THE 4-CLASS GROUP OF REAL QUADRATIC NUMBER
FIELDS

FRANZ LEMMERMEYER

ABSTRACT. In this paper we give an elementary proof of results on the struc-
ture of 4-class groups of real quadratic number fields originally due to A. Scholz.
In a second (and independent) section we strengthen C. Maire’s result that the
2-class field tower of a real quadratic number field is infinite if its ideal class
group has 4-rank > 4, using a technique due to F. Hajir.

1. INTRODUCTION

Let d and d’ be discriminants of real quadratic number fields, and suppose that
they are the product of positive prime discriminants (equivalently, they are sums
of two squares). If (d,d’) = 1, and if (d/p’) = +1 for all primes p’ | d’, then we can
define a biquadratic Jacobi symbol by (d/d")s = [],/4(d/p")s. Here (d/p')s is the
rational biquadratic residue symbol (it is useful to put (d/2)4 = (—1)¢=1/8; note
that d = 1 mod 8 if 8 | d’). Observe, however, that this symbol is not multiplicative
in the numerator. We also agree to say that a discriminant d’ divides another
discriminant d if there exists a discriminant d” such that d = d’d”.

The following result due to Rédei is well known:

Proposition 1. Let d be the discriminant of a quadratic number field. The cyclic
quartic extensions of k which are unramified outside oo correspond to C’Z’—factor—
izations of d, i.e. factorizations d = dids into two relatively prime positive dis-
criminants such that (dy/ps) = (da/p1) = +1 for all p; | dj. If d = dids is such a
C -factorization, then the extension k(y/a) can be constructed by choosing a suit-
able solution of 2% — diy? = do2? and putting o = x + y\/d1. In this case, every
cyclic extension of k which is unramified outside oo and contains Q(v/dy,/dz ) has
the form k(v/d'a), where d' is a discriminant dividing d.

In particular, if d is divisible by a negative prime discriminant d’, then for every
C -factorization d = d1ds there is always a cyclic quartic extension of k = Q(\/& )
which is unramified everywhere: should k(y/a) be totally negative, simply take
k:(\/% ). The problem of the existence of cyclic quartic extension which are un-
ramified everywhere is thus reduced to the case where d is a product of positive
prime discriminants. The next section is devoted to an elementary proof of a result
in this case; Scholz sketched a proof using class field theory in his own special way
in [10].

2. RAMIFICATION AT 00

Let k£ be a real quadratic number field with discriminant d = disck, and assume
that d is the product of positive prime discriminants. Let d = dy - d2 be a Cz'—
factorization, i.e. assume that (dy/p2) = (d2/p1) = +1 for all p; | dy and all ps | da.
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Pick a solution of 22 — dyy? = do2? such that k(y/dyi,/a) (with a = x + y\/dy) is
a cyclic quartic extension of k which is unramified outside oo.

Theorem 2. The extension K = k(\/dy,\/a) defined above is totally real if and
only if (d1/d2)s = (da/d1)s. If there is a cyclic octic extension L/k containing K
and unramified outside oo, then (di/ds)s = (do/d1)s = +1.

Proof. Assume first that d = 1 mod 4; then we can always choose x € Z, y € N
in such a way that z — 1 = y = 1 mod 2. Then « will be 2-primary if and only if
r+y = 1 mod 4. We now proceed as in [8] and reduce the equation 2% —d;y? = da2?
modulo certain primes. From 22 = d;y? mod dy and 22 = dy2? mod d; we get

(7 -@.G) = @)-@.G)

Multiplying these equations gives

(2.2, -G @)

Considering 22 — diy? = dy2? modulo = shows

()=(2) = Ga)-()-(5)

Now write y = 27u for some odd u € N; then

YN 2N\ uN  2N\Trda\ [ 2\]
But j = 1 implies dy = 5 mod 8, and for j > 2 we have dy = 1 mod 8; this shows
that (2/dy)? = (—1)¥/2. Finally we easily see that (z/d;) = (d1/z) = 1, hence we

have shown
(4,6), (D)t e

The right hand side equals +1 if 2 > 0 (the assumption that « is 2-primary
says * +y = 1 mod 4), and is —1 if z < 0. Therefore K is real if and only if
(d1/dz2)a(d2/d1)s = +1.

Now assume that L/k is a cyclic unramified octic extension containing K. We
claim that the prime ideals p ramified in ky(y/a)/k1 (where k; = Q(1/d;)) must
split in k; (Vo )/k1, where o is the conjugate of a.

