THE 4-CLASS GROUP OF REAL QUADRATIC NUMBER FIELDS

FRANZ LEMMERMEYER

Abstract

In this paper we give an elementary proof of results on the structure of 4-class groups of real quadratic number fields originally due to A. Scholz. In a second (and independent) section we strengthen C. Maire's result that the 2-class field tower of a real quadratic number field is infinite if its ideal class group has 4-rank ≥ 4, using a technique due to F. Hajir.

1. Introduction

Let d and d^{\prime} be discriminants of real quadratic number fields, and suppose that they are the product of positive prime discriminants (equivalently, they are sums of two squares). If $\left(d, d^{\prime}\right)=1$, and if $\left(d / p^{\prime}\right)=+1$ for all primes $p^{\prime} \mid d^{\prime}$, then we can define a biquadratic Jacobi symbol by $\left(d / d^{\prime}\right)_{4}=\prod_{p^{\prime} \mid d^{\prime}}\left(d / p^{\prime}\right)_{4}$. Here $\left(d / p^{\prime}\right)_{4}$ is the rational biquadratic residue symbol (it is useful to put $(d / 2)_{4}=(-1)^{(d-1) / 8}$; note that $d \equiv 1 \bmod 8$ if $\left.8 \mid d^{\prime}\right)$. Observe, however, that this symbol is not multiplicative in the numerator. We also agree to say that a discriminant d^{\prime} divides another discriminant d if there exists a discriminant $d^{\prime \prime}$ such that $d=d^{\prime} d^{\prime \prime}$.

The following result due to Rédei is well known:
Proposition 1. Let d be the discriminant of a quadratic number field. The cyclic quartic extensions of k which are unramified outside ∞ correspond to C_{4}^{+}-factorizations of d, i.e. factorizations $d=d_{1} d_{2}$ into two relatively prime positive discriminants such that $\left(d_{1} / p_{2}\right)=\left(d_{2} / p_{1}\right)=+1$ for all $p_{j} \mid d_{j}$. If $d=d_{1} d_{2}$ is such a C_{4}^{+}-factorization, then the extension $k(\sqrt{\alpha})$ can be constructed by choosing a suitable solution of $x^{2}-d_{1} y^{2}=d_{2} z^{2}$ and putting $\alpha=x+y \sqrt{d_{1}}$. In this case, every cyclic extension of k which is unramified outside ∞ and contains $\mathbb{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right)$ has the form $k\left(\sqrt{d^{\prime} \alpha}\right)$, where d^{\prime} is a discriminant dividing d.

In particular, if d is divisible by a negative prime discriminant d^{\prime}, then for every C_{4}^{+}-factorization $d=d_{1} d_{2}$ there is always a cyclic quartic extension of $k=\mathbb{Q}(\sqrt{d})$ which is unramified everywhere: should $k(\sqrt{\alpha})$ be totally negative, simply take $k\left(\sqrt{d^{\prime} \alpha}\right)$. The problem of the existence of cyclic quartic extension which are unramified everywhere is thus reduced to the case where d is a product of positive prime discriminants. The next section is devoted to an elementary proof of a result in this case; Scholz sketched a proof using class field theory in his own special way in 10 .

2. Ramification at ∞

Let k be a real quadratic number field with discriminant $d=$ disck, and assume that d is the product of positive prime discriminants. Let $d=d_{1} \cdot d_{2}$ be a C_{4}^{+}factorization, i.e. assume that $\left(d_{1} / p_{2}\right)=\left(d_{2} / p_{1}\right)=+1$ for all $p_{1} \mid d_{1}$ and all $p_{2} \mid d_{2}$.

Pick a solution of $x^{2}-d_{1} y^{2}=d_{2} z^{2}$ such that $k\left(\sqrt{d_{1}}, \sqrt{\alpha}\right)\left(\right.$ with $\left.\alpha=x+y \sqrt{d_{1}}\right)$ is a cyclic quartic extension of k which is unramified outside ∞.

Theorem 2. The extension $K=k\left(\sqrt{d_{1}}, \sqrt{\alpha}\right)$ defined above is totally real if and only if $\left(d_{1} / d_{2}\right)_{4}=\left(d_{2} / d_{1}\right)_{4}$. If there is a cyclic octic extension L / k containing K and unramified outside ∞, then $\left(d_{1} / d_{2}\right)_{4}=\left(d_{2} / d_{1}\right)_{4}=+1$.

