristic polynomial modulo 23.
Since r is irreducible mod 23, this implies

ρ23,1 ≡ r mod 23.

The case 211 is much less evident than those above (and has even led me
to doubt the conjecture!). Luckily, it has been treated by Swinnerton-Dyer
(unpublished), and his result is in fact the most important numerical verification
of the general conjecture. Swinnerton-Dyer has even obtained the complete
structure of the group im (ρ2), and not only the structure of its reduction modulo
211. According to what he told me, im (ρ2) is an open subgroup of index 3 · 225

in GL (2,Z2).

The representation ρ11,1

Although we don’t know a congruence giving τ(p) mod 11 as a simple function
of p (the reason for this will be explained in Sect. 4 below), Swinnerton-Dyer
made me realize that the existence of the representation ρ11,1 (i.e. ρ11 mod 11)
can be demonstrated in the following way:

We start by observing

x
∞∏

m=1

(1− xm)24 = x
∞∏

m=1

(1− xm)2
∞∏

m=1

(1− xm)22

≡ x

∞∏
m=1

(1− xm)2
∞∏

m=1

(1− x11m)2 mod 11.

(28)

Thus x
∏

(1−xm)2
∏

(1−x11m)2 is a cusp form of weight 2 for Γ0(11). Moreover,
we know (cf. Shimura [19]) that for every ` there exists a corresponding `-adic
representation: the one associated to the elliptic curve

y2 + y = x3 − x2 − 10x− 20. (29)

We conclude that ρ11,1 is isomorphic to the representation of Gal (K`/Q) in the
group of 11-division points of this elliptic curve. It can be shown (cf. Shimura
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[19]) that the image of ρ11,1, which a priori is a subgroup of GL (2,F11), is in
fact the whole group GL (2,F11). The situation here is therefore completely
different from the situation before, where we only encountered solvable groups.

4 Applications

In this and the next chapter, we assume the truth of the conjecture made in
Sect. 3, namely the existence of the representations ρ` and ρ`,n. The results
below can therefore not be considered as demonstrated unless the conjecture
itself will be proved (which is imminent, cf. Section 6).

Density

The value of τ(p) mod `n depends uniquely on the element

ρ`,n(Fp) ∈ GL (2,Z/`nZ).

By the theorem of Chebotarev (cf. e.g. [17], Chap. I, Sect. 2.2), this implies:

The set of primes p 6= ` such that τ(p) is congruent to a given
integer a mod `n, has a density; this density is > 0 if the set under
consideration is non-empty.

More exactly, the density equals A/B, where B is the order of im (ρ`,n), and
where A is the number of elements in im (ρ`,n) whose trace is congruent to a
modulo `n.

Independence of certain primes

The extensions K` (` = 2, 3, 5, . . .) are linearly disjoint over Q; this follows easily
from the fact that Q has no unramified extensions 6= Q. We conclude that the
values of τ(p) modulo 2a, 3b, . . . are independent: if the density of primes p such
that τ(p) ≡ ai mod `ni

i is di, then the density of the primes satisfying all these
conditions is the product of the di. The same argument implies

Let ` and p0 be different primes, and n ≥ 1 an integer. Then there
exist infinitely many primes p such that

τ(p) ≡ τ(p0) mod `n, p ≡ p0 mod `n,

even if we restrict p0 to be in an arithmetic progression an+ b with
(a, b) = (a, `) = 1.

In less precise words: given relatively prime integers M and N , then no congru-
ence on p mod N can impose anything on the value of τ(p) mod N .
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Nonexistence of a congruence mod 11

The fact that the image of ρ11,1 is the whole group GL (2,Z/11Z) (cf. Sect. 3)
implies (using Chebotarev’s theorem again)

No congruence on p can impose restrictions on the value of τ(p) mod
11.

More precisely: given integers a, b, c such that (a, b) = 1, there exist infinitely
many primes p such that p ≡ a mod b and τ(p) ≡ c mod 11.

Of course, an analogous result holds whenever im (ρ`,1) contains SL (2,Z/`Z),
which can easily be verified numerically by the method indicated in [19].

Primes p such that τ(p) = 0 have density 0

More generally, let Φ(X,Y ) be a polynomial in two variables with coefficients in
a field of characteristic 0, and assume that Φ does not identically vanish. Then
the set of primes p such that Φ(p, τ(p)) = 0 has density zero.

