THE 4-CLASS GROUP OF REAL QUADRATIC NUMBER FIELDS

FRANZ LEMMERMEYER

ABSTRACT. In this paper we give an elementary proof of results on the structure of 4-class groups of real quadratic number fields originally due to A. Scholz. In a second (and independent) section we strengthen C. Maire's result that the 2-class field tower of a real quadratic number field is infinite if its ideal class group has 4-rank ≥ 4 , using a technique due to F. Hajir.

1. INTRODUCTION

Let d and d' be discriminants of real quadratic number fields, and suppose that they are the product of positive prime discriminants (equivalently, they are sums of two squares). If (d, d') = 1, and if (d/p') = +1 for all primes $p' \mid d'$, then we can define a biquadratic Jacobi symbol by $(d/d')_4 = \prod_{p'\mid d'} (d/p')_4$. Here $(d/p')_4$ is the rational biquadratic residue symbol (it is useful to put $(d/2)_4 = (-1)^{(d-1)/8}$; note that $d \equiv 1 \mod 8$ if $8 \mid d'$). Observe, however, that this symbol is not multiplicative in the numerator. We also agree to say that a discriminant d' divides another discriminant d if there exists a discriminant d'' such that d = d'd''.

The following result due to Rédei is well known:

Proposition 1. Let d be the discriminant of a quadratic number field. The cyclic quartic extensions of k which are unramified outside ∞ correspond to C_4^+ -factorizations of d, i.e. factorizations $d = d_1d_2$ into two relatively prime positive discriminants such that $(d_1/p_2) = (d_2/p_1) = +1$ for all $p_j \mid d_j$. If $d = d_1d_2$ is such a C_4^+ -factorization, then the extension $k(\sqrt{\alpha})$ can be constructed by choosing a suitable solution of $x^2 - d_1y^2 = d_2z^2$ and putting $\alpha = x + y\sqrt{d_1}$. In this case, every cyclic extension of k which is unramified outside ∞ and contains $\mathbb{Q}(\sqrt{d_1}, \sqrt{d_2})$ has the form $k(\sqrt{d'\alpha})$, where d' is a discriminant dividing d.

In particular, if d is divisible by a negative prime discriminant d', then for every C_4^+ -factorization $d = d_1 d_2$ there is always a cyclic quartic extension of $k = \mathbb{Q}(\sqrt{d})$ which is unramified everywhere: should $k(\sqrt{\alpha})$ be totally negative, simply take $k(\sqrt{d'\alpha})$. The problem of the existence of cyclic quartic extension which are unramified everywhere is thus reduced to the case where d is a product of positive prime discriminants. The next section is devoted to an elementary proof of a result in this case; Scholz sketched a proof using class field theory in his own special way in [10].

2. Ramification at ∞

Let k be a real quadratic number field with discriminant $d = \operatorname{disc} k$, and assume that d is the product of positive prime discriminants. Let $d = d_1 \cdot d_2$ be a C_4^+ -factorization, i.e. assume that $(d_1/p_2) = (d_2/p_1) = +1$ for all $p_1 \mid d_1$ and all $p_2 \mid d_2$.

FRANZ LEMMERMEYER

Pick a solution of $x^2 - d_1 y^2 = d_2 z^2$ such that $k(\sqrt{d_1}, \sqrt{\alpha})$ (with $\alpha = x + y\sqrt{d_1}$) is a cyclic quartic extension of k which is unramified outside ∞ .

Theorem 2. The extension $K = k(\sqrt{d_1}, \sqrt{\alpha})$ defined above is totally real if and only if $(d_1/d_2)_4 = (d_2/d_1)_4$. If there is a cyclic octic extension L/k containing K and unramified outside ∞ , then $(d_1/d_2)_4 = (d_2/d_1)_4 = +1$.

