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Abstract. In this note we present techniques to compute inhomogeneous

minima of norm forms; as an application, we determine all norm-Euclidean

complex bicyclic quartic number fields.

1. Introduction

A number field K is said to be Euclidean (with respect to the norm), if for all
ξ ∈ K we can find η ∈ OK such that |NK/Q(ξ−η)| < 1. Although it is known since
the work of Davenport that there are only a finite number of Euclidean fields with
unit rank 1, only the quadratic Euclidean fields have been determined so far. In this
paper, we will determine the Euclidean normal quartic CM-fields (these are totally
complex quartic fields which contain a real quadratic subfield). According to a well
known theorem due to Cassels [3], such fields have discriminants < 230 202 117. In
fact, the bound given by Cassels was somewhat smaller, but his computations were
shown to contain an error by van der Linden [9]. Using Setzer’s solution of the
class number 1 problem for complex cyclic quartic number fields, van der Linden
was able to prove

Theorem 1. There are exactly two complex cyclic quartic fields that are norm-
Euclidean: Q(ζ5) and the quartic subfield of Q(ζ13).

He also gave bounds for disc K in case K is a complex bicyclic quartic field, but
did not attempt to determine them all. Making use of ideas of Sauvageot [10], we
will prove

Theorem 2. The Euclidean fields Q(
√
−m,

√
n ), m ∈ N, n ∈ Z, are given by

m = 1, n = 2, 3, 5, 7;
m = 2, n = −3, 5;
m = 3, n = 2, 5,−7,−11, 17,−19;
m = 7, n = 5.

2. Lower bounds for Euclidean minima

We begin by fixing the notation. For an algebraic number field K, OK denotes
its ring of integers, and EK its unit group. For an ideal a in OK , Na will always
denote the absolute norm of a, i.e. the index (OK : a). For ξ ∈ K, put

M(ξ, K) = inf {|NK/Q(ξ − α)| : α ∈ OK};
M(ξ,K) is called the Euclidean minimum of K at ξ (it can be proved that M(ξ,K)
is in fact a minimum; cf. [1], [2] or [8]); obviously, K is Euclidean if and only if
M(ξ,K) < 1 for all ξ ∈ K. Moreover,

M(K) = sup {M(ξ,K) : ξ ∈ K}
1
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is called the Euclidean minimum of K; we know that this supremum is a maximum
if K has unit rank ≤ 1, and we conjecture that this holds for all number fields.

There are three simple methods that allow us to prove that a given field is
not Euclidean: the use of ramified primes, the residue classes modulo ideals of
small norm, and the use of absolute values. These techniques have been used to
determine all quadratic Euclidean fields, and their usefulness has been stressed
again by Cioffari [5] in his determination of all pure cubic Euclidean fields.

Proposition 1. Let K/k be a finite extension of number fields of relative degree n,
and suppose that the prime ideal p in OK is completely ramified in K/k, i.e. that
pOK = Pn. If β ≡ αn mod p for some α, β ∈ OK \ p, and if there do not exist
b ∈ OK such that

(1) b ≡ β mod p;
(2) b = NK/kδ for some δ ∈ OK ;
(3) |Nk/Q b| < Np;

then K is not Euclidean.

Proof. Suppose that K is Euclidean; then there is a π ∈ OK such that P = πOK ,
and for ξ = α/π we can find η ∈ OK such that |NK/Q(ξ − η)| < 1. This implies
|NK/Q(α− ηπ)| < NP; put b = NK/k(α− ηπ). Then we find

(1) b ≡ β mod p, because α− ηπ ≡ α mod P and the fact that p is completely
ramified in K/k imply that NK/k(α−ηπ) ≡ NK/kα mod P as a congruence
in the normal closure of K/k. Since both sides are ∈ OK , the congruence
holds modP ∩ OK = p.

(2) b = NK/kδ for δ = α− ηπ is clear;
(3) |Nk/Qb| = |Nk/QNK/k(α− ηπ)| = |NK/Q(α− ηπ)| < NK/QP = Nk/Q p.

�

In the special case k = Q and p = pZ, there are only two b ∈ Z satisfying (1)
and (3), because |Nk/Q b| = |b| and |Np| = p. Moreover, if K is totally complex,
only positive b ∈ Z can be norms from K.

We note that we can use a modification of Proposition 1 to determine lower
bounds for M(ξ,K); but this will not be needed in the sequel. Moreover, there is
an immediate generalization to products of pairwise different completely ramified
prime ideals.

