
HIGHER DESCENT ON PELL CONICS.
III. THE FIRST 2-DESCENT

FRANZ LEMMERMEYER

In [Lem2003b] we have sketched the historical development of problems related
to Legendre’s equations ar2−bs2 = 1 and the associated Pell equation x2−dy2 = 1
with d = ab. In [Lem2003c] we discussed certain “non-standard” ideas to solve the
Pell equation. Now we move from the historical to the modern part: below we will
describe the theory of the first 2-descent on Pell conics and explain its connections
to some of the results described in [Lem2003b], leaving the theory of the second
2-descent and its relations to results from [Lem2003c] to another occasion.

As everyone familiar with the basic arithmetic of elliptic curves will notice, many
of the results (e.g. those on heights) presented here are special cases of more general
theorems.

1. Pell Conics

Since it is our ultimate goal to develop a theory of the Pell equation that is
as close to the theory of elliptic curves as possible, we will first introduce a more
geometric language.

We will work over a commutative ring R with a unit element, which most ofen
is Z, Zp, or a finite field of odd characteristic. Thus we may and will assume that
R is an integral domain with a quotient field of characteristic 6= 2.

Working with the Pell equation X2 − dY 2 = 1 leads to numerous problems
(not insurmountable, but annoying). For this reason we will work exclusively with
X2 −∆Y 2 = 4, where

∆ =

{
d if d ≡ 1 mod 4,
4d if d ≡ 2, 3 mod 4

.

Here and in the rest of this article, d will always denote a squarefree integer; in
particular, ∆ is squarefree or 4 times a squarefree number. The equation X2 −
∆Y 2 = 4 with ∆ ∈ R describes a plane algebraic affine curve C, and the set

C(R) = {(x, y) ∈ R×R : x2 − dy2 = 4}

is called the set of R-integral points on the conic.
We now define a group law on the set C(Q) of rational points on C by fixing the

neutral element N = (2, 0) and defining P + Q = R for points P,Q,R ∈ C(Z) by
letting R denote the second point of intersection of the parallel to PQ through N
(see Figure 1).

Proposition 1.1. The sum of the two points P = (r, s) and Q = (t, u) in C(Q) is

P +Q =

{(
r2+∆s2

2 , rs
)

= (r2 − 2, rs) if P = Q,(
2∆(s−u)2+(r−t)2

∆(s−u)2−(r−t)2 , 4 (r−t)(s−u)
∆(s−u)2−(r−t)2

)
if P 6= Q.

(1)

1
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Figure 1. Addition Law on Pell Conics

Observe that these formulas work in any field in which ∆ is not a square; this
condition guarantees that the denominator ∆(s−u)2− (r− t)2 is nonzero whenever
P 6= Q.

Proof. For adding the points P = (r, s) and Q = (t, u), we have to draw a parallel
to the line PQ through N and compute its second point of intersection with C.
Lines through N = (2, 0) have the equation Y = m(X − 1).

If P = Q, then the slope m of the the tangent at P can be computed by taking
the derivative of the curve equation and solving for Y ′; we find Y ′ = x

∆y , hence
m = r

∆s in P = (r, s). A simple calculation yields X = 1
2 (r2 + ∆s2) = r2 − 2 and

Y = rs.
Now assume that P 6= Q; if r = t, then P = (r, s) and Q = (r,−s), and the line

through N parallel to PQ is tangent to N , that is, we have P +Q = N ; this agrees
with the formulas above.

Thus we may assume that r 6= t; the line through PQ has slope m = s−u
r−t .

Intersecting this line with C leads to

(X − 2)
[
X + 2−∆m2(X − 2)

]
= 0;

since X = 2 gives the point N , the X-coordinate of the second point of intersection
is given by

X = 2
∆m2 + 1
∆m2 − 1

.

Plugging in m = s−u
r−t , we find

P +Q =
(
2
∆(s− u)2 + (r − t)2

∆(s− u)2 − (r − t)2
,
s− u

r − t
(X − 2)

)
.

Now observe that s−u
r−t (X − 2) = 4 (r−t)(s−u)

∆(s−u)2−(r−t)2 . �

Since we are interested in the integral and not the rational solutions of Pell
equations, the geometric group law does not seem to be very helpful. Fortunately,
all is not lost:
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Proposition 1.2. The addition formula (1) is valid over Z: we have

2
∆(s− u)2 + (r − t)2

∆(s− u)2 − (r − t)2
=
rt+ ∆su

2
, 4

(r − t)(s− u)
∆(s− u)2 − (r − t)2

=
ru+ st

2
,

hence P +Q = ( rt+∆su
2 , ru+st

2 ) ∈ C(Z) for points P = (r, s) and Q = (t, u) in C(Z).

Proof. There is nothing to show if P = Q since, in this case, the coordinates of
P +Q are obviously integral.

Thus we only have to consider the case P 6= Q. We have to show that the
denominator ∆(s− u)2 − (r− t)2 divides the numerator. Now we can simplify this
expression by observing

∆(s− u)2 − (r − t)2 = ∆s2 − r2 + ∆u2 − t2 + 2rt− 2∆su = 2(rt−∆su− 4).

Since (rt−∆su− 4)(ru+ st) = 4(r − t)(s− u), this gives

4
(r − t)(s− u)

∆(s− u)2 − (r − t)2
= 4

(r − t)(s− u)
2(rt−∆su− 4)

=
(rt−∆su− 4)(ru+ st)

2(rt−∆su− 4)
=
ru+ st

2
.

Observe that if ∆ ≡ 1 mod 4, then r ≡ s, t ≡ u mod 2, hence ru+ st ≡ 0 mod 2.
Now let us look at the numerator of the x-coordinate; since

4(r2 + ∆s2 + t2 + ∆u2) = (t2 −∆u2)(r2 + ∆s2) + (r2 −∆s2)(t2 + ∆u2)

= 2(r2t2 −∆2s2u2) = 2(rt+ ∆su)(rt−∆su),

we find

2[∆(s− u)2 + (r − t)2] = 2[r2 + ∆s2 + t2 + ∆u2 − 2(rt+ ∆su)]

= (rt+ ∆su)(rt−∆su)− 4(rt+ ∆su)]

= (rt+ ∆su)(rt−∆su− 4).