Proof. Assume first that $d \equiv 1 \mod 4$; then we can always choose $x \in \mathbb{Z}, y \in \mathbb{N}$ in such a way that $x - 1 \equiv y \equiv 1 \mod 2$. Then α will be 2-primary if and only if $x+y \equiv 1 \mod 4$. We now proceed as in [8] and reduce the equation $x^2 - d_1y^2 = d_2z^2$ modulo certain primes. From $x^2 \equiv d_1y^2 \mod d_2$ and $x^2 \equiv d_2z^2 \mod d_1$ we get

$$\left(\frac{x}{d_2}\right) = \left(\frac{d_1}{d_2}\right)_4 \left(\frac{y}{d_2}\right), \quad \text{and} \quad \left(\frac{x}{d_1}\right) = \left(\frac{d_2}{d_1}\right)_4 \left(\frac{z}{d_1}\right).$$

Multiplying these equations gives

$$\left(\frac{d_1}{d_2}\right)_4 \left(\frac{d_2}{d_1}\right)_4 = \left(\frac{x}{d_1 d_2}\right) \left(\frac{y}{d_2}\right) \left(\frac{z}{d_1}\right).$$

Considering $x^2 - d_1 y^2 = d_2 z^2$ modulo x shows

$$\left(\frac{-d_1}{x}\right) = \left(\frac{d_2}{x}\right),$$
 i.e. $\left(\frac{x}{d_1d_2}\right) = \left(\frac{d_1d_2}{x}\right) = \left(\frac{-1}{x}\right)$

Now write $y = 2^j u$ for some odd $u \in \mathbb{N}$; then

$$\left(\frac{y}{d_2}\right) = \left(\frac{2}{d_2}\right)^j \left(\frac{u}{d_2}\right) = \left(\frac{2}{d_2}\right)^j \left(\frac{d_2}{u}\right) = \left(\frac{2}{d_2}\right)^j.$$

But j = 1 implies $d_2 \equiv 5 \mod 8$, and for $j \ge 2$ we have $d_2 \equiv 1 \mod 8$; this shows that $(2/d_2)^j = (-1)^{y/2}$. Finally we easily see that $(z/d_1) = (d_1/z) = 1$, hence we have shown

$$\left(\frac{d_1}{d_2}\right)_4 \left(\frac{d_2}{d_1}\right)_4 = \left(\frac{-1}{x}\right)(-1)^{y/2} = (-1)^{(|x|+y-1)/2}.$$

The right hand side equals +1 if x > 0 (the assumption that α is 2-primary says $x + y \equiv 1 \mod 4$), and is -1 if x < 0. Therefore K is real if and only if $(d_1/d_2)_4(d_2/d_1)_4 = +1$.

Now assume that L/k is a cyclic unramified octic extension containing K. We claim that the prime ideals \mathfrak{p} ramified in $k_1(\sqrt{\alpha})/k_1$ (where $k_j = \mathbb{Q}(\sqrt{d_j})$) must split in $k_1(\sqrt{\alpha'})/k_1$, where α' is the conjugate of α .

We first show that such \mathfrak{p} are not ramified in $k_1(\sqrt{\alpha'})/k_1$: in fact, ramifying primes must divide d_1d_2 , since L/k is unramified. If $\mathfrak{p} \mid d_1$, then \mathfrak{p} ramifies completely in $k_1(\sqrt{\alpha})/\mathbb{Q}$, which contradicts the fact that all ramification indices must divide 2 (again because L/k is unramified). Assume that an $\mathfrak{p} \mid d_2$ ramifies in both $k_1(\sqrt{\alpha})/k_1$ and $k_1(\sqrt{\alpha'})/k_1$; since primes dividing d_2 split in k_1/\mathbb{Q} and ramify in F/k_1 (where $F = k_2k_1$), \mathfrak{p} would ramify in all three quadratic extensions of k_1 contained in L, and again its ramification index would have to be ≥ 4 .