Proof. Assume first that $d \equiv 1 \bmod 4$; then we can always choose $x \in \mathbb{Z}, y \in \mathbb{N}$ in such a way that $x-1 \equiv y \equiv 1 \bmod 2$. Then α will be 2 -primary if and only if $x+y \equiv 1 \bmod 4$. We now proceed as in [8] and reduce the equation $x^{2}-d_{1} y^{2}=d_{2} z^{2}$ modulo certain primes. From $x^{2} \equiv d_{1} y^{2} \bmod d_{2}$ and $x^{2} \equiv d_{2} z^{2} \bmod d_{1}$ we get

$$
\left(\frac{x}{d_{2}}\right)=\left(\frac{d_{1}}{d_{2}}\right)_{4}\left(\frac{y}{d_{2}}\right), \quad \text { and } \quad\left(\frac{x}{d_{1}}\right)=\left(\frac{d_{2}}{d_{1}}\right)_{4}\left(\frac{z}{d_{1}}\right) .
$$

Multiplying these equations gives

$$
\left(\frac{d_{1}}{d_{2}}\right)_{4}\left(\frac{d_{2}}{d_{1}}\right)_{4}=\left(\frac{x}{d_{1} d_{2}}\right)\left(\frac{y}{d_{2}}\right)\left(\frac{z}{d_{1}}\right) .
$$

Considering $x^{2}-d_{1} y^{2}=d_{2} z^{2}$ modulo x shows

$$
\left(\frac{-d_{1}}{x}\right)=\left(\frac{d_{2}}{x}\right), \quad \text { i.e. } \quad\left(\frac{x}{d_{1} d_{2}}\right)=\left(\frac{d_{1} d_{2}}{x}\right)=\left(\frac{-1}{x}\right)
$$

Now write $y=2^{j} u$ for some odd $u \in \mathbb{N}$; then

$$
\left(\frac{y}{d_{2}}\right)=\left(\frac{2}{d_{2}}\right)^{j}\left(\frac{u}{d_{2}}\right)=\left(\frac{2}{d_{2}}\right)^{j}\left(\frac{d_{2}}{u}\right)=\left(\frac{2}{d_{2}}\right)^{j} .
$$

But $j=1$ implies $d_{2} \equiv 5 \bmod 8$, and for $j \geq 2$ we have $d_{2} \equiv 1 \bmod 8$; this shows that $\left(2 / d_{2}\right)^{j}=(-1)^{y / 2}$. Finally we easily see that $\left(z / d_{1}\right)=\left(d_{1} / z\right)=1$, hence we have shown

$$
\left(\frac{d_{1}}{d_{2}}\right)_{4}\left(\frac{d_{2}}{d_{1}}\right)_{4}=\left(\frac{-1}{x}\right)(-1)^{y / 2}=(-1)^{(|x|+y-1) / 2}
$$

The right hand side equals +1 if $x>0$ (the assumption that α is 2-primary says $x+y \equiv 1 \bmod 4$), and is -1 if $x<0$. Therefore K is real if and only if $\left(d_{1} / d_{2}\right)_{4}\left(d_{2} / d_{1}\right)_{4}=+1$.

Now assume that L / k is a cyclic unramified octic extension containing K. We claim that the prime ideals \mathfrak{p} ramified in $k_{1}(\sqrt{\alpha}) / k_{1}$ (where $\left.k_{j}=\mathbb{Q}\left(\sqrt{d_{j}}\right)\right)$ must split in $k_{1}\left(\sqrt{\alpha^{\prime}}\right) / k_{1}$, where α^{\prime} is the conjugate of α.

We first show that such \mathfrak{p} are not ramified in $k_{1}\left(\sqrt{\alpha^{\prime}}\right) / k_{1}$: in fact, ramifying primes must divide $d_{1} d_{2}$, since L / k is unramified. If $\mathfrak{p} \mid d_{1}$, then \mathfrak{p} ramifies completely in $k_{1}(\sqrt{\alpha}) / \mathbb{Q}$, which contradicts the fact that all ramification indices must divide 2 (again because L / k is unramified). Assume that an $\mathfrak{p} \mid d_{2}$ ramifies in both $k_{1}(\sqrt{\alpha}) / k_{1}$ and $k_{1}\left(\sqrt{\alpha^{\prime}}\right) / k_{1}$; since primes dividing d_{2} split in k_{1} / \mathbb{Q} and ramify in F / k_{1} (where $F=k_{2} k_{1}$), \mathfrak{p} would ramify in all three quadratic extensions of k_{1} contained in L, and again its ramification index would have to be ≥ 4.