In fact, this can be reduced by an easy argument to the case where Φ has
the form Ψ(X11, Y ), with Ψ having coefficients in Q. Let ` be prime, and define
the subgroup H` = im (ρ`) of GL (2,Q`). It can be shown (cf. Sect. 5 below)
that H` is an open subgroup of GL (2,Q`). Let X be the set of all s ∈ H` such
that Ψ(det(s),Tr (s)) = 0. The set X is a ’hypersurface’ in the `-adic variety
H`, and its interior is empty; this implies that µ(X) = 0, where µ is the Haar
measure on H`. Now Chebotarev’s theorem asserts that the set of primes such
that Fp ∈ X has density 0; this proves our claim.

(We have thus replaced the 10−12 from Sect. 2.6 by 0).

A congruence modulo 232

(I shall restrict myself to a trivial case here. In any case, as Swinnerton-Dyer
has observed, we can certainly give the value of τ(p) modulo 232).

We have seen above that ρ23,1 is congruent modulo 23 to the representation
r of S3. Consider, in particular, primes p of the form p = u2 + 23v2; then we
have

ρ23(Fp) ≡
(

1 0
0 1

)
mod 23.

Therefore we can write

ρ23(Fp) =
(

1 + 23a 23b
23c 1 + 23d

)
,

with a, b, c, d ∈ Z23, and

τ(p) = 2 + 23(a+ d),
p11 = 1 + 23(a+ d) + 232(ad− bc).

Comparing yields
τ(p) ≡ 1 + p11 mod 232, (30)
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for primes p 6= 23 of the form u2 + 23v2.
Example. p = 59 = 62 + 23 · 12: here τ(p) = −5, 189, 203, 740; one can easily
verify that −5, 189, 203, 740 ≡ 1 + 5911 mod 232.

5 Remarks and Questions

The image of ρ` is an open subgroup of GL (2, Q`)

This result has been mentioned above. It can be proved by a method analogous
to the one used for the ’Tate modules’ of elliptic curves ([17], Chap. IV, Sect.
2.2):

To begin with, we may assume that ρ` is semi-simple (if not, we can replace
it by its semi-simplification). Let g` ⊆ M2(Q`) be the Lie algebra of im (ρ`),
viewed as an `-adic Lie algebra; since ρ` is semi-simple, g` is a reductive algebra,
and hence has the form c × s, with abelian c and semi-simple s. If s 6= 0, then
s is necessarily equal to the Lie algebra of the group SL (2,Q`); using the fact
that det(ρ`) = χ11

` , we deduce that g` = M2(Q`), and this implies that im (ρ`)
is open.

It remains to show that s = 0 is impossible. Assume therefore that s = 0;
then the Lie algebra g` is abelian and acts semi-simple on V`. If g` were the
algebra of homotheties of V`, then there would exist an open subgroup of im (ρ`)
consisting of homotheties. Thus there would exist infinitely many primes p
such that det(ρ`(Fp)) = Tr (ρ`(Fp))2/4, i.e. such that 4p11 = τ(p)2: this is a
contradiction. With this case disposed of, we see that the centralizer of g` in
End (V`) is a Cartan algebra h`, and that im (ρ`) is contained in the normalizer
N of h`. In light of the structure of N , it follows that im (ρ`) contains an open
abelian subgroup of index 1 or 2. In other words, there exists an extension E/Q
with (E : Q) ≤ 2 such that the representation ρ` is abelian over E. By applying
the theorem of [17] (Chap. III, Sect. 3.1) to E and ρ` we find that ρ` is ’locally
algebraic’ over E. But according to the theorem in [17] (Chap. III, Sect. 2.3),
this implies that all representations ρ`′ (with respect to different primes `′) have
the same property. In particular, each of the groups im (ρ`′) has an open abelian
subgroup of index 1 or 2. This is absurd, since e.g. im (ρ11,1) is not solvable.

Questions

(a) Is it possible to determine the image of ρ`, as Swinnerton-Dyer has done
for ` = 2? More exactly, is im (ρ`) contained in the subgroup H` of GL (2,Z`)
which consists of elements whose determinants are 11-th powers? Is is true that
im (ρ`) = H` for almost all ` (or even for all ` 6= 2, 3, 5, 7, 23, 691)?