Now suppose that \mathfrak{p} is inert in $k_1(\sqrt{\alpha'})/k_1$. Then the prime ideal \mathfrak{P} in F above \mathfrak{p} is inert in K/F, and since L/F is cyclic, it is inert in L/F. Let e, f and g denote the order of the ramification, inertia and decomposition group V, T, and Z of \mathfrak{P} , respectively; we have seen that $e = 2, f \ge 4$ and $g \ge 2$. Since $efg = (L : \mathbb{Q}) = 16$, we must have equality. Thus k_1 is the splitting field, and we have $Z = \operatorname{Gal}(L/k_1)$. We know that $\operatorname{Gal}(L/k_1) \simeq D_4$, and since Z/T is always cyclic of order f, T must

fix a cyclic quartic extension of k_1 in L. But such an extension does not exist; this contradiction shows that \mathfrak{p} splits.

Finally, prime ideals \mathfrak{p} ramifying in $k_1(\sqrt{\alpha})/k_1$ divide α (otherwise \mathfrak{p} would be a prime above 2; but here we assume that d is odd, i.e. K/\mathbb{Q} is unramified above 2); they split in $k_1(\sqrt{\alpha'})/k_1$ if and only if $(\alpha'/\mathfrak{p}) = 1$. But now

$$\Big(\frac{x-y\sqrt{d_1}}{\mathfrak{p}}\Big) = \Big(\frac{2x}{\mathfrak{p}}\Big) = \Big(\frac{2x}{p}\Big),$$

where p is the prime under \mathfrak{p} ; here we have used that $x - y\sqrt{d_1} \equiv x - y\sqrt{d_1} + (x + y\sqrt{d_1}) \equiv 2x \mod \mathfrak{p}$. The proof above shows that $(2x/d_2) = (2/d_2)^j (d_1/d_2)_4$; since $(2/d_2) = (2/d_2)^j$, we conclude that \mathfrak{p} splits in $k_1(\sqrt{\alpha})/k_1$ only if $(d_1/d_2)_4 = 1$.

The proof in the case where one of the d_i is divisible by 8 is left to the reader. \Box

Theorem 2 contains many results on the solvability of negative Pell equations (due to Dirichlet, Epstein, Kaplan and others) as special cases. In fact, consider the case d = pqr, where $p \equiv q \equiv r \equiv 1 \mod 4$ are primes. Assume that (p/q) = (p/r) =-(q/r) = 1. Then $d = p \cdot qr$ is the only C_4^+ -factorization of d, hence $\operatorname{Cl}_2^+(k) \simeq (2, 2^n)$ for some $n \geq 2$. If $(p/qr)_4 = -(qr/p)_4$, then there exists a totally complex cyclic quartic extension unramified outside ∞ : this is only possible if $N\varepsilon = +1$ for the fundamental unit ε of $k = \mathbb{Q}(\sqrt{d})$. If $(p/qr)_4 = (qr/p)_4$, on the other hand, then the cyclic quartic extension is unramified everywhere, and if $(p/qr)_4 = (qr/p)_4 = -1$, it cannot be extended to a cyclic octic extension unramified outside ∞ : this shows that $\operatorname{Cl}_2(k) \simeq \operatorname{Cl}_2^+(k) \simeq (2, 4)$ in this case, and in particular, $N\varepsilon = -1$. Finding similar criteria or proving existing ones (e.g. those in [3]) is no problem at all.

3. MAIRE'S RESULT

In [9], C. Maire showed that a real quadratic number field k has infinite 2-class field tower if its class group contains a subgroup of type (4, 4, 4, 4). Here we will show that it suffices to assume that its class group in the strict sense contains a subgroup of type (4, 4, 4, 4). The method employed is taken from F. Hajir's paper [5].

Theorem 3. Let k be a real quadratic number field. If the strict ideal class group of k contains a subgroup of type (4, 4, 4, 4), then the 2-class field tower of k is infinite.