We first show that such p are not ramified in ki(v/e/)/ki: in fact, ramifying
primes must divide dyds, since L/k is unramified. If p | dy, then p ramifies com-
pletely in k;(y/a)/Q, which contradicts the fact that all ramification indices must
divide 2 (again because L/k is unramified). Assume that an p | da ramifies in both
ki(/a)/ k1 and ki (Vo ) /kp; since primes dividing dy split in k;/Q and ramify in
F/ky (where F = koky), p would ramify in all three quadratic extensions of k;
contained in L, and again its ramification index would have to be > 4.

Now suppose that p is inert in k1(v/a’)/k;. Then the prime ideal 9P in F above
p is inert in K/F, and since L/F is cyclic, it is inert in L/F. Let e, f and g denote
the order of the ramification, inertia and decomposition group V, T, and Z of ‘L3,
respectively; we have seen that e = 2, f > 4 and g > 2. Since efg = (L : Q) = 16,
we must have equality. Thus k; is the splitting field, and we have Z = Gal(L/k1).
We know that Gal(L/k1) ~ Dy, and since Z/T is always cyclic of order f, T must
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fix a cyclic quartic extension of k1 in L. But such an extension does not exist; this
contradiction shows that p splits.

Finally, prime ideals p ramifying in k;(y/a')/k1 divide o (otherwise p would be
a prime above 2; but here we assume that d is odd, i.e. K/Q is unramified above
2); they split in k1(v/a’)/ky if and only if (o//p) = 1. But now

(=) =) =)
p p p/
where p is the prime under p; here we have used that = — y/dy =z — y\/dy + (z +
yv/d1) = 2z mod p. The proof above shows that (2x/dy) = (2/d2)7(dy/d2)4; since
(2/dy) = (2/ds)?, we conclude that p splits in kq(y/a)/ky only if (dy/dg)s = 1.
The proof in the case where one of the d; is divisible by 8 is left to the reader. [

Theorem [2] contains many results on the solvability of negative Pell equations
(due to Dirichlet, Epstein, Kaplan and others) as special cases. In fact, consider the
case d = pgr, where p = ¢ = r = 1 mod 4 are primes. Assume that (p/q) = (p/r) =
—(g/r) = 1. Then d = p-qr is the only C} -factorization of d, hence Clj (k) ~ (2,2")
for some n > 2. If (p/qr)s = —(qr/p)a, then there exists a totally complex cyclic
quartic extension unramified outside oco: this is only possible if Ne = +1 for the
fundamental unit ¢ of k = Q(v/d). If (p/qr)s = (qr/p)4, on the other hand, then the
cyclic quartic extension is unramified everywhere, and if (p/qr)s = (¢r/p)s = —1,
it cannot be extended to a cyclic octic extension unramified outside co: this shows
that Cly(k) ~ Cl (k) ~ (2,4) in this case, and in particular, Ne = —1. Finding
similar criteria or proving existing ones (e.g. those in [3]) is no problem at all.

3. MAIRE’S RESULT

In [9], C. Maire showed that a real quadratic number field k has infinite 2-class
field tower if its class group contains a subgroup of type (4,4,4,4). Here we will
show that it suffices to assume that its class group in the strict sense contains a
subgroup of type (4,4,4,4). The method employed is taken from F. Hajir’s paper
[5].

Theorem 3. Let k be a real quadratic number field. If the strict ideal class group of
k contains a subgroup of type (4,4,4,4), then the 2-class field tower of k is infinite.

For the proof of this theorem we need a few results. For an extension K/k, let
the relative class group be defined by CI(K/k) = ker(Ng/, : CI(K) — Cl(k)).
Moreover, let G}, denote the p-Sylow subgroup of a finite abelian group G; we will
denote the dimension of G/GP as an F,-vector space by rank, G. Let Ram(K/k)
denote the set of all primes in & (including those at oo) which ramify in K/k; we will
also need the unit groups Ej and Ex, as well as the subgroup H = Ej N Nk, K*
of Ej. Then Jehne [6] has shown

Proposition 4. Let K/k be a cyclic extension of prime degree p. Then
rank Cl,(K/k) > #Ram(K/k) — rank, Ey,/H — 1.