It would be equally interesting to find a ’reason’ explaining the special form of
the representations modulo 2, 3, 5, 7, 23, 691. There are (conjectural) indications
at the end of Kuga’s notes [9].

(b) Does the set of primes p such that τ(p) ≡ 0 mod p have density 0? Is it
finite? Is it simply {2, 3, 5, 7}?
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A (quite weak) analogy with the representations attached to elliptic curves
suggests that τ(p) ≡ 0 mod p might have something to do with the structure of
the inertia subgroup Ip of p in im (ρ`), which is defined up to conjugacy. For
example, is it true that Ip is open in im (ρ`) if and only if τ(p) ≡ 0 mod p?

For p = 2, 3, 5, 7, we have in fact Ip = im (ρ`). [Proof: for these values of p,
the congruences in Chap. 2 show that im (ρ`) is a group extension of (Z/pZ)× by
a prop-p groupN [?]. The quotient group (Z/pZ)× corresponds to the cyclotomic
field Q(ζp). We conclude that Ip gets mapped onto (Z/pZ)×, and it remains to
show that N ∩ Ip = N . Assume that N ∩ Ip 6= N ; then the elementary theory
of p-groups shows the existence of a closed normal subgroup of index p in N
which contains Ip; this subgroup corresponds to a cyclic unramified extension
of degree p of Q(ζp). According to class field theory, the class number of Q(ζp)
is divisible by p, and p is an irregular prime. But p = 2, 3, 5, 7 are regular:
contradiction.]

Note that this argument does not apply to p = 691, which is an irregular
prime (since it divides the numerator of the Bernoulli number B12). In fact,
it seems likely to me that, for p = 691, we have Ip 6= im (ρ`), in other words,
that the unramified extension of Q(ζ691) really comes into play. Maybe one can
attack this question by examining the values of τ(p) mod 6912.

(c) Does the restriction of ρp to the inertia subgroup Ip admit a ’Hodge decom-
position’ (cf. [17], Chap. III, Sect. 1.2) of type (0, 11)?

(d) If one assumes the truth of Ramanujan’s conjecture that |τ(p)| < 2p11/2, is
it possible to write the polynomial Hp(X) of Sect. 1 in the form

Hp(X) = (1− αpX)(1− αpX), (31)

with αp = p11/2eiφp , 0 < φp < π?
Is it true that the angles φp are equidistributed in the the interval [0, π] with

respect to the measure 2
π sin2 φdφ, as Sato and Tate have conjectured on the

elliptic case without complex multiplication?
The question is connected ([17], Chap. I, A.2) with the question whether

the Dirichlet series

Lm(s) =
∏
p

m∏
n=0

1
1− αn

pα
m−n
p p−s

, m = 1, 2, . . . (32)

can be extended to the complex plane. One would have to show that Lm(s)
can be extended to a holomorphic function such that Lm(1 + 11m

2 ) 6= 0. Of
course, it is also natural to conjecture that Lm(s) has a functional equation
of the usual type. More exactly, there should exist an ’infinite term’ γm(s)
such that γm(s)Lm(s) is invariant (or anti-invariant) under the transformation
s 7−→ 11m+ 1− s. We can even risk to conjecture the form of γm(s):

γm(s) =

{
1

(2π)ks Γ(s)Γ(s− 11) · · ·Γ(s− 11(k − 1)), if m = 2k − 1,

(π)−s/2Γ( s−11k+ε
2 )γm−1(s), if m = 2k,

(33)
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where ε = 0 if k is even, and ε = 1 otherwise. It seems that only the cases
m = 1 and m = 2 are known; L1(s) coincides with the function Lτ (s) of Sect.
1, and L2(s) is connected by a simple formula with the function

f(s) =
∞∑

n=1

τ(n)2n−s (34)

studied by Rankin (cf. Hardy [5], p. 174–180).

Generalizations to modular forms

Everything we have said here about τ can also be said about the coefficients of
any cusp form of weight k

Φ(x) =
∞∑

n=1

anx
n, a1 = 1, (35)

which is an eigen function of Hecke operators, and whose coefficients are ordinary
integers. Again, it is possible to prove that im (ρ`) is open in GL (2,Q`).