The idea behind our next result is due to Barnes and Swinnerton-Dyer (BSD).
Let ξ = ξ1 ∈ K and ε ∈ EK be given; it is easy to see that there is an m ∈ N such
that εmξ − ξ ∈ OK (we will often write ξ ≡ η mod OK for ξ − η ∈ OK). The set
Orb ε(ξ) = {ξ = ξ0, ξ1, . . . , ξ`−1 : ξj ≡ εjξ mod OK , 1 ≤ j ≤ `} of representatives
mod OK of the εjξ is called the orbit of ξ. It is clear from the definition of the
Euclidean minimum that M(ξ0,K) = ... = M(ξ`−1,K) for all ξi ∈ Orb ε(ξ).

Proposition 2. Let K = Q(
√

m,
√

n ) be an imaginary bicyclic number field, ξ ∈
K, and suppose that {ξ = ξ0, . . . , ξ`−1} = Orb ε(ξ) for a unit ε ∈ O×K , where
|ε| > 1 for some fixed embedding | · | of K into C. If M(ξ,K) < κ for some κ ∈ R,
then there is an element α = r1 + r2

√
m + r3

√
n + r4

√
mn ∈ K with the following

properties:
(1) α ≡ ξj mod OK for some 0 ≤ j ≤ `− 1;
(2) |NK/Q α| < κ;
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(3) |ri| ≤ µi for 1 ≤ i ≤ 4, where the bounds µi are defined by

µ1 = 1
2

4
√

κ
(√

|ε|+ 1/
√
|ε|

)
, µ2 = µ1/

√
|m|,

µ3 = µ1/
√
|n|, µ4 = µ1/

√
|mn|.

Proof. Assume that M(ξ,K) < κ; then |NK/Q(ξ − η)| < κ for some η ∈ OK . Since
|ε| > 1, we can find n ∈ N such that

4
√

k ·
√
|ε| −1 ≤ |(ξ − η)εn| < 4

√
κ ·

√
|ε|.

If we let α = (ξ− η)εn, α will satisfy conditions 1. (with j ≡ n mod `) and 2. Now

4|r1| = |α + α′ + α′′ + α′′′| ≤ 2|α|+ 2|α′|,
where α, α′, α′′, α′′′, are the conjugates of α, and where α′′ denotes the complex
conjugate of α (this implies |α′′| = |α|). The inequality

0 < ( 4
√

κ ·
√
|ε| − |α|)( 4

√
κ ·

√
|ε| − |α′|)

=
√

κ · |ε| − 4
√

κ ·
√
|ε| (|α|+ |α′|) + |αα′|,

together with |αα′|2 = Nk/Qα < κ yields 4|r1| < 4µ1. Similarly, we get

4|r2

√
m| = |α− α′ + α′′ − α′′′| ≤ 2|α|+ 2|α′| < 4µ1 etc.,

if we assume that
√

m is fixed by complex conjugation, i.e. that m > 0. In case
m < 0, we have to switch some signs in |α−α′+α′′−α′′′|, but this does not change
the resulting bound. �

Propositions 3 and 4 below will not be needed for the proofs of Theorems 1 and
2; they are included because they might turn out to be useful in the determination
of Euclidean CM-fields of higher degree.

Proposition 3. Let L be a CM-field with maximal real subfield K; if L is norm-
Euclidean, but K is not, then NK/Q disc(L/K) < 4(K:Q).

Proof. Suppose that L is Euclidean; for every ξ ∈ K we can find η ∈ OL such that
NL/Q(ξ − η) < 1. Let σ denote complex conjugation; then

NL/K(ξ − η) = (ξ − η)(ξ − ησ) = ξ2 − ξ(η + ησ) + ηησ

= 1
4

(
(2ξ − TL/Kη)2 − (η − ησ)2

)
.

= 1
4

((
2ξ − TL/Kη

)2 + NL/K(η − ησ)
)

.

Choose ξ ∈ K with M(ξ,K) ≥ 1; this implies η 6= ησ, because otherwise

NL/Q(ξ − η) = NK/Q(ξ − η)2 ≥ M(ξ,K) ≥ 1.

Therefore, 0 6= η − ησ ∈ diff(L/K), i.e. diff(L/K)|(η − ησ). Hence

NL/K(ξ − η) ≥ 1
4

(
NL/K(η − ησ)

)
,

1 > NL/Q(ξ − η) ≥ 4−(K:Q)NK/Q
(
NL/K(η − ησ)

)
≥ 4−(K:Q)NL/Q diff (L/K),

and the asserted inequality follows from disc (L/K) = NL/K diff (L/K). �

Proposition 4. Let L be a CM -field with maximal real subfield K; if diff(L/K) ≡
0 mod 2, then M(L) ≥ M(K)2.