Now suppose that \mathfrak{p} is inert in $k_{1}\left(\sqrt{\alpha^{\prime}}\right) / k_{1}$. Then the prime ideal \mathfrak{P} in F above \mathfrak{p} is inert in K / F, and since L / F is cyclic, it is inert in L / F. Let e, f and g denote the order of the ramification, inertia and decomposition group V, T, and Z of \mathfrak{P}, respectively; we have seen that $e=2, f \geq 4$ and $g \geq 2$. Since ef $g=(L: \mathbb{Q})=16$, we must have equality. Thus k_{1} is the splitting field, and we have $Z=\operatorname{Gal}\left(L / k_{1}\right)$. We know that $\operatorname{Gal}\left(L / k_{1}\right) \simeq D_{4}$, and since Z / T is always cyclic of order f, T must
fix a cyclic quartic extension of k_{1} in L. But such an extension does not exist; this contradiction shows that \mathfrak{p} splits.

Finally, prime ideals \mathfrak{p} ramifying in $k_{1}(\sqrt{\alpha}) / k_{1}$ divide α (otherwise \mathfrak{p} would be a prime above 2 ; but here we assume that d is odd, i.e. K / \mathbb{Q} is unramified above 2); they split in $k_{1}\left(\sqrt{\alpha^{\prime}}\right) / k_{1}$ if and only if $\left(\alpha^{\prime} / \mathfrak{p}\right)=1$. But now

$$
\left(\frac{x-y \sqrt{d_{1}}}{\mathfrak{p}}\right)=\left(\frac{2 x}{\mathfrak{p}}\right)=\left(\frac{2 x}{p}\right)
$$

where p is the prime under \mathfrak{p}; here we have used that $x-y \sqrt{d_{1}} \equiv x-y \sqrt{d_{1}}+(x+$ $\left.y \sqrt{d_{1}}\right) \equiv 2 x \bmod \mathfrak{p}$. The proof above shows that $\left(2 x / d_{2}\right)=\left(2 / d_{2}\right)^{j}\left(d_{1} / d_{2}\right)_{4}$; since $\left(2 / d_{2}\right)=\left(2 / d_{2}\right)^{j}$, we conclude that \mathfrak{p} splits in $k_{1}(\sqrt{\alpha}) / k_{1}$ only if $\left(d_{1} / d_{2}\right)_{4}=1$.

The proof in the case where one of the d_{i} is divisible by 8 is left to the reader.
Theorem 2 contains many results on the solvability of negative Pell equations (due to Dirichlet, Epstein, Kaplan and others) as special cases. In fact, consider the case $d=p q r$, where $p \equiv q \equiv r \equiv 1 \bmod 4$ are primes. Assume that $(p / q)=(p / r)=$ $-(q / r)=1$. Then $d=p \cdot q r$ is the only C_{4}^{+}-factorization of d, hence $\mathrm{Cl}_{2}^{+}(k) \simeq\left(2,2^{n}\right)$ for some $n \geq 2$. If $(p / q r)_{4}=-(q r / p)_{4}$, then there exists a totally complex cyclic quartic extension unramified outside ∞ : this is only possible if $N \varepsilon=+1$ for the fundamental unit ε of $k=\mathbb{Q}(\sqrt{d})$. If $(p / q r)_{4}=(q r / p)_{4}$, on the other hand, then the cyclic quartic extension is unramified everywhere, and if $(p / q r)_{4}=(q r / p)_{4}=-1$, it cannot be extended to a cyclic octic extension unramified outside ∞ : this shows that $\mathrm{Cl}_{2}(k) \simeq \mathrm{Cl}_{2}^{+}(k) \simeq(2,4)$ in this case, and in particular, $N \varepsilon=-1$. Finding similar criteria or proving existing ones (e.g. those in [3]) is no problem at all.

3. Maire's Result

In 9, C. Maire showed that a real quadratic number field k has infinite 2-class field tower if its class group contains a subgroup of type $(4,4,4,4)$. Here we will show that it suffices to assume that its class group in the strict sense contains a subgroup of type $(4,4,4,4)$. The method employed is taken from F. Hajir's paper [5].