Let us apply the inequality of Golod-Shafarevic to the p-class group of K. We
know that the p-class field tower of K is infinite if

rank, CI(K) > 2 + 2y/rank, Ex + 1.
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By Prop. [ we know that
rank, C1(K) > rank, CI(K/k) > #Ram(K/k) — rank, Ey/H — 1.
Thus K has infinite p-class field tower if

#Ram(K/k) > 3+ rank, By /H + 2y/rank, Ex + 1.
We have proved (compare Schoof [11]):

Proposition 5. Let K/k be a cyclic extension of prime degree p, and let p denote
the number of finite and infinite primes ramifying in K/k. Then the p-class field
tower of K is infinite if

p > 3+rank, Ey/H + 2y/rank, Ex + 1.

Here H is the subgroup of Ey consisting of units which are norms of elements from
K, and rank, G denotes the p-rank of G/GP.

Proof of Thm. [3 Since the claim follows directly from the inequality of Golod-
Shafarevic if rank Cla(k) > 6, we may assume that d = disck is the product of at
most six positive prime discriminants, or of at most seven if one of them is negative.
The idea is to show that a subfield of the genus class field of k satisfies the inequality
of Prop. [} this will clearly prove that k has infinite 2-class field tower.

Assume first that d = H?:l d; is the product of five positive prime discriminants.
If C1+(k‘) contains a subgroup of type (4,4,4,4), then d = d; - dadsdsds and d =
ds - dydsdyds must be C’+ factorizations. Therefore, the d; (j > 3) split completely
in F = Q(v/d1,/ds), hence there are 12 prime ideals ramlfylng in K/F, where
K = F(\/d3dyds). Since ranks Fx = 8, the condition of Prop. || is satisfied for
K/F if ranky Ep/H < 3. But since —1 is a norm in K/F (only prime ideals of
norm = 1 mod 4 ramify), we have —1 € H; this implies that ranks Er/H < 3.

Next suppose that d = H? 1
inants. We will show in the next section (see Problem |7 ' that either there is
C’j‘ -factorizations of type dj - dadsdsdsdg (then we can apply Prop. |5 to the qua-
dratic extension Q(v/d, v/d; )/Q(v/dy ), and we are done), or there exist (possibly
after a suitable permutation of the indices) C+ factorizations dyds - d3dsdsdg and
dids - dodydsdg. In this case consider F' = Q(v/d1da,/d1ds The pr1me ideals
above dy, ds, dg split completely in F/Q, and applying Prop ito F d)/F shows
exactly as above that F(v/d) has infinite 2-class field tower.

Now we treat the case where d is divisible by some negative prime discriminants.
First assume that d is the product of six prime discriminants. In this case, all
possible factorizations of d as a product of two positive discriminants must be a
C’I -factorization; unless d is a product of six negative discriminants, there exists

a factorization of type dj - Hf 5 dj, where dy > 0 is a prime discriminant. In this

case, we can apply Prop. |5|to Q(v/d, v/d; )/Q(v/dy ). The case where all six prime
discriminants are negative does not occur here: since all factorizations are C4 , we
must have (d;d;/qe) = +1 for all triples (4, j, £) such that 1 <¢ < j < £ <6 (here ¢
is the unique prime dividing dy). At least one of these triples consist of odd primes
¢ = 3mod 4; call them g1, ¢ and g3, respectively. We find (¢1/q3) = (g2/q3) =
—(g3/q2) = —(q1/q2) = (g2/q1) = (g3/q1), contradicting the quadratic reciprocity
law.

d; is the product of six positive prime discrim-
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Finally, if d is the product of seven prime discriminants, then (see Problem
there exists at least one O} -factorization of type d = p - *x or d = 77’ - %%, where
p=1mod 4 and r,r’" are either both positive or both negative prime discriminants
(see Probleml8). Applying Prop. [plto Q(Vd, /p)/Q(y/5) or Q(Vd, Vi1 ) /Q(Vrr)
yields the desired result. ([l

Observe that the same remarks as in Hajir’s paper apply: our proof yields more
than we claimed. If, for example, d is a product of five positive prime discriminants
and admits two Cj-factorizations of type d = dy - dod3dsds and d = ds - dydsdads
then k = Q(v/d) has infinite 2-class field tower even if Cl(k) has 4-rank equal to 2.

We also remark that it is not known whether these results are best possible: we
do not know any imaginary quadratic number field with 2-class group of type (4,4)
and finite 2-class field tower, and similarly, there is no example in the real case with
Clf (k) ~ (4,4,4). There are, however, real quadratic fields with Cly(k) ~ (4,4)
and abelian 2-class field tower (cf. [2]).