This finally shows

2
∆(s− u)2 + (r − t)2

∆(s− u)2 − (r − t)2
=

(rt+ ∆su)(rt−∆su− 4)
2(rt−∆su− 4)

=
rt+ ∆su

2
,

and now it follows as before that the x-coordinate of P +Q is integral. �

These addition formulas also show that we have a group law over any ring in
which 2 is a unit or a prime, such as Fq for odd prime powers q, the ring Zp of
p-adic integers and its quotient field Qp, or the rings ZS of S-integers.

The group law on Pell conics has a well known algebraic interpretation: consider
the maximal order OK = Z[ 12 (∆ +

√
∆) ] of the quadratic number field K with

discriminant ∆; sending (x, y) ∈ C(Z) to the unit 1
2 (x + y

√
d ) ∈ O×K induces a

bijection φ : C(Z) −→ O×K .

Corollary 1.3. The map φ defined above is an isomorphism of groups.

Proof. Since φ is bijective, it is sufficient to show that it is a homomorphism; but
this is clear from(r + s

√
∆

2

)( t+ u
√

∆
2

)
=

1
2

(rt+ ∆su
2

+
ru+ st

2

√
∆

)
and Proposition 1.2. �
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2. History of Group Laws

Describing the history of group laws, whether on elliptic curves or on conics, is
a difficult task for various reasons: first, because the concept of abstract groups
developed very slowly; in fact, the axioms for abstract groups did not become
common knowledge until the 1890s. The second reason is that the group laws were
first discovered in a complex environment: the fact that the points on the unit
circle S1 form a group had been known implicitly since Gauss identified S1 with
the set of complex numbers with absolute value 1; these form a group with respect
to multiplication, as is evident from the relation eiseit = ei(s+t) known to Euler.
But who first realized that the set of rational points on S1 also form a group?

It is somewhat surprising that the algebraic group structure on the unit circle
C was first defined not over Q but over the finite rings R = Z/nZ: Schönemann
[Sch1839] showed that the set C(Z/nZ) = {(x, y) ∈ Z/nZ : x2 + y2 ≡ 1 mod n} is
closed with respect to the addition (x, y) + (x′, y′) = (xx′− yy′, xy′ + x′y). He also
showed that #C(Z/pZ) = p − (−1

p ) annihilates the group C(Z/pZ). Schönemann’s
language was algebraic; the geometric definition of a group law on conics was given
by Juel [Jue1896, p. 101]1 who stated it only for circles and hyperbolas. In a
review for the Fortschritte der Mathematik, Stäckel [Sta1896] writes about Juel’s
parametrization of conics (see Figure 2):

[Die Parameterdarstellung] beruht auf einer eigentümlichen Art
geometrischer Addition, die sich übrigens unter anderem Namen
schon bei v. Staudt findet. Ist nämlich E ein fester Curvenpunkt, so
stehen die drei Curvenpunkte A,B,C in der Beziehung A+B = C,
wenn die Geraden AB und EC sich auf einer festen Geraden OU
schneiden.2

Figure 2. Addition Law on Conics

By taking OU to be the line at infinity we recover the geometric group law
defined above.

1This paper also contains the first explicit statement of the group law on elliptic curves.
2[The parametrization] is based on a remarkable way of geometric addition, which can be found

in a different guise already in the work of v. Staudt. In fact, if E is some fixed point on the curve,
then the three points A, B, C on the curve satisfy A + B = C if and only if the lines AB and EC

intersect on some fixed line OU .
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Veblen & Young [VY1910] gave a simplified account of von Staudt’s theory of
throws, describing the geometric group law on affine lines and on certain conics.

The article [Nie1908] by Niewenglowski (mentioned by Dickson [Dic1920, vol II,
p. 396]) also contained a hint at the geometric group law on conics. Niewenglowski
considers the hyperbola x2 − ay2 = 1 and writes

Soient A(1, 0) le sommet, A1(x1, y1) le premier point entier à coor-
données positives; la parallèle menée par A à la tangente an A1 don-
nera le point A2(x2, y2); la corde A1A3 sera parallèle à la tangente
en A2, etc., et l’on obtiendra ainsi tous les points à coordonnées
entières et positives.3

The fact that certain arithmetic techniques concerning curves of genus 1 admit a
geometric interpretation became common knowledge at the end of the 19th century
through the work of Lucas and Sylvester (see Schappacher [Sch1990]). The algebraic
geometer E. Turrière [Tur1915] became interested in number theoretic problems in
1915, when he discussed Fibonacci’s question whether 5 is a congruent number
using the hyperbolas y2 − x2 = a and z2 − x2 = b, as well as the cubic uv(u− v) =
av− bu. In a series of articles [Tur1916, Tur1917, Tur1918] he then put forward his
‘arithmogeometry’, a geometric investigation of rational points on algebraic curves.
His plead for a new ‘arithmetic geometry’ seems to have fallen on deaf ears; I am
not aware of a single reference to these articles.

Now consider Pythagorean triples (a, b, c), that is, integral solutions of a2 + b2 =
c2. We call (a, b, c) primitive if gcd(a, b) = 1; every Pythagorean triple can be
written in the form (λa, λb, λc) for some nonzero integer λ and a primitive triple
(a, b, c), and Pythagorean triples that are multiples of the same primitive triple are
called equivalent.

Idenitfying the equivalence class of the Pythagorean triple (a, b, c) with the ra-
tional point (a

c ,
b
c ) on the unit circle gives a group structure to equivalence classes

of Pythagorean triples. Olga Taussky [Tau1970] also identified the triples (a, b, c),
(−a, b, c), (−b,−a, c) and (a,−b, c) coming from multiplication by i on S1; thus
Taussky’s group of Pythagorean triples is isomorphic to C(Q)/C(Q)tors, where
C(Q)tors = 〈(0, 1)〉 is the torsion group of C(Q). Eckert [Eck1984] proved that
this group is free abelian, and in fact is a direct sum of infinitely many copies of
Z, one for each prime p ≡ 1 mod 4. This was rediscovered by Tan [Tan1996], who
worked with the group C(Q) instead. Shastri [Sha2001] determined the group of
integral points on the unit circle over number fields.