Theorem 3. Let k be a real quadratic number field. If the strict ideal class group of k contains a subgroup of type (4, 4, 4, 4), then the 2 -class field tower of k is infinite.

For the proof of this theorem we need a few results. For an extension K / k, let the relative class group be defined by $\mathrm{Cl}(K / k)=\operatorname{ker}\left(N_{K / k}: \mathrm{Cl}(K) \longrightarrow \mathrm{Cl}(k)\right)$. Moreover, let G_{p} denote the p-Sylow subgroup of a finite abelian group G; we will denote the dimension of G / G^{p} as an \mathbb{F}_{p}-vector space by $\operatorname{rank}_{p} G$. Let $\operatorname{Ram}(K / k)$ denote the set of all primes in k (including those at ∞) which ramify in K / k; we will also need the unit groups E_{k} and E_{K}, as well as the subgroup $H=E_{k} \cap N_{K / k} K^{\times}$ of E_{k}. Then Jehne [6] has shown

Proposition 4. Let K / k be a cyclic extension of prime degree p. Then

$$
\operatorname{rank} \mathrm{Cl}_{p}(K / k) \geq \# \operatorname{Ram}(K / k)-\operatorname{rank}_{p} E_{k} / H-1
$$

Let us apply the inequality of Golod-Shafarevic to the p-class group of K. We know that the p-class field tower of K is infinite if

$$
\operatorname{rank}_{p} \mathrm{Cl}(K) \geq 2+2 \sqrt{\operatorname{rank}_{p} E_{K}+1}
$$

By Prop. 4, we know that

$$
\operatorname{rank}_{p} \mathrm{Cl}(K) \geq \operatorname{rank}_{p} \mathrm{Cl}(K / k) \geq \# \operatorname{Ram}(K / k)-\operatorname{rank}_{p} E_{k} / H-1
$$

Thus K has infinite p-class field tower if

$$
\# \operatorname{Ram}(K / k) \geq 3+\operatorname{rank}_{p} E_{k} / H+2 \sqrt{\operatorname{rank}_{p} E_{K}+1}
$$

We have proved (compare Schoof [11]):
Proposition 5. Let K / k be a cyclic extension of prime degree p, and let ρ denote the number of finite and infinite primes ramifying in K / k. Then the p-class field tower of K is infinite if

$$
\rho \geq 3+\operatorname{rank}_{p} E_{k} / H+2 \sqrt{\operatorname{rank}_{p} E_{K}+1}
$$

Here H is the subgroup of E_{k} consisting of units which are norms of elements from K, and $\operatorname{rank}_{p} G$ denotes the p-rank of G / G^{p}.

Proof of Thm. 3 . Since the claim follows directly from the inequality of GolodShafarevic if rank $\mathrm{Cl}_{2}(k) \geq 6$, we may assume that $d=$ disc k is the product of at most six positive prime discriminants, or of at most seven if one of them is negative. The idea is to show that a subfield of the genus class field of k satisfies the inequality of Prop. 55 this will clearly prove that k has infinite 2-class field tower.

Assume first that $d=\prod_{j=1}^{5} d_{j}$ is the product of five positive prime discriminants. If $\mathrm{Cl}^{+}(k)$ contains a subgroup of type $(4,4,4,4)$, then $d=d_{1} \cdot d_{2} d_{3} d_{4} d_{5}$ and $d=$ $d_{2} \cdot d_{1} d_{3} d_{4} d_{5}$ must be C_{4}^{+}-factorizations. Therefore, the $d_{j}(j \geq 3)$ split completely in $F=\mathbb{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right)$, hence there are 12 prime ideals ramifying in K / F, where $K=F\left(\sqrt{d_{3} d_{4} d_{5}}\right)$. Since $\operatorname{rank}_{2} E_{K}=8$, the condition of Prop. 5 is satisfied for K / F if $\operatorname{rank}_{2} E_{F} / H \leq 3$. But since -1 is a norm in K / F (only prime ideals of norm $\equiv 1 \bmod 4$ ramify), we have $-1 \in H$; this implies that $\operatorname{rank}_{2} E_{F} / H \leq 3$.