According to Kuga ([9], last part), we should expect that the representations
modulo 2, 3, 5, 7 have special properties; it would be interesting to find these
representations, and to study the case of other primes as well.
Example. Take k = 16; here we have

Φ(x) = D(x)E4(X) =
( ∞∑

n=1

τ(n)xn
)(

1 + 240
∞∑

n=1

σ3(n)xn
)
. (36)

One observes easily that

ap ≡ p+ p2 mod 7 (37)
ap ≡ 1 + p15 mod 3617. (38)

(Observe that 3617 is the numerator of the Bernoulli number B16; it is therefore
an irregular prime).

As for cusp forms of SL (2,Z) which are eigen functions of Hecke operators
but do not have integral coefficients, they should correspond to ’E-rational’ rep-
resentations in the sense of [17] (Chap. I, Sect. 2.3). Moreover, if the space of
cusp forms has dimension h, it should be possible to find `-adic representations
of degree 2h on which the Hecke operators Tp act, and by reducing these repre-
sentations of the Hecke algebra one should find the representations of degree 2
we are interested in.

6 History

The idea of viewing certain arithmetic functions as traces of the action of the
Frobenius goes back to Davenport-Hasse. There, only exponential sums were
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treated whose properties were already known (Gauss and Jacobi sums). The
note of Weil goes further: he gives a ’Frobenius interpretation’ of all exponential
sums in one variable, and he obtained (thanks to the ’Riemann hypothesis for
curves’) an upper bound which was not known before. For example, for the
Kloosterman sums

Sp(a, b) =
p−1∑
x=1

exp
(2πi
p

(ax+ bx−1)
)
, p - ab (39)

one finds
|Sp(a, b)| ≤ 2p1/2. (40)

Weil has remarked long ago the analogy of Ramanujan’s conjecture

|τ(n)| ≤ 2p11/2 (41)

with the inequality (40). Weil suggested that τ(p) can be written as τ(p) =
αp + αp, where αp and αp are the eigenvalues of a Frobenius endomorphism
which acts on a suitable cohomology of dimension 11. On the other hand, he
asked me in 1960 about the interpretation of the known congruences on τ(p) in
this connection (I was not able to answer his question then, because I had not
understood the relation between ’cohomology’ and ’`-adic representations’).

An important step towards the cohomological interpretation of τ(p) was
done by Eichler [4]; he showed how the coefficients of the cusp forms of weight
2 (for certain congruence subgroups of the modular group) are connected to the
Tate modules of the corresponding modular curve. His results have been taken
up by Shimura [19] and been completed in an essential point by Igusa [7].

For arbitrary weight k, Sato (cf. [10], Introduction) had the idea of consider-
ing the fibered variety, whose fibers are the product of k−2 copies of the generic
elliptic curve (the base being the modular curve). The ideas of Sato have been
made precise by Kuga and Shimura [10]:
1. they talk about the ’number of points’ instead of ’cohomology groups’; thus
they do not obtain `-adic representations;
2. the group they consider is not the modular group SL (2,Z), but a unit group
of the quaternions, which has a compact quotient (this simplifies their task).

Nevertheless, one could hope that the ideas of Sato, Kuga and Shimura,
combined with general theorems form `-adic cohomology due to Grothendieck
and Artin [1], allow us to construct a theory which can be applied to the modular
group and its congruence subgroups. This hope seems to be at the point of
becoming real: P. Deligne succeeded in showing more than what is needed for
establishing the conjecture in Sect. 3 and for reducing Ramanujan’s conjecture
to ’standard conjectures’ of Weil (this last point has already been treated by
Ihara [8] by using an extremely ingenious method). For more details, see the
seminar of Deligne at I.H.E.S., ’Conjecture de Ramanujan et représentations
`-adiques’, which begins on February 28m 1968.
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algébriques, J. Math. Soc. Japan 10 (1958), 1–28

[19] G. Shimura, A reciprocity law in non-solvable extensions, J. Reine Angew.
Math. 221 (1966), 209–220 7, 8, 9, 13

[20] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. USA 34 (1948),
204–207

[21] J. R. Wilton, Congruence properties of Ramanujan’s function τ(n), Proc.
London Math. Soc. 31 (1930), 1–10 3, 4

The original appeared as
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Translated by Franz Lemmermeyer

http://www.rzuser.uni-heidelberg.de/~hb3/

	Ramanujan's -function
	Congruences involving 
	Powers of 2.
	Powers of 3.
	Powers of 5.
	Powers of 7.
	Powers of 23.
	Powers of 691.

	The -adic representations attached to 
	Applications
	Remarks and Questions
	History