4. SOME RAMSEY-TYPE PROBLEMS

Let the discriminant d = dy ...d; be the product of ¢ positive prime discrim-
inants. Let X be the subspace of F} consisting of 0 and (1,...,1), and put
V = F4/X. Then the set of possible factorizations into a product of two dis-
criminants corresponds bijectively to an element of V: in fact, a factorization of d
is a product d = []; d;j 11, dj-cj with e;, f; € Fo and e; + f; = 1, and it corresponds
to the image of (e1,...,e;) in the factor space V = F4/X (exchanging the two
factors corresponds to adding (1,...,1)). We will always choose representatives
with a minimal number of nonzero coordinates. Moreover, the product defined on
the set of factorizations of d corresponds to the addition of the vectors in V: the
bijection constructed above is a group homomorphism.

Define a map F, — N by mapping (ej,...,e;) to min{zzzl ej,t — Z;Zl e}
observe that the sum is formed in N (not in Fz). Since (1,...,1) — 0, this induces
a map V — N which we will denote by S. Let V,, denote the fibers of V over v,
ie. put V, = {ueV:S(u)=v}. Itis easy to determine their cardinality:

(z) ifv<s

s ift =2s+ 1 is odd,
50 wv=s'"

Lemma 6. Ift = 2s is even, then #V, = {

then #V, = (z) for allv <s.
Now let us formulate our first problem:

Problem 7. Let t = 6, and suppose that U C V is a subspace of dimension 4. If
U NV is empty, then the equation a + b+ ¢ = 0 has solutions in U N Va.

Proof. Clearly #U = 16 and #(UNVy) = L, f UNV; = &, then #(U N V) <
#V3 = 10 implies that #(U N V) > 4. But among four vectors in V5 there must
exist a pair a,b € U NV, with a common coordinate 1 by Dirichlet’s box principle;
after permuting the indices if necessary we may assume that ¢ = (1,1,0,0,0,0)
and b = (1,0,1,0,0,0). Clearly a +b = (0,1,1,0,0,0) € U N V,, and our claim is
proved. ([

What has this got to do with our C) -factorizations? Well, consider the case
where d is the product of six positive prime discriminants. The possible C’I -
factorizations correspond to V; since rank C1f (k) > 4, we must have at least four
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independent, C -factorizations, generating a subspace U C V of dimension 4. Prob-

lem shows that among these there is one C} -factorization with one factor a prime

discriminant, or there are two C’Z—factorizations dyds-dzdsdsds and dids - dodsdsdg.
Now consider F5/X and define ’incomplete traces’

2k
Top :Fo/X — Fo i (ug,. .., up) — Zuj
j=1

(here the sum is formed in Fy). This is a well defined linear map, hence its kernel
V(@k) = ker Tsi is an Fo-vector space of dimension ¢ — 2. The elements of v (2F)
correspond to the set of factorizations of a discriminant d into a product of two
positive discriminants when 2k of the ¢ prime discriminants dividing d are negative.
Defining S : V() — N as above and denoting the fibers by l,(%), we find, for
example, that #VO(%) =1 and Vl(%) =t — 2k. In the special case t = 7 we get,
in addition, #V,” = 1+ (3) = 11, #V¥ =5+ (3) = 15, #V,Y =3+ (3) = 9,
#V =143(3) =19, #V,Y = (§) = 15, and #V, = () = 15.

Problem 8. Lett =7, 1 < k < 3, and consider a 4-dimensional subspace U of

V@) Then at least one of U N Vl(zk) orUnN V2(2k) s not empty.

Proof. Assume that U N V1(2k) =Un VQ(%) = @. Then U C (Vo(%) U Vg(%))- If

k = 2 or k = 6, this leads at once to a contradiction, because then #Vg(%) =

15 = #U — 1, and V3(2k) U Vo(zk) is not a subspace in these cases (for example,
(0,0,1,1,0,0,1) + (0,0,1,0,1,0,1) = (0,0,0,1,1,0,0) € V{** for k = 2 and k =
6). Consider the case k = 4; since U N V3(2k) contains 15 elements, there exists

uelUn V3(2k) \{(0,0,0,0,1,1,1)}. Permuting the indices if necessary (of course we
are not allowed to exchange one of the first 2k indices with one from the last ¢ — 2k)

we may assume that v = (1,1,0,0,0,0,1). It is easy to see that V3(2k) contains
exactly six elements v such that u+v € V;Qk): since #1/'3(4) =19 and #U N V3(2k) \
{u,(0,0,0,0,1,1,1)} > 14, one of these v must be contained in U N V3(2k). This
shows that V3(2k) U VU(%) does not contain a subspace of dimension 4, and the proof
is complete. 0
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