Next suppose that $d=\prod_{j=1}^{6} d_{j}$ is the product of six positive prime discriminants. We will show in the next section (see Problem 7) that either there is C_{4}^{+}-factorizations of type $d_{1} \cdot d_{2} d_{3} d_{4} d_{5} d_{6}$ (then we can apply Prop. 5 to the quadratic extension $\mathbb{Q}\left(\sqrt{d}, \sqrt{d_{1}}\right) / \mathbb{Q}\left(\sqrt{d_{1}}\right)$, and we are done), or there exist (possibly after a suitable permutation of the indices) C_{4}^{+}-factorizations $d_{1} d_{2} \cdot d_{3} d_{4} d_{5} d_{6}$ and $d_{1} d_{3} \cdot d_{2} d_{4} d_{5} d_{6}$. In this case consider $F=\mathbb{Q}\left(\sqrt{d_{1} d_{2}}, \sqrt{d_{1} d_{3}}\right)$. The prime ideals above d_{4}, d_{5}, d_{6} split completely in F / \mathbb{Q}, and applying Prop. 5 to $F(\sqrt{d}) / F$ shows exactly as above that $F(\sqrt{d})$ has infinite 2-class field tower.

Now we treat the case where d is divisible by some negative prime discriminants. First assume that d is the product of six prime discriminants. In this case, all possible factorizations of d as a product of two positive discriminants must be a C_{4}^{+}-factorization; unless d is a product of six negative discriminants, there exists a factorization of type $d_{1} \cdot \prod_{j=2}^{6} d_{j}$, where $d_{1}>0$ is a prime discriminant. In this case, we can apply Prop. 5 to $\mathbb{Q}\left(\sqrt{d}, \sqrt{d_{1}}\right) / \mathbb{Q}\left(\sqrt{d_{1}}\right)$. The case where all six prime discriminants are negative does not occur here: since all factorizations are C_{4}^{+}, we must have $\left(d_{i} d_{j} / q_{\ell}\right)=+1$ for all triples (i, j, ℓ) such that $1 \leq i<j<\ell \leq 6$ (here q_{ℓ} is the unique prime dividing d_{ℓ}). At least one of these triples consist of odd primes $q \equiv 3 \bmod 4 ;$ call them q_{1}, q_{2} and q_{3}, respectively. We find $\left(q_{1} / q_{3}\right)=\left(q_{2} / q_{3}\right)=$ $-\left(q_{3} / q_{2}\right)=-\left(q_{1} / q_{2}\right)=\left(q_{2} / q_{1}\right)=\left(q_{3} / q_{1}\right)$, contradicting the quadratic reciprocity law.

Finally, if d is the product of seven prime discriminants, then (see Problem 8) there exists at least one C_{4}^{+}-factorization of type $d=p \cdot * *$ or $d=r r^{\prime} \cdot * *$, where $p \equiv 1 \bmod 4$ and r, r^{\prime} are either both positive or both negative prime discriminants (see Problem8). Applying Prop. 5to $\mathbb{Q}(\sqrt{d}, \sqrt{p}) / \mathbb{Q}(\sqrt{p})$ or $\mathbb{Q}\left(\sqrt{d}, \sqrt{r r^{\prime}}\right) / \mathbb{Q}\left(\sqrt{r r^{\prime}}\right)$ yields the desired result.

Observe that the same remarks as in Hajir's paper apply: our proof yields more than we claimed. If, for example, d is a product of five positive prime discriminants and admits two C_{4}^{+}-factorizations of type $d=d_{1} \cdot d_{2} d_{3} d_{4} d_{5}$ and $d=d_{2} \cdot d_{1} d_{3} d_{4} d_{5}$ then $k=\mathbb{Q}(\sqrt{d})$ has infinite 2-class field tower even if $\mathrm{Cl}(k)$ has 4-rank equal to 2 .

We also remark that it is not known whether these results are best possible: we do not know any imaginary quadratic number field with 2-class group of type $(4,4)$ and finite 2-class field tower, and similarly, there is no example in the real case with $\mathrm{Cl}_{2}^{+}(k) \simeq(4,4,4)$. There are, however, real quadratic fields with $\mathrm{Cl}_{2}(k) \simeq(4,4)$ and abelian 2-class field tower (cf. [2]).