Other articles dealing with group (or ring) structures on the set of Pythagorean
triples are Baldisserri [Bal1999], Beauregard & Suryanarayan [BS1996, BS1997,
BS1999], Dawson [Daw1994], Grytczuk [Gry1997], Hlawka [Hla2000], Wojtowicz
[Woi2001], and Zanardo & Zannier [ZZ1991], whereas Mariani [Mar1962] and Morita
[Mor1986] study groups acting on Pythagorean triples.

In the modern mathematical literature, the group law on conics is hardly ever
discussed; an exception is the book [PS1997] by Prasolov & Solovyev, or the web
site
http://www-cabri.imag.fr/abracadabri/Algebre/Groupes/FoliumD.html,

3Let A(1, 0) be the vertex, A1(x1, y1) the first integral point with positive coordinates; the

parallel through A to the tangent at A1 will give the point A2(x2, y2); the secant A1A3 will be
parallel to the tangent at A2, etc., and in this way we obtain all the integral points with positive

coordinates.



6 FRANZ LEMMERMEYER

which contains a detailed exposition of the group law on conics.

3. The First 2-Descent

The conic C : X2 −∆Y 2 = 4 comes attached with an isomorphism

ψ : C(Q) −→ K×[N ] : (x, y) 7−→ x+ y
√

∆
2

from the group of rational points on C to the elements of norm 1 in K×, where
K = Q(

√
∆ ) is the quadratic number field with discriminant ∆. We know that ψ

restricts to an isomorphism C(Z) −→ O×K .

3.1. The Set of First Descendants. Now consider any integral point (x, y) ∈
C(Q) on the Pell conic C : X2 −∆Y 2 = 4. Write ∆y2 = x2 − 4 = (x − 2)(x + 2).
Since gcd(x+ 2, x− 2) | 4, there are three possible cases:

(1) x ≡ 1 mod 2: then ∆ ≡ 5 mod 8, gcd(x− 2, x+ 2) = 1, hence x+ 2 = ar2

and x− 2 = bs2, where ab = ∆. Thus ar2 − bs2 = 4.
(2) x ≡ 2 mod 4: then we find gcd(x − 2, x + 2) = 4, hence x + 2 = ar2,

x− 2 = bs2, and again ar2 − bs2 = 4.
(3) x ≡ 0 mod 4: then ∆ = 4d with d ≡ 3 mod 4 and gcd(x− 2, x+ 2) = 2, so

x+ 2 = 2Ar2, x− 2 = 2Bs2 with ab = d, hence ar2 − bs2 = 4 for a = 2A,
b = 2B and ab = ∆.

The curves Ta : ar2 − bs2 = 4 are called the first descendants of X2 −∆Y 2 = 4.
Every integral point on C comes from an integral point on one of the descendants.

If ∆ < 0, then x2 + |∆|y2 = 4 implies that x2 ≤ 4, which in turn shows that
x + 2 > 0 unless x = −2. Thus the descendants all have the form Ta for positive
integers a.

If ∆ > 0, then x ≥ 2 or x ≤ −2. The points with x > 0 come from descendants
Ta : ar2 − bs2 = 4 with a > 0. If (x, y) is such a point, then the points (−x,±y)
will come from the descendant T−∆/a : −br2 + as2 = 4 (or, if 4 | ∆, from T−∆/4b)
describing the same curve (up to a change of variables) as Ta. It is therefore
sufficient to consider descendants Ta for a > 0 squarefree.

Theorem 3.1. Every integral solution (x, y) of the Pell equation X2 − ∆Y 2 = 4
gives rise to an integral solution of one of the equations Ta : ar2 − bs2 = 4, where
a and b are integers such that ab = ∆, and where a is squarefree.

Conversely, any integral solution (r, s) of Ta gives rise to an integral solution
(x, y) of the Pell equation, where x = ar2 − 2 and y = rs.

Remark 1. If ∆ = 4d with d ≡ 3 mod 4, the descendants T2a : 2ar2 − 2bs2 = 4
with 4ab = ∆ coincide with the curves ar2 − bs2 = 2 occurring in the theory of
Legendre (see [Lem2003b, Section 2]).

Remark 2. Assume that ar2 − bs2 = 4, where ab = ∆. If s = 1 is a solution, then
b = ar2 − 4, hence ∆ = ab = a(ar2 − 4) = a2r2 − 4a. A solution s = 2 implies that
r = 2m and leads to ∆ = a2m2 − a. Similarly, solutions r = 1, 2 leads to values of
∆ that are of Richaud-Degert type ∆ = n2 + r with r | 4n.
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Example. Consider C(Z) for C : x2 − 205y2 = 4. The associated descendants with
an integral point (r, s) and the corresponding point (x, y) on C are given below:

a Ta(C) (r, s) (x, y)
1 r2 − 205s2 = 4 (2, 0) (2, 0)
5 5r2 − 41s2 = 4 (3, 1) (43, 3)

41 41r2 − 5s2 = 4 ( 1
3 ,

1
3 ) ( 23

9 ,
1
9 )

205 205r2 − s2 = 4 ( 2
3 ,

28
3 ) ( 802

9 , 56
9 )

The existence of integral points on the last two descendants cannot be excluded via
congruences alone; this is a case where a second 2-descent would help.

3.2. The Group Structure. The number of descendants we have to consider is
always a power of 2, as is the number of descendants with an integral point. This
could be explained by giving this set of descendants the structure of an elementary
abelian 2-group. How can we accomplish this?