This result is best possible: for L = Q(ζ12) and K = Q(
√

3 ) we actually have
equality since M(K) = 1

2 and M(L) = 1
4 .
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Proof. If diff(L/K) ≡ 0 mod 2, then 2 | TL/Kη. Moreover, TL/Kη = η + ησ ≡
η−ησ mod 2 for every η ∈ OL. Therefore, NL/K(ξ−η) =

(
ξ − 1

2TL/Kη
)2−(η−ησ)2

for every ξ ∈ K, and so NL/Q(ξ − η) ≥ NK/Q(ξ − 1
2TL/Kη)2 ≥ M(ξ, K)2. This

proves the claim. �

3. Normal quartic CM-fields

In this section we will prove that if K is a normal quartic Euclidean CM-field,
then K is one of the fields listed in Theorem 1 or 2.

3.1. Cyclic Fields. Suppose first that K is a cyclic complex quartic number field;
if K is Euclidean, its class number is 1 and according to Setzer, its conductor
belongs to the set {5, 13, 16, 29, 37, 53, 61}.

The field with conductor f = 16 is K = Q
(√

−2 +
√

2
)
; it has fundamental unit

ε = 1 +
√

2. Therefore, the residue class 1 +
√
−2 +

√
2 mod 2 does not contain

units; since (3) is inert in K/Q, it does not contain an element of norm 3. The
primes 5, 7, 11, 13 do not split completely in K/Q, so there are no elements in
OK \ EK with odd norms < 24: this shows that K is not Euclidean.

Next we apply Proposition 1 to K/Q with p = pZ and with the values of α, β
given in the following table:

p 29 37 53 61
α 6 14 15 4
β 20 10 10 12

In order to show that β is not a norm in K/Q (β − p is never norm because
norms from K are always positive), just notice that (2/p) = −1.

We remark that it is easy to prove Thm. 1 without making use of Setzer’s results:
if a cyclic quartic complex field L has odd class number, then its conductor must
be a prime power. Since the quadratic fields with prime power discriminant > 73
are not norm Euclidean, Prop. 3 shows that any norm Euclidean L with conductor
p > 73 must satisfy p = NK/Q disc(L/K) < 42 = 16. This contradiction shows that
f ≤ 73. Now we compute the class numbers for the fields in this finite list and
continue as above.

3.2. Bicyclic Fields. Next we will deal with bicyclic fields. Let D(m,n) denote
the ring of integers in Q(

√
m,
√

n ) and suppose that D(m,n) is Euclidean. We will
distinguish the following cases:

I. D(m,n) contains an ideal of norm 2. Since D(m,n) has class number 1,
this ideal of norm 2 is principal. Taking relative norms shows that each of the
two complex quadratic subfields of Q(

√
m,
√

n ) contains an element of norm 2.
The only such fields are Q(

√
−1 ), Q(

√
−2 ), and Q(

√
−7 ), and this leaves us with

D(−1, 2), D(−1, 7) and D(−2,−7).
Let R = D(−2,−7); we know that 2R = (2122)2 for prime ideals 21, 22 of norm

2. If R were Euclidean, the prime residue classes mod m = 22
122 would contain

elements of odd norm < 8 = Nm. Since the unit group is generated by −1 and
ε = 2

√
−2 +

√
−7, the congruence −1 ≡ ε ≡ 1 mod 2 shows that only the residue

class 1 mod m contains units. Since there are no elements of norm 3, 5, or 7 in R,
this ring is not Euclidean.
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II. D(m,n) does not contain an ideal of norm 2. This implies that 2 is inert
in one of the quadratic subfields of K; there are the following possibilities:

(A) 2 is inert in the real subfield and ramified in the complex subfields;
Let R = D(m,n); we may assume that m ≡ 2, 3 mod 4, n ≡ 5 mod 8 and
n > 0. At least one of the complex quadratic subfields contains an element
of norm 2: otherwise, both subfields would have class number > 1, and
since K is ramified over at most one of them, K would have non-trivial
class number. Therefore, K contains Q(

√
−1 ) or Q(

√
−2 ): the possibility

Q(
√
−7 ) is excluded since we assumed that m ≡ 2, 3 mod 4.

(A.1) R = D(−1, n), n ≡ 5 mod 8
If R is Euclidean, the residue class 1+

√
−n

1+i mod 2 contains an element α ∈
R such that Nα < 16. This implies that NK/Q(

√
−n)α ≡

√
−n mod 2.

Therefore, Q(
√
−n ) contains an element β ≡

√
−n mod 2 of norm < 16.