4. Some Ramsey-type Problems

Let the discriminant $d=d_{1} \ldots d_{t}$ be the product of t positive prime discriminants. Let X be the subspace of \mathbb{F}_{2}^{t} consisting of 0 and $(1, \ldots, 1)$, and put $V=\mathbb{F}_{2}^{t} / X$. Then the set of possible factorizations into a product of two discriminants corresponds bijectively to an element of V : in fact, a factorization of d is a product $d=\prod_{j} d_{j}^{e_{j}} \cdot \prod_{j} d_{j}^{f_{j}}$ with $e_{j}, f_{j} \in \mathbb{F}_{2}$ and $e_{j}+f_{j}=1$, and it corresponds to the image of $\left(e_{1}, \ldots, e_{t}\right)$ in the factor space $V=\mathbb{F}_{2}^{t} / X$ (exchanging the two factors corresponds to adding $(1, \ldots, 1))$. We will always choose representatives with a minimal number of nonzero coordinates. Moreover, the product defined on the set of factorizations of d corresponds to the addition of the vectors in V : the bijection constructed above is a group homomorphism.

Define a map $\mathbb{F}_{2}^{t} \longrightarrow \mathbb{N}$ by mapping $\left(e_{1}, \ldots, e_{t}\right)$ to $\min \left\{\sum_{j=1}^{t} e_{j}, t-\sum_{j=1}^{t} e_{j}\right\}$; observe that the sum is formed in \mathbb{N} (not in \mathbb{F}_{2}). Since $(1, \ldots, 1) \longmapsto 0$, this induces a map $V \longrightarrow N$ which we will denote by S. Let V_{ν} denote the fibers of V over ν, i.e. put $V_{\nu}=\{u \in V: S(u)=\nu\}$. It is easy to determine their cardinality:

Lemma 6. If $t=2 s$ is even, then $\# V_{\nu}=\left\{\begin{array}{ll}\binom{t}{\nu} & \text { if } \nu<s \\ \frac{1}{2}\binom{t}{s} & \text { if } \nu=s\end{array} ;\right.$ if $t=2 s+1$ is odd, then $\# V_{\nu}=\binom{t}{\nu}$ for all $\nu \leq s$.

Now let us formulate our first problem:
Problem 7. Let $t=6$, and suppose that $U \subseteq V$ is a subspace of dimension 4. If $U \cap V_{1}$ is empty, then the equation $a+b+c=0$ has solutions in $U \cap V_{2}$.

Proof. Clearly $\# U=16$ and $\#\left(U \cap V_{0}\right)=1$; if $U \cap V_{1}=\varnothing$, then $\#\left(U \cap V_{3}\right) \leq$ $\# V_{3}=10$ implies that $\#\left(U \cap V_{2}\right) \geq 4$. But among four vectors in V_{2} there must exist a pair $a, b \in U \cap V_{2}$ with a common coordinate 1 by Dirichlet's box principle; after permuting the indices if necessary we may assume that $a=(1,1,0,0,0,0)$ and $b=(1,0,1,0,0,0)$. Clearly $a+b=(0,1,1,0,0,0) \in U \cap V_{2}$, and our claim is proved.

What has this got to do with our C_{4}^{+}-factorizations? Well, consider the case where d is the product of six positive prime discriminants. The possible C_{4}^{+}factorizations correspond to V; since $\operatorname{rank} \mathrm{Cl}_{4}^{+}(k) \geq 4$, we must have at least four
independent C_{4}^{+}-factorizations, generating a subspace $U \subset V$ of dimension 4. Problem 7 shows that among these there is one C_{4}^{+}-factorization with one factor a prime discriminant, or there are two C_{4}^{+}-factorizations $d_{1} d_{2} \cdot d_{3} d_{4} d_{5} d_{6}$ and $d_{1} d_{3} \cdot d_{2} d_{4} d_{5} d_{6}$.

Now consider \mathbb{F}_{2}^{t} / X and define 'incomplete traces'

$$
T_{2 k}: \mathbb{F}_{2}^{t} / X \longrightarrow \mathbb{F}_{2}:\left(u_{1}, \ldots, u_{t}\right) \longmapsto \sum_{j=1}^{2 k} u_{j}
$$

(here the sum is formed in \mathbb{F}_{2}). This is a well defined linear map, hence its kernel $V^{(2 k)}=\operatorname{ker} T_{2 k}$ is an \mathbb{F}_{2}-vector space of dimension $t-2$. The elements of $V^{(2 k)}$ correspond to the set of factorizations of a discriminant d into a product of two positive discriminants when $2 k$ of the t prime discriminants dividing d are negative. Defining $S: V^{(2 k)} \longrightarrow \mathbb{N}$ as above and denoting the fibers by $V_{\nu}^{(2 k)}$, we find, for example, that $\# V_{0}^{(2 k)}=1$ and $V_{1}^{(2 k)}=t-2 k$. In the special case $t=7$ we get, in addition, $\# V_{2}^{(2)}=1+\binom{5}{2}=11, \# V_{3}^{(2)}=5+\binom{5}{2}=15, \# V_{2}^{(4)}=3+\binom{4}{2}=9$, $\# V_{3}^{(4)}=1+3\binom{5}{2}=19, \# V_{2}^{(6)}=\binom{6}{2}=15$, and $\# V_{3}^{(6)}=\binom{6}{2}=15$.