1. The Naive Construction. The naive idea is to make the first descendants into an
elementary abelian group by defining Ta · Tb = Tc, where ab = cm2 for integers c,m
with c squarefree. This is easily seen to coincide with the group structure defined
by Dickson [Dic1930, §25] (see also [Lem2003b]).

2. Using the Group Structure on the Pell conic. The set of descendants with a
rational point can be given a group structure as follows: given (r, s) ∈ Ta(Q) and
(t, u) ∈ Tb(Q), compute the corresponding rational points (x, y) and (z, w) on the
Pell conic; the sum (x, y) + (v, w) on C(Q) will then come from a rational point on
some descendant Tc, and we put Ta ⊕ Tb = Tc.

In order to decide whether these group laws coincide (on the subset of descen-
dants with a rational point) or not, we need a better way of finding the descendant
Ta to which an (x, y) ∈ C(Q) gives rise. Observe that since x = ar2 − 2, we can
recover a by mapping (x, y) ∈ C(Z) to the coset (x + 2)Q× 2 = aQ× 2. Actu-
ally, we get a mapping α : C(Q) −→ Q×/Q× 2 by putting α(x, y) = (x + 2)Q× 2

for all (x, y) 6= (−2, 0); using the equation x2 − 4 = ∆y2, we see that we have
(x+ 2)Q× 2 = (x− 2)∆Q× 2 whenever both sides are defined, and this suggests we
define α(−2, 0) = −∆Q× 2.

Proposition 3.2. Define a map α : C(Q) −→ Q×/Q× 2 by

α(x, y) =

{
(x+ 2)Q× 2 if x 6= −2,
−∆Q× 2 if x = −2.

If P = (x, y) ∈ C(Z) with x > 0, then P gives rise to an integral point on the
descendant Ta(C), where a is a positive squarefree integer determined by α(P ) =
aQ× 2.

3.3. The Weil Homomorphism. The map α : C(Q) −→ Q×/Q× 2 is a map
between two abelian groups; is it a homomorphism? Before we show that the
answer is yes, we will give another way to motivate the definition of α.

Consider the Pell conicX2−∆Y 2 = 4. We want to define a ‘Weil homomorphism’
α : C(Q) −→ Q×/Q× 2 with kernel kerα = 2C(Q). Since 2(r, s) = (r2 − 2, rs), we
could try to map (x, y) to the coset (x + 2)Q× 2; this defines a map annihilating
2C(Q), but is not defined for P = (−2, 0). On the other hand, we also have
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2(x, y) = (2 + ∆y2, xy); the map (x, y) 7−→ ∆(x − 2)Q× 2 is defined except for
(x, y) = (2, 0), and it agrees with the map defined before for all points 6= (±2, 0).

Now we claim

Theorem 3.3. The map α : C(Q) −→ Q×/Q× 2 is a group homomorphism.

This will be proved using Galois cohomology below. Before we do this, let us
derive a few consequences.

Corollary 3.4. The group laws defined on the set of first descendants coincide.

Proof. Assume that the points P and Q on C(Q) give rise to points on the de-
scendants Ta and Tb; then α(P ) = aQ× 2, α(Q) = bQ× 2, and since α is a group
homomorphism, α(P + Q) = abQ× 2, hence P + Q gives rise to a point on the
descendant Tc with ab = cm2 and c squarefree. �

Proposition 3.5. The image of α : C(Z) −→ Q×/Q× 2 consists of all square classes
aQ× 2 for which ab = ∆ for a, b ∈ Z and ar2 − bs2 = 4 has an integral solution.

Proof. If aQ× 2 ∈ imα, then there is a P = (x, y) ∈ C(Z) such that α(P ) =
aQ× 2, and by our construction above the point P comes from an integral point
on ar2 − bs2 = 4. Conversely, if ar2 − bs2 = 4 has an integral solution, then it
gives rise to the integral point P = (ar2 − 2, rs) on the associated Pell conic, and
α(P ) = (x+ 2)Q× 2 = aQ× 2. �

This shows

Corollary 3.6. The image of α : C(Z) −→ Q×/Q× 2 is finite.

Proof. This follows at once from the observation that there are only finitely many
classes aQ× 2 with ab = ∆ and a, b ∈ Z. �

Now we claim

Theorem 3.7. We have an exact sequence

0 −−−−→ 2C(Z) −−−−→ C(Z) α−−−−→ Q×/Q× 2.

Proof. We claim that the kernel of the homomorphism α : C(Q) −→ Q×/Q× 2 is
kerα = 2C(Q). Moreover, the kernel of the induced map C(Z) −→ Q×/Q× 2 is
2C(Z).

One direction is clear: if (x, y) = 2(r, s) for some (r, s) ∈ C(Q), then x = r2 − 2,
hence x+ 2 = r2 is a square, and this means that (x, y) ∈ kerα.

For the converse, observe that (x, y) ∈ kerα if and only if x + 2 = r2 for some
r ∈ Q. Next, ∆y2 = x2 − 4 = (x − 2)(x + 2), hence ∆y2 = (x − 2)r2, and thus
x− 2 = ∆s2 for some s ∈ Q. On the other hand, x− 2 = x+ 2− 4 = r2 − 4, hence
r2 −∆s2 = 4. Thus (r, s) ∈ C(Q), and it is easily checked that 2(r, s) = (x, y).

Now consider the restriction of α to C(Z). If x ∈ Z in the above proof, then clearly
r ∈ Z, and r2 −∆s2 = 4 then implies that we also have s ∈ Z if (x, y) ∈ C(Z). �

This immediately implies

Corollary 3.8 (Weak Theorem of Mordell-Weil). The group C(Z)/2C(Z) is finite.
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In the next section, we will use the theory of heights to prove that C(Z) is finitely
generated. This implies that C(Z) ' C(Z)tors ⊕ Zr for some r ≥ 0, and the fact
that the torsion group C(Q)tors is cyclic shows that C(Z)/2C(Z) ' (Z/2Z)r+1. This
is the analog of Tate’s formula for the 2-rank of an elliptic curve with rational
2-torsion:

Proposition 3.9. We have C(Z) ' C(Z)tors ⊕ Zr, where r ≥ 0 is determined by
imα = 2r+1.