For the proof of this theorem we need a few results. For an extension K/k, let the relative class group be defined by $\operatorname{Cl}(K/k) = \ker(N_{K/k} : \operatorname{Cl}(K) \longrightarrow \operatorname{Cl}(k))$. Moreover, let G_p denote the *p*-Sylow subgroup of a finite abelian group G; we will denote the dimension of G/G^p as an \mathbb{F}_p -vector space by $\operatorname{rank}_p G$. Let $\operatorname{Ram}(K/k)$ denote the set of all primes in k (including those at ∞) which ramify in K/k; we will also need the unit groups E_k and E_K , as well as the subgroup $H = E_k \cap N_{K/k}K^{\times}$ of E_k . Then Jehne [6] has shown

Proposition 4. Let K/k be a cyclic extension of prime degree p. Then

 $\operatorname{rank} \operatorname{Cl}_p(K/k) \ge \#\operatorname{Ram}(K/k) - \operatorname{rank}_p E_k/H - 1.$

Let us apply the inequality of Golod-Shafarevic to the p-class group of K. We know that the p-class field tower of K is infinite if

$$\operatorname{rank}_p \operatorname{Cl}(K) \ge 2 + 2\sqrt{\operatorname{rank}_p E_K} + 1.$$

By Prop. 4, we know that

 $\operatorname{rank}_p \operatorname{Cl}(K) \ge \operatorname{rank}_p \operatorname{Cl}(K/k) \ge \#\operatorname{Ram}(K/k) - \operatorname{rank}_p E_k/H - 1.$

Thus K has infinite p-class field tower if

$$\#\operatorname{Ram}(K/k) \ge 3 + \operatorname{rank}_p E_k / H + 2\sqrt{\operatorname{rank}_p E_K} + 1.$$

We have proved (compare Schoof [11]):

Proposition 5. Let K/k be a cyclic extension of prime degree p, and let ρ denote the number of finite and infinite primes ramifying in K/k. Then the p-class field tower of K is infinite if

$$\rho \geq 3 + \operatorname{rank}_p E_k / H + 2 \sqrt{\operatorname{rank}_p E_K} + 1.$$

Here H is the subgroup of E_k consisting of units which are norms of elements from K, and rank_p G denotes the p-rank of G/G^p .

Proof of Thm. 3. Since the claim follows directly from the inequality of Golod-Shafarevic if rank $\operatorname{Cl}_2(k) \geq 6$, we may assume that $d = \operatorname{disc} k$ is the product of at most six positive prime discriminants, or of at most seven if one of them is negative. The idea is to show that a subfield of the genus class field of k satisfies the inequality of Prop. 5: this will clearly prove that k has infinite 2-class field tower.

Assume first that $d = \prod_{j=1}^{5} d_j$ is the product of five positive prime discriminants. If $\operatorname{Cl}^+(k)$ contains a subgroup of type (4, 4, 4, 4), then $d = d_1 \cdot d_2 d_3 d_4 d_5$ and $d = d_2 \cdot d_1 d_3 d_4 d_5$ must be C_4^+ -factorizations. Therefore, the d_j $(j \ge 3)$ split completely in $F = \mathbb{Q}(\sqrt{d_1}, \sqrt{d_2})$, hence there are 12 prime ideals ramifying in K/F, where $K = F(\sqrt{d_3 d_4 d_5})$. Since rank₂ $E_K = 8$, the condition of Prop. 5 is satisfied for K/F if rank₂ $E_F/H \le 3$. But since -1 is a norm in K/F (only prime ideals of norm $\equiv 1 \mod 4$ ramify), we have $-1 \in H$; this implies that rank₂ $E_F/H \le 3$.