This shows n < 16, i.e. n ∈ {5, 13}.
Let R = D(−1, 13); we will apply Proposition 1 with k = Q(i),K =

Q(i,
√

13 ), p = (3 + 2i), α = 2, β = 4. The only b ∈ Z[i] satisfying (1) and
(3) are b = −1+ i and b = 1− 2i: since the prime ideals (1− i) and (1− 2i)
remain inert in K, these b cannot be norms, and we get a contradiction.

(A.2) R = D(−2, n), n ≡ 5 mod 8
We look at the residue class α ≡

√
−2n + 1

2 (1 +
√

n) mod 2 instead and
find that Z[i] contains an element ≡ 1 +

√
−2n mod 2 of norm < 16. Now

n ≡ 5 mod 8 and 1 + 2n < 16 imply n = 5.
(B) 2 is inert in a complex subfield and ramified in the real subfield;

Here we may assume that m ≡ 2, 3 mod 4, n ≡ 5 mod 8 and n < 0. Apply
Proposition 1 with k = Q(

√
n),K = Q(

√
m,
√

n ), p = 2OK , β = 1
2 (1+

√
n);

note that β is a square mod 2 since OK/2OK has order 3. If D(m,n) is
Euclidean, OK must contain an element ≡ β mod 2 with norm < 4; obvi-
ously, β is no unit if n < −3, and this implies that Nk/Qβ = 3. Therefore,
n ∈ {−3,−11}, and if n = −11, β must be norm of an element in D(m,n)
with absolute norm 3. Taking the relative norm to Q(

√
m ) of this element

shows that Z[
√

m ] contains an element of norm 3, and this gives m = −2.
In order to show that D(−2,−11) is not Euclidean, we apply Proposition 2
with t = 2, κ = 6523

5808 , and ξ = ξ1 = 13
66

√
−11(1−

√
−2), ε = 7

√
−2+3

√
−11.

This implies ξε2 ≡ ξ mod R, and µ1 ≈ 2.41, µ2 ≈ 1.71, µ3 ≈ 0.73, µ4 ≈
0.52, so only a few values have to be tested.

We are left with R = D(m,−3). Let ρ be a primitive third root of unity,
and let Nm denote the relative norm of K/Q(

√
m). If there is an element

α ≡ ρ+
√

m mod 2, then Nmα ≡ m+1+
√

m mod 2. In case m ≡ 2 mod 4,
this implies the existence of an element β ≡ 3+

√
m mod 2 with norm < 16

in Z[
√

m] and this yields |m| < 16. The only domains with class number 1
among these are D(2,−3) and D(−2,−3). Similarly, in case m ≡ 3 mod 4
we find only D(−1,−3).

(C) 2 is unramified in K.
Write R = D(m,n) and assume that m,n < 0. If R is Euclidean, then
the residue class α ≡ 1

2 (1 +
√

m) mod 2 contains an element of norm < 16;
therefore, one of the classes 1

2 (1 ±
√

m), 1
2 (3 ±

√
m) mod 2 contains such
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an element, and this implies |m| < 64. Similarly, |n| < 64, and among the
remaining D(m,n), only the following have class number 1:

m = −3, n = −7,−11,−15,−19,−43,−51;
m = −7, n = −11,−19,−35,−43;
m = −11, n = −19.

Applying Proposition 1 to K = Q(
√

m,
√

n ) and k = Q(
√

n ), we can
exclude the following fields:

m n α p b mod p

− 3 −43 1
2 (1 +

√
−43) (3)

√
−43

− 7 −11 2 +
√
−11 (7) −3

√
−11

− 7 −19 2 1
2 (3 +

√
−19) −3

− 7 −43 1
2 (3 +

√
−43) (7) 1

2 (−3 + 3
√
−43)

− 11 −19 4 1
2 (5 +

√
−19) 5

This takes care of the negative part of Theorem 2. In order to prove that the
fields listed there (as well as a few others, cf. [8]) are in fact Euclidean, we used
programs written in BASIC (partial results have been obtained by Lakein [6]).
The algorithms are described in [4] for the case of cubic fields; we hope to present
computational results for the quartic case in the near future. Here is what is known
about the Euclidean minima of the fields in Thm. 2:

m n M(K)
−1 −2 1/2

−3 1/4
5 5/16

−7 1/2
−7 5 9/16
−2 5 11/16

m n M(K)
−3 2 ≥ 1/4

−2 1/3
5 1/4

−7 4/9
−11 < 0.46

17 13/16
−19 < 0.95

4. A family of bicyclic fields

It is known that there exist constants c1, c2 > 0 such that, for complex quartic
fields K with discriminant disc K, we have c1 disc K ≤ M(K) ≤ c2 disc K. In this
section, we show that c1 ≤ 1

32 disc K ≤ c2 by computing M(K) for a family of
bicyclic quartic fields K:

Theorem 3. Let n be an odd integer, and put m = n2 +1. Put K = Q(
√
−1,

√
m )

and let O denote the order Z[i,
√

m, 1
2 (
√

m +
√
−m) ]. Then M(O) = m

4 , and the
minimum is attained at ξ ≡ 1

2 (1+i+
√

m) mod O. In particular, if m is squarefree,
then M(K) = m

4 .