This also implies

Theorem 3.10. Consider the Weil map α > C(Z) −→ Q×/Q× 2 for the Pell conic
C : X2 −∆Y 2 = 4, where ∆ > 0. The following assertions are equivalent:

(1) C(Z) ' Z/2Z⊕ Z;
(2) # imα = 4.

The implication (1) =⇒ (2) of Theorem 3.10 is a modern formulation of Dirich-
let’s Theorem [Lem2003b, Thm. 3.3.].

Proof of Theorem 3.3. Let C : X2 − dY 2 = 4 denote the Pell conic, and [2] :
C(K) −→ C(K) multiplication by 2.

Proposition 3.11. We have an exact sequence

0 −−−−→ C(Q)[2] −−−−→ C(Q)
[2]−−−−→ C(Q) −−−−→ 0, (2)

where C(Q)[2] = {(−2, 0), (2, 0)} = C(Q)[2].

Proof. Let us first prove that [2] is surjective. Given (r, s) ∈ C(Q), we find that
2(x, y) = (r, s) implies r = x2 − 2 and s = xy. Thus x2 = r + 2, and either y = 0
(if r = −2) or y = s

x . In either case, (x, y) ∈ C(Q) satisfies 2(x, y) = (r, s).
The same formulas show that ker[2] = {(±2, 0)}: in fact, if (r, s) = (2, 0), then

x2 = r + 2 = 4 implies x = ±2 and y = 0. �

Now let G = Gal(Q/Q) denote the absolute Galois group of Q. Since C(Q)[2]
consists of rational points, we have C(Q)[2] ' Z/2Z as Galois modules, and the
long exact cohomology sequence gives

C(Q)
[2]−−−−→ C(Q) −−−−→ H1(Z/2Z) −−−−→ H1(C)

[2]−−−−→ H1(C), (3)

where H1(A) = H1(G,A) and C = C(K).
Next we compute H1(Z/2Z); we start with the Kummer sequence

1 −−−−→ Z/2Z −−−−→ Q× [2]−−−−→ Q× −−−−→ 1

Taking Galois cohomology and using Hilbert’s Theorem 90 we find

Q× [2]−−−−→ Q× −−−−→ H1(G,Z/2Z) −−−−→ 1.

Thus Q×/Q× 2 ' H1(G,Z/2Z), and (3) gives rise to an exact sequence

C(Q)
[2]−−−−→ C(Q) −−−−→ Q×/Q× 2.

It remains to identify the last map.
To this end, recall the construction of H1: given an exact sequence of G-modules

0 −−−−→ A −−−−→ B
f−−−−→ C −−−−→ 0,
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we get a homomorphism CG −→ H1(G,A) as follows: for c ∈ CG, pick a b ∈ B
such that f(b) = c and then define the cocycle x by x(σ) = σ(b)− b; the image of
c is then the equivalence class of x.

This provides us with the isomorphism Q×/Q× 2 ' H1(G,Z/2Z): given a coset
aQ× 2, pick a preimage

√
a ∈ Q, and then define the cocycle x : G −→ Z/2Z by

x(σ) = σ(
√
α )/

√
α.

Next we study the connecting homomorphism δ : C(Q)/2C(Q) −→ H1(Z/2Z).
Let P = (r, s) ∈ C(Q). The points Q = (x, y) ∈ C(Q) such that 2Q = P are given
by

Q =

{
(
√
r + 2), s/

√
r + 2) ) if r 6= −2,

(0, 2/
√
−∆ ) if r = −2.

Via the homomorphism H1(Z/2Z) ' Q×/Q× 2, the cocycle corresponding to Q is
identified with the coset

δ(P ) =

{
(r + 2)Q× 2 if r 6= −2,
−∆Q× 2 if r = −2.

Thus δ can be identified with the Weil map α : C(Q) −→ Q×/Q× 2, and in particular
α is a group homomorphism with kernel 2C(Q).

4. Heights

For proving that C(Z) is finitely generated, we need more than just the fact that
C(Z)/2C(Z) is finite. This missing piece of information will be provided by the
theory of heights.

4.1. The Naive Height. For rational numbers x = r
s in lowest terms, we define

H(x) = max{|r|, |s|};
note that H(0) = 1 and H(x) ≥ 1 for all x ∈ Q. The following lemma is easy to
prove:

Lemma 4.1. For x, y ∈ Q we have
(1) H(xy) ≤ H(x)H(y);
(2) H(x2) = H(x)2;
(3) 1

2H(y)Hx) ≤ H(x+ y) ≤ 2H(x)H(y);
(4) for any c > 0, the set of all x ∈ Q with height H(x) < c is finite.

The lower bound in (3) follows from the upper bound upon replacing x by x+ y
and y by −y.

Our next goal is the definition of the ‘naive height’ H(P ) of rational points P
on Pell conics. For rational points P = (x, y) ∈ C(Q) on a conic C : X2 −∆Y 2 = 4
put H(P ) = H(x). We clearly have

Proposition 4.2. Let C : X2 − ∆Y 2 = 4 be a Pell conic. For a given constant
c > 0, the set of all rational points P ∈ C(Q) with height H(P ) < c is finite.

These rational points have a special form:

Lemma 4.3. Let (x, y) ∈ C(Q) be a rational point on the Pell conic C : X2 −
∆Y 2 = 4. Then there exist integers r, s, n such that x = r

n , y = s
n and gcd(r, n) =

gcd(s, n) = 1.



HIGHER DESCENT ON PELL CONICS 11

Proof. Write x = r
n , y = s

m with r, s ∈ Z, m,n ∈ N and gcd(r, n) = gcd(s,m) = 1.
Then r2m2 − ∆s2n2 = 4m2n2 shows that n2 | r2m2, and since gcd(r, n) = 1, we
find n2 | m2 and n | m.