Next suppose that $d = \prod_{j=1}^{6} d_j$ is the product of six positive prime discriminants. We will show in the next section (see Problem 7) that either there is C_4^+ -factorizations of type $d_1 \cdot d_2 d_3 d_4 d_5 d_6$ (then we can apply Prop. 5 to the quadratic extension $\mathbb{Q}(\sqrt{d}, \sqrt{d_1})/\mathbb{Q}(\sqrt{d_1})$, and we are done), or there exist (possibly after a suitable permutation of the indices) C_4^+ -factorizations $d_1 d_2 \cdot d_3 d_4 d_5 d_6$ and $d_1 d_3 \cdot d_2 d_4 d_5 d_6$. In this case consider $F = \mathbb{Q}(\sqrt{d_1 d_2}, \sqrt{d_1 d_3})$. The prime ideals above d_4, d_5, d_6 split completely in F/\mathbb{Q} , and applying Prop. 5 to $F(\sqrt{d})/F$ shows exactly as above that $F(\sqrt{d})$ has infinite 2-class field tower.

Now we treat the case where d is divisible by some negative prime discriminants. First assume that d is the product of six prime discriminants. In this case, all possible factorizations of d as a product of two positive discriminants must be a C_4^+ -factorization; unless d is a product of six negative discriminants, there exists a factorization of type $d_1 \cdot \prod_{j=2}^6 d_j$, where $d_1 > 0$ is a prime discriminant. In this case, we can apply Prop. 5 to $\mathbb{Q}(\sqrt{d}, \sqrt{d_1})/\mathbb{Q}(\sqrt{d_1})$. The case where all six prime discriminants are negative does not occur here: since all factorizations are C_4^+ , we must have $(d_i d_j/q_\ell) = +1$ for all triples (i, j, ℓ) such that $1 \leq i < j < \ell \leq 6$ (here q_ℓ is the unique prime dividing d_ℓ). At least one of these triples consist of odd primes $q \equiv 3 \mod 4$; call them q_1, q_2 and q_3 , respectively. We find $(q_1/q_3) = (q_2/q_3) = -(q_3/q_2) = -(q_1/q_2) = (q_2/q_1) = (q_3/q_1)$, contradicting the quadratic reciprocity law. Finally, if d is the product of seven prime discriminants, then (see Problem 8) there exists at least one C_4^+ -factorization of type $d = p \cdot **$ or $d = rr' \cdot **$, where $p \equiv 1 \mod 4$ and r, r' are either both positive or both negative prime discriminants (see Problem 8). Applying Prop. 5 to $\mathbb{Q}(\sqrt{d}, \sqrt{p})/\mathbb{Q}(\sqrt{p})$ or $\mathbb{Q}(\sqrt{d}, \sqrt{rr'})/\mathbb{Q}(\sqrt{rr'})$ yields the desired result.

Observe that the same remarks as in Hajir's paper apply: our proof yields more than we claimed. If, for example, d is a product of five positive prime discriminants and admits two C_4^+ -factorizations of type $d = d_1 \cdot d_2 d_3 d_4 d_5$ and $d = d_2 \cdot d_1 d_3 d_4 d_5$ then $k = \mathbb{Q}(\sqrt{d})$ has infinite 2-class field tower even if Cl(k) has 4-rank equal to 2.

We also remark that it is not known whether these results are best possible: we do not know any imaginary quadratic number field with 2-class group of type (4, 4) and finite 2-class field tower, and similarly, there is no example in the real case with $\operatorname{Cl}_2^+(k) \simeq (4, 4, 4)$. There are, however, real quadratic fields with $\operatorname{Cl}_2(k) \simeq (4, 4)$ and abelian 2-class field tower (cf. [2]).

4. Some Ramsey-type Problems

Let the discriminant $d = d_1 \dots d_t$ be the product of t positive prime discriminants. Let X be the subspace of \mathbb{F}_2^t consisting of 0 and $(1, \dots, 1)$, and put $V = \mathbb{F}_2^t/X$. Then the set of possible factorizations into a product of two discriminants corresponds bijectively to an element of V: in fact, a factorization of d is a product $d = \prod_j d_j^{e_j} \cdot \prod_j d_j^{f_j}$ with $e_j, f_j \in \mathbb{F}_2$ and $e_j + f_j = 1$, and it corresponds to the image of (e_1, \dots, e_t) in the factor space $V = \mathbb{F}_2^t/X$ (exchanging the two factors corresponds to adding $(1, \dots, 1)$). We will always choose representatives with a minimal number of nonzero coordinates. Moreover, the product defined on the set of factorizations of d corresponds to the addition of the vectors in V: the bijection constructed above is a group homomorphism.