Problem 8. Let $t=7,1 \leq k \leq 3$, and consider a 4-dimensional subspace U of $V^{(2 k)}$. Then at least one of $U \cap V_{1}^{(2 k)}$ or $U \cap V_{2}^{(2 k)}$ is not empty.

Proof. Assume that $U \cap V_{1}^{(2 k)}=U \cap V_{2}^{(2 k)}=\varnothing$. Then $U \subseteq\left(V_{0}^{(2 k)} \cup V_{3}^{(2 k)}\right)$. If $k=2$ or $k=6$, this leads at once to a contradiction, because then $\# V_{3}^{(2 k)}=$ $15=\# U-1$, and $V_{3}^{(2 k)} \cup V_{0}^{(2 k)}$ is not a subspace in these cases (for example, $(0,0,1,1,0,0,1)+(0,0,1,0,1,0,1)=(0,0,0,1,1,0,0) \in V_{2}^{(2 k)}$ for $k=2$ and $k=$ 6). Consider the case $k=4$; since $U \cap V_{3}^{(2 k)}$ contains 15 elements, there exists $u \in U \cap V_{3}^{(2 k)} \backslash\{(0,0,0,0,1,1,1)\}$. Permuting the indices if necessary (of course we are not allowed to exchange one of the first $2 k$ indices with one from the last $t-2 k$) we may assume that $u=(1,1,0,0,0,0,1)$. It is easy to see that $V_{3}^{(2 k)}$ contains exactly six elements v such that $u+v \in V_{2}^{(2 k)}$: since $\# V_{3}^{(4)}=19$ and $\# U \cap V_{3}^{(2 k)} \backslash$ $\{u,(0,0,0,0,1,1,1)\} \geq 14$, one of these v must be contained in $U \cap V_{3}^{(2 k)}$. This shows that $V_{3}^{(2 k)} \cup V_{0}^{(2 k)}$ does not contain a subspace of dimension 4, and the proof is complete.

References

[1] E. Benjamin, On the second Hilbert 2-class field of real quadratic number fields with 2-class groups isomorphic to $\left(2,2^{n}\right)$, preprint 1996
[2] E. Benjamin, F. Lemmermeyer, C. Snyder, Real quadratic fields with abelian 2-class field tower, J. Number Theory, to appear 5
[3] E. Benjamin, F. Lemmermeyer, C. Snyder, Imaginary quadratic Fields k with cyclic $\mathrm{Cl}_{2}\left(k^{1}\right)$, J. Number Theory 67 (1997), 229-245, 3
[4] L. Dirichlet, Einige neue Sätze über unbestimmte Gleichungen, Gesammelte Werke, 219236.
[5] F. Hajir, On a theorem of Koch, Pac. J. Math. 176 (1996), 15-18 3
[6] W. Jehne, On knots in algebraic number theory, J. Reine Angew. Math. 311/312 (1979), 215-254 3
[7] P. Kaplan, Sur le 2-groupe des classes d'idéaux des corps quadratiques, J. Reine Angew. Math. 283/284 (1974), 313-363.
[8] F. Lemmermeyer, Unramified quaternion extensions of quadratic number fields, J. Théor. Nombres Bordeaux 9 (1997), 51-68 2
[9] C. Maire, Un raffinement du théorème de Golod-Shafarevic, preprint 19963
[10] A. Scholz, Über die Lösbarkeit der Gleichung $t^{2}-D u^{2}=-4$, Math. Z. 39 (1934), 95-111. 1
[11] R. Schoof, Infinite class field towers of quadratic fields, J. Reine Angew. Math. 372 (1986), 209-220 4

Bilkent University, Dept. Mathematics, 06800 Bilkent, Ankara
E-mail address: hb3@ix.urz.uni-heidelberg.de, franz@fen.bilkent.edu.tr