Note that ∆ = disc K = 43m2,
√

∆ = 8m, and M(K) = 1
32

√
∆.

Proof. Put m = n2 + 1, θ = n +
√

m; it is easy to see that O = Z[i, θ, γ] with
γ = 1

2 (1 + i + θ + iθ). Consider the set

F = {ξ = x + yθ |x = a + bi, y = c + di, |a|, |b|, |c|, |d| ≤ 1
2}.
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Then F clearly contains a fundamental domain of the lattice O. Thinking of Z[i]
as being contained in C we see that NK/Q(ξ) = |x2 + 2nxy − y2|2. Therefore ξ is
an exceptional point for k = 1

4n2 = m−1
4 if and only if |x2 + 2nxy − y2| ≥ n

2 .

Lemma 1. Consider the lattice Λ = (1, 0)Z ⊕ ( 1
2 , 1

2 )Z in R2. Then for every
(r, s) ∈ R2 there exists a lattice point (e, f) ∈ Λ such that |r − e|+ |s− f | ≤ 1

2 .

This lemma is verified by sketching the fundamental domain of Λ.
Applying Lemma 1 to the ‘y-coordinate’ of our 4-dimensional lattice we see that,

by subtracting appropriate multiples of θ and γ we can find a translate of ξ such
that |c| + |d| ≤ 1

2 ; subtracting multiples of 1 and i we can make |a|, |b| ≤ 1
2 . This

gives at once |x|2 = a2 + b2 ≤ 1
2 and |y|2 = c2 + d2 ≤ (|c|+ |d|)2 ≤ 1

4 . Thus, if ξ is
k-exceptional, we must have

n

2
≤ |x2 + 2nxy − y2| ≤ |x|2 + 2n|xy|+ |y|2 ≤ 1

2
+ n|x|+ 1

2
= n|x|+ 1

4
.

This implies that |x| ≥ 1
2 −

3
4n .

Similarly we can obtain |a|+ |b| ≤ 1
2 and |c|, |d| ≤ 1

2 , and the same computation
shows that any exceptional point ξ must satisfy |y| ≥ 1

2 −
3
4n .

Now the only subsets of F which can possibly contain exceptional points are

S1 = (0, 1
2 , 1

2 , 0) + [−δ, δ]× [−δ, δ]× [−δ, δ]× [−δ, δ] and
S2 = ( 1

2 , 0, 1
2 , 0) + [−δ, δ]× [−δ, δ]× [−δ, δ]× [−δ, δ]

(observe that (0, 1
2 , 1

2 , 0) ≡ ( 1
2 , 0, 0, 1

2 ) mod O).
Next we claim that ( 1

2 , 0, 1
2 , 0) is the only possible k-exceptional point contained

in S2.

These bounds allow the application of [4, Thm. 3 ], and we find that ξ1 = 1
2 (i+θ)

and ξ2 = 1
2 (1+θ) are the only possible exceptional points of F . Moreover, N(ξ1) =

m
4 and N(ξ2) = m−1

4 show that M(K) ≤ M(ξ,K) = m
4 and M2(K) ≤ m−1

4
In order to prove that M(ξ,K) ≥ m

4 we assume that a, b, c, d ∈ Q satisfy the
congruences a ≡ d ≡ 0, b ≡ c ≡ 1

2 mod Z. Putting x = a+ bi and y = c+di we find
the congruences

2xy ≡ 2(ac− bd) + 2(ad + bc)i ≡ i
2 mod Z[i], and

x2 − y2 ≡ a2 − b2 − c2 + d2 + 2(ab− cd)i ≡ 1
2 mod Z[i].

Thus |Re (x2 + 2nxy − y2)| ≥ 1
2 and |Im (x2 + 2nxy − y2)| ≥ n

2 , hence N(ξ − α) ≥
1
4 (1 + n2) = m

4 for all α ∈ O. This proves our claim for all n ≥ 7; for n = 1, 3, 5 it
is verified by computer. �
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