Define a map $\mathbb{F}_2^t \longrightarrow \mathbb{N}$ by mapping (e_1, \ldots, e_t) to $\min\{\sum_{j=1}^t e_j, t - \sum_{j=1}^t e_j\};$ observe that the sum is formed in \mathbb{N} (not in \mathbb{F}_2). Since $(1, \ldots, 1) \longmapsto 0$, this induces a map $V \longrightarrow N$ which we will denote by S. Let V_{ν} denote the fibers of V over ν , i.e. put $V_{\nu} = \{u \in V : S(u) = \nu\}$. It is easy to determine their cardinality:

Lemma 6. If t = 2s is even, then $\#V_{\nu} = \begin{cases} \binom{t}{\nu} & \text{if } \nu < s \\ \frac{1}{2} \binom{t}{s} & \text{if } \nu = s \end{cases}$; if t = 2s + 1 is odd,

then $\#V_{\nu} = {t \choose \nu}$ for all $\nu \leq s$.

Now let us formulate our first problem:

Problem 7. Let t = 6, and suppose that $U \subseteq V$ is a subspace of dimension 4. If $U \cap V_1$ is empty, then the equation a + b + c = 0 has solutions in $U \cap V_2$.

Proof. Clearly #U = 16 and $\#(U \cap V_0) = 1$; if $U \cap V_1 = \emptyset$, then $\#(U \cap V_3) \le \#V_3 = 10$ implies that $\#(U \cap V_2) \ge 4$. But among four vectors in V_2 there must exist a pair $a, b \in U \cap V_2$ with a common coordinate 1 by Dirichlet's box principle; after permuting the indices if necessary we may assume that a = (1, 1, 0, 0, 0, 0) and b = (1, 0, 1, 0, 0, 0). Clearly $a + b = (0, 1, 1, 0, 0, 0) \in U \cap V_2$, and our claim is proved.

What has this got to do with our C_4^+ -factorizations? Well, consider the case where d is the product of six positive prime discriminants. The possible C_4^+ factorizations correspond to V; since rank $\operatorname{Cl}_4^+(k) \ge 4$, we must have at least four independent C_4^+ -factorizations, generating a subspace $U \subset V$ of dimension 4. Problem 7 shows that among these there is one C_4^+ -factorization with one factor a prime discriminant, or there are two C_4^+ -factorizations $d_1d_2 \cdot d_3d_4d_5d_6$ and $d_1d_3 \cdot d_2d_4d_5d_6$.

Now consider \mathbb{F}_2^t/X and define 'incomplete traces'

$$T_{2k}: \mathbb{F}_2^t/X \longrightarrow \mathbb{F}_2: (u_1, \dots, u_t) \longmapsto \sum_{j=1}^{2k} u_j$$

(here the sum is formed in \mathbb{F}_2). This is a well defined linear map, hence its kernel $V^{(2k)} = \ker T_{2k}$ is an \mathbb{F}_2 -vector space of dimension t-2. The elements of $V^{(2k)}$ correspond to the set of factorizations of a discriminant d into a product of two positive discriminants when 2k of the t prime discriminants dividing d are negative. Defining $S: V^{(2k)} \longrightarrow \mathbb{N}$ as above and denoting the fibers by $V_{\nu}^{(2k)}$, we find, for example, that $\#V_0^{(2k)} = 1$ and $V_1^{(2k)} = t-2k$. In the special case t = 7 we get, in addition, $\#V_2^{(2)} = 1 + \binom{5}{2} = 11$, $\#V_3^{(2)} = 5 + \binom{5}{2} = 15$, $\#V_2^{(4)} = 3 + \binom{4}{2} = 9$, $\#V_3^{(4)} = 1 + 3\binom{5}{2} = 19$, $\#V_2^{(6)} = \binom{6}{2} = 15$, and $\#V_3^{(6)} = \binom{6}{2} = 15$.