Thus m = kn for some integer k. This gives r2k2−∆s2 = 4k2n2, hence k2 | ∆s2;
since k | m and gcd(s,m) = 1 we conclude that k2 | ∆, which implies that k = 1
if ∆ ≡ 1 mod 4 and k | 2 if ∆ ≡ 0 mod 4. In the latter case, 4k2 | ∆ implies
4k2 | r2k2, hence 2 | r; but this implies k2 | d and thus k = 1 as claimed. �

We also need some information on the height of the Y -coordinates.

Lemma 4.4. Let (x, y) ∈ C(Q) with y = s
n ; then |∆|s2 ≤ 4H(P )2.

Proof. We have |∆|s2 ≤ max{r2, 4n2} ≤ 4H(P )2. �

Now we claim

Proposition 4.5. Let Q ∈ C(Q) be fixed. Then for all P ∈ C(Q) we have

(1) 1
4H(P )2 ≤ H(2P ) ≤ 4H(P )2;

(2) 1
cH(P ) ≤ H(P +Q) ≤ cH(P ) for c = 5H(Q).

Proof. For P = (x, y) we have 2P = (x2 − 2, xy), hence H(2P ) = H(x2 − 2).
Lemma 4.1.(3) applied with y = 2 now proves the first claim. For the proof of the
second claim let P = (x, y), Q = (z, w) with x = r

m , y = s
m , z = t

n , w = u
n , and

gcd(r,m) = gcd(t, n) = 1. Then P +Q = (xz+yw∆
2 , xw+yz

2 ) = ( rt+su∆
2mn , ru+st

2mn ).
Clearly 2|mn| ≤ 2H(P )H(Q); thus it is sufficient to bound the numerator. Here

we find

H(P +Q) ≤ |r| · |t|+ |s|
√

∆ · |u|
√

∆

≤ H(P )H(Q) + 4H(P )H(Q) = 5H(P )H(Q).

Replacing Q by −Q shows that H(P −Q) ≤ 5H(P )H(Q). Applying this result to
P + Q instead of P shows that H(P ) ≤ 5H(P + Q)H(Q), and this finally shows
that H(P +Q) ≥ 1

5H(P ). �

4.2. The Canonical Height. The (naive) logarithmic height of a rational point
P ∈ C(Q) is defined by h0(P ) = logH(P ). Recall that

• |h0(2P )− 2h0(P )| < log 4 for all P ∈ C(Q);
• given Q ∈ C(Q), put c = h0(Q) + log 5; then h0(P + Q) ≤ h0(P ) + c for

every P ∈ C(Q).

Now let us define a function h : C(Q) −→ R≥0 by putting

h(P ) = lim
n→∞

h0(2nP )
2n

.

In order to see that this definition makes sense we have to check that the sequence
{2−nh0(2nP )} is Cauchy.
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We know that |h0(2Q)− 2h0(Q)| ≤ log 4; then n > m ≥ 0 implies

|2−nh0(2nP )− 2−mh0(2mP )| =
∣∣∣ n−1∑

j=m

(2−j−1h0(2j+1P )− 2−jh0(2jP ))
∣∣∣

≤
n−1∑
j=m

2−j−1|h0(2j+1P )− 2h0(2jP )|

≤
n−1∑
j=m

2−j−1 log 4 < 2−m log 4.

Since this expression can be made arbitrarily small by choosing m sufficiently large,
the sequence is Cauchy, and h(P ) is defined. Taking m = 0 in the inequality above
and letting n −→∞ proves

Proposition 4.6. For all P ∈ C(Q), we have |h(P )− h0(P )| ≤ log 4.

This immediately implies

Proposition 4.7. Let C : X2 − ∆Y 2 = 4 be a Pell conic. For a given constant
c > 0, the set of all rational points P ∈ C(Q) with canonical height h(P ) < c is
finite.

Now we can easily derive the basic properties of the canonical height:

Theorem 4.8. The canonical height h : C(Q) −→ R≥0 on the Pell conic C :
X2 −∆Y 2 = 4 has the following properties:

(1) h(T ) = 0 if and only if T ∈ C(Q)tors;
(2) h(2P ) = 2h(P );
(3) h(P +Q) ≤ h(P ) + h(Q);
(4) h(P ) + h(Q) ≤ h(P −Q) + h(P +Q) ≤ 2h(P ) + 2h(Q);
(5) the square of the canonical height satisfies the parallelogram equality

h(P −Q)2 + h(P +Q)2 = 2h(P )2 + 2h(Q)2

for all P,Q ∈ C(Q).

Proof. (1) If T is a torsion point, then h0(T k) attains only finitely many values,
hence is bounded; this implies that h(T ) = 0.

Now assume that h(T ) = 0. Then h(kT ) = k · h(T ) for all k ≥ 1.
Since |h(P ) − h0(P )| is bounded, the naive heights of the points kT are
bounded. But there are only finitely many points with bounded height,
hence {kT : k ∈ N} is finite, and this implies that T is a torsion point.

(2) Directly from the definition we get

h(2P ) = lim
n→∞

h0(2n+1P )
2n

= 2 lim
n→∞

h0(2n+1P )
2n+1

= 2h(P ).

(3) Now recall that h0(P +Q) ≤ h0(P ) + h0(Q) + log 2; this implies

h(P +Q) = lim
n→∞

h0(2n(P +Q))
2n

≤ lim
n→∞

(h0(2nP )
2n

+
h0(2nQ)

2n
+

log 2
2n

)
= h(P ) + h(Q).
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(4) Replacing Q by −Q shows that h(P −Q) ≤ h(P )+h(Q), and adding these
inequalities yields

h(P +Q) + h(P −Q) ≤ 2h(P ) + 2h(Q).

Applying this inequality to P −Q and P +Q instead of P and Q yields

h(P ) + h(Q) ≤ h(P +Q) + h(P −Q),

where we have used h(2P ) = 2h(P ) and h(2Q) = 2h(Q).
(5) Let us return to h(P + Q) ≤ h(P ) + h(Q); replacing P by P − Q yields

h(P − Q) ≥ h(P ) − h(Q). Similarly, h(P + Q) ≥ h(P ) − h(Q). Squaring
and adding yields h(P +Q)2 + h(P −Q)2 ≥ 2h(P )2 + 2h(Q)2.