Problem 8. Let t = 7, $1 \le k \le 3$, and consider a 4-dimensional subspace U of $V^{(2k)}$. Then at least one of $U \cap V_1^{(2k)}$ or $U \cap V_2^{(2k)}$ is not empty.

Proof. Assume that $U \cap V_1^{(2k)} = U \cap V_2^{(2k)} = \emptyset$. Then $U \subseteq (V_0^{(2k)} \cup V_3^{(2k)})$. If k = 2 or k = 6, this leads at once to a contradiction, because then $\#V_3^{(2k)} = 15 = \#U - 1$, and $V_3^{(2k)} \cup V_0^{(2k)}$ is not a subspace in these cases (for example, $(0, 0, 1, 1, 0, 0, 1) + (0, 0, 1, 0, 1) = (0, 0, 0, 1, 1, 0, 0) \in V_2^{(2k)}$ for k = 2 and k = 6). Consider the case k = 4; since $U \cap V_3^{(2k)}$ contains 15 elements, there exists $u \in U \cap V_3^{(2k)} \setminus \{(0, 0, 0, 0, 1, 1, 1)\}$. Permuting the indices if necessary (of course we are not allowed to exchange one of the first 2k indices with one from the last t - 2k) we may assume that u = (1, 1, 0, 0, 0, 0, 1). It is easy to see that $V_3^{(2k)}$ contains exactly six elements v such that $u + v \in V_2^{(2k)}$: since $\#V_3^{(4)} = 19$ and $\#U \cap V_3^{(2k)} \setminus \{u, (0, 0, 0, 0, 1, 1, 1)\} \ge 14$, one of these v must be contained in $U \cap V_3^{(2k)}$. This shows that $V_3^{(2k)} \cup V_0^{(2k)}$ does not contain a subspace of dimension 4, and the proof is complete. □

References

- E. Benjamin, On the second Hilbert 2-class field of real quadratic number fields with 2-class groups isomorphic to (2,2ⁿ), preprint 1996
- [2] E. Benjamin, F. Lemmermeyer, C. Snyder, Real quadratic fields with abelian 2-class field tower, J. Number Theory, to appear 5
- [3] E. Benjamin, F. Lemmermeyer, C. Snyder, *Imaginary quadratic Fields k with cyclic Cl₂(k¹)*, J. Number Theory 67 (1997), 229-245, 3
- [4] L. Dirichlet, Einige neue Sätze über unbestimmte Gleichungen, Gesammelte Werke, 219– 236.
- [5] F. Hajir, On a theorem of Koch, Pac. J. Math. 176 (1996), 15-18 3
- [6] W. Jehne, On knots in algebraic number theory, J. Reine Angew. Math. 311/312 (1979), 215-254 3

- [7] P. Kaplan, Sur le 2-groupe des classes d'idéaux des corps quadratiques, J. Reine Angew. Math. 283/284 (1974), 313-363.
- [8] F. Lemmermeyer, Unramified quaternion extensions of quadratic number fields, J. Théor. Nombres Bordeaux 9 (1997), 51–68 2
- [9] C. Maire, Un raffinement du théorème de Golod-Shafarevic, preprint 1996 3
 [10] A. Scholz, Über die Lösbarkeit der Gleichung t² Du² = -4, Math. Z. **39** (1934), 95-111.

209 - 220 4

R. Schoof, Infinite class field towers of quadratic fields, J. Reine Angew. Math. 372 (1986),

BILKENT UNIVERSITY, DEPT. MATHEMATICS, 06800 BILKENT, ANKARA E-mail address: hb3@ix.urz.uni-heidelberg.de, franz@fen.bilkent.edu.tr