Replacing P and Q by P + Q and P − Q shows 4h(P )2 + 4h(Q)2 =
h(2P )2+h(2Q)2 ≥ 2h(P+Q)2+2h(P−Q)2, that is, h(P+Q)2+h(P−Q)2 ≤
2h(P )2 + 2h(Q)2.

These two inequalities imply the desired equality.
This concludes the proof. �

As a corollary we note:

Corollary 4.9. We have h(mP ) = mh(P ) for all m ≥ 1.

Proof. Put P = mQ in the parallelogram equality. �

It is not hard to give explicit formulas for the canonical height of rational points
on Pell conics:

Proposition 4.10. The canonical height of P = (x, y) ∈ C(Q), where C is the Pell
conic given by X2 −∆Y 2 = 4 with ∆ > 0, is h(P ) = log |r|+|s|

√
∆

2 , where x = r
n ,

y = s
n with (r, n) = (s, n) = 1.

Proof. Observe that 2P = ( r2−2n2

n2 , rs
n ) with (r2 − 2n2, n2) = 1, hence H(2P ) =

r2 − 2n2. Also note that r2 − 2n2 = n2[( r+s
√

∆
2n )2 + ( r−s

√
∆

2n )2]. By induction, we
conclude that for k = 2m and r, s > 0 we have

h(P ) = lim
k→∞

h0(kP )
k

= lim
k→∞

1
k

log nk
[(r + s

√
∆

2n

)k

+
(r − s

√
∆

2n

)k]
= log n+ lim

k→∞

1
k

log
(r + s

√
∆

2n

)k

=
r + s

√
∆

2
,

where we have used that −1 < r−s
√

∆
n < 1. The other cases (e.g. r > 0, s < 0) are

handled similarly. �

There is an even simpler formula if ∆ < 0:

Proposition 4.11. The canonical height of P = (x, y) ∈ C(Q), where C is the Pell
conic given by X2 − ∆Y 2 = 4 with ∆ < 0, is h(P ) = log n, where x = r

n , y = s
n

with n > 0 and (r, n) = (s, n) = 1.

Proof. We have 2jP = (xj , yj), where (xk) is the sequence defined recursively by
x1 = x and xj+1 = x2

j − 2. Clearly we have |xj | < 2 for all j ≥ 1, so the sequence
is bounded.

Assume that |xk| > 1 for some k; we claim that there is a j > 0 such that
|xk+j | < 1. If not, we may assume that xk > 1 (the case xk < −1 is treated in
an analogous way); then |xk+1| > 1 implies xk+1 > 1. On the other hand, it is
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easily seen that in this case xk+1 < xk. Thus 1 < xk+j > 1 for all j ≥ 0, hence the
sequence converges, and we have 1 ≤ limxj ≤ xk < 2; but the only possible limits
are the roots of the equation 0 = x2 − x − 2 = (x + 1)(x − 2), that is, x = −1 or
x = 2: contradiction.

Thus there are infinitely many xk with |xk| < 1; if we write x = r
n with n > 0,

then xk = r′/nk, hence H(2kP ) = H(xk) = n2k

. We know that log 2−jH(2jP )
converges to h(P ), hence so does the subsequence 2−k logH(xk) = log n. �

Finally, let us look at the heights of points on descendants. If P = (r, s) is a
rational point on the descendant Ta : ar2 − bs2 = 4 with ab = ∆ > 0 and a > 0,
then Q = (ar2 − 2, rs) ∈ C(Q), and now Lemma 4.1 implies

1
4a
H(r)2 ≤ 1

4
H(ar2) ≤ H(Q) ≤ 4H(ar)2 ≤ 4aH(r2).

We have proved

Proposition 4.12. If If P = (r, s) is a rational point on the descendant Ta :
ar2 − bs2 = 4 with ab = ∆ > 0 and a > 0, then Q = (ar2 − 2, rs) ∈ C(Q) satisfies

1
4a
H(P )2 ≤ H(Q) ≤ 4aH(P )2.

5. The Theorem of Mordell-Weil

The Theorem of Mordell-Weil states that the group of rational points on an
elliptic curve defined over Q is finitely generated. Its analog for conics says that
the group of integral points on a Pell conic is finitely generated (more generally it
can be shown that the group of S-integral points on a Pell conic is finitely generated
if S is finite).

5.1. Mordell-Weil. We now show that C(Z) is finitely generated. The following
result is the abstract kernel of the proof:

Theorem 5.1. Let G be an abelian group such that G/2G is finite. Assume that
there exists a function h : G −→ R≥0 with the following properties:

(1) For every c > 0, the set {g ∈ G : h(g) < c} is finite;
(2) We have h(2g) = 2h(g) for all g ∈ G;
(3) h(g − g′)2 + h(g + g′)2 = h(g)2 + h(g′)2 for all g, g′ ∈ G.

Then G is finitely generated.

Proof. Let Γ be a set of representatives of the finitely many cosets of G/2G. Then
each g ∈ G can be written as g − γ = 2g′ for some γ ∈ Γ and a g′ ∈ G. Put
c = max{h(γ) : γ ∈ Γ}.

Now let Ω denote the subgroup of G generqated by all the elements of Γ and the
(finitely many) elements g ∈ G with h(g) ≤ c. We claim that G = Ω.

If not, then let g be an element in G with minimal height such that g /∈ Ω;
observe that h(g) > c. We can write g − γ = 2g′ for some γ ∈ Γ and g′ ∈ G, and
find

4h(g′)2 = h(g − γ)2 = 2h(g)2 + 2h(γ)2 − h(g + γ)2 ≤ 2h(g)2 + 2c2 < 4h(g)2.

Thus h(g′) < h(g), hence g′ ∈ Ω. But then so is g = 2g′ + γ: contradiction. �

Applying this to our situation we find
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Corollary 5.2. Let C : X2 − ∆Y 2 = 4 be a Pell conic. Then the group C(Z) is
finitely generated, that is, C(Z) ' C(Z)tors ⊕ Zr for some finite group C(Z)tors and
some integer r ≥ 0 called the rank of C. Moreover, imα = 2r+1.

The torsion group of C(Q) is easy to determine: torsion points (x, y) have integral
coordinates, and we have y = 0 or y = ±1. In fact, if k ≥ 2 is an integer and
P 6= N = (2, 0) a rational point on C with kP = N , then Q(ζk) ⊆ Q(

√
∆ ). Thus

C(Q)tors =


{(±2, 0), (±1,±1)} if ∆ = −3,
{(±2, 0), (0,±2)} if ∆ = −4,
{(±2, 0)} otherwise

6. Selmer and Tate-Shafarevich Groups

The subset of curves T (a) : ar2 − bs2 = 4 with a rational point corresponds to
a subgroup Sel2(C) of Q×/Q× 2 called the 2-Selmer group of C; we have already
shown that if Ta and Ta′ have a rational point, then so does T a′′, where aa′ = a′′k2

for some positive and squarefree integer a′′ | ∆. The same argument shows that the
curves Ta with an integral point form a group W2(C), which is clearly a subgroup
of Sel2(C) isomorphic to imα. The 2-part of the Tate-Shafarevich group X2(C) is
then defined by the exact sequence

1 −−−−→ W2(C) −−−−→ Sel2(C) −−−−→ X2(C) −−−−→ 1. (4)

In this section, we shall study these groups.

6.1. The 2-Selmer Group.

Proposition 6.1. The first descendant T (a) : ax2 − by2 = 4, where ab = ∆ and
a > 0, has a rational point if and only if (a/q) = (−b/p) = +1 for all odd primes
p | a and q | b.

Proof. Legendre’s theorem states that the ternary quadratic form ax2 + by2 + cz2,
where a, b, c ∈ Z are coprime and squarefree, represents 0 over the integers if and
only if it represents 0 over the reals and over the fields Z/pZ, where p runs through
the odd primes dividing abc. �

Note that ax2−by2 = 4 has rational solutions if and only if X2 = aY 2+∆Z2 has
integral solutions, hence the criteria in Proposition 6.1 are equivalent to (a,∆

p ) = +1
for all odd primes p | ∆; since ∆ > 0, the Hilbert symbol at ∞ is trivial; finally,
(a,∆

p ) = +1 for all odd primes p - ∆, and now the product formula implies that we
have (a,∆

2 ) = +1 as well. This shows

Corollary 6.2. The first descendant T (a) : ax2 − by2 = 4, where ab = ∆ and
a > 0, has a rational point if and only if (a,∆

p ) = +1 for all primes p.
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Example. Consider C(Z) for C : x2−1045y2 = 4. The associated descendants with
an integral point (r, s) and the corresponding point (x, y) on C are given below:

a Ta(C) (r, s) (x, y)
1 r2 − 1045s2 = 4 (2, 0) (2, 0)
5 5r2 − 209s2 = 4 ( 7

3 ,
1
3 )

11 11r2 − 95s2 = 4 (3, 1) (97, 3)
19 19r2 − 55s2 = 4 −−
55 55r2 − 19s2 = 4 ( 4

7 ,
6
7 )

95 95r2 − 11s2 = 4 −−
209 209r2 − 5s2 = 4 −−

1045 1045r2 − s2 = 4 −−

Thus Sel2(C), viewed as a subgroup of Q×/Q× 2, is isomorphic to 〈5, 11〉; moreover
W2(C) = 〈11〉, and the nontrivial element of X(C)[2] ' Z/2Z is generated by T5.

6.2. Rédei. Recall from [Lem2003b] that a factorization of the discriminant ∆ =
disck into discriminants ∆ = ∆1∆2 is called a splitting of the second kind if
(∆1/p2) = (∆1/p2) = +1 for all primes pi | ∆i.

Proposition 6.3. Assume that ∆ is a product of positive prime discriminants.
Then the factorization ∆ = ∆1∆2 is a splitting of the second kind if and only if the
descendant ∆1X

2 −∆2Y
2 = 4 is everywhere locally solvable.

Thus Rédei’s group structure on splittings of the second kind induces a group
structure on Sel2(C) that coincides with ours. Since there are exactly e4 + 1 inde-
pendent splittings of the second kind (including the trivial factorization ∆ = 1 ·∆),
this shows that Rédei’s results imply that #Sel2(C) = 2#Cl+(k)2/Cl+(k)4.

In general, however, the C4-decompositions and the first descendants in the
Selmer group are not related. Consider e.g. the example d = 12369 = 3 · 7 · 19 · 31;
here the elements in the Selmer group and the corresponding rational points are
given by

r2 − 12369s2 = 4 (r, s) = (2, 0)

7r2 − 1767s2 = 4 (r, s) = ( 32
5 ,

2
5 )

589r2 − 21s2 = 4 (r, s) = ( 1
4 ,

5
4 )

4123r2 − 3s2 = 4 (r, s) = ( 1
32 ,

3
32 )

The C4-decompositions, on the other hand, are ∆ = 1 · 12369 and ∆ = 93 · 133,
and the equation 93x2 + 133y2 = z2 has the solution (x, y, z) = (6, 1, 59).

6.3. The 2-Part of the Tate-Shafarevich Group. Consider the descendant
T (a) : ar2 − bs2 = 4; we know that T (a) ∈ Sel2(C) if and only if (a,d

p ) = +1 for all
places p (observe that (a,d

p ) = +1 for all primes p - d).
Consider the map cl : Sel2(C) −→ Cl+(k)[2] sending T (a) to the ideal class gen-

erated by the ambiguous ideal a with norm a; clearly ker cl = W (C). By Hilbert’s
genus theory (see [Lem2000]), we know that ideal classes coming from the Selmer
group are squares, so the map above is actually a homomorphism Sel2(C) −→
Cl+(k)2 ∩Cl+(k)[2] = Cl+(k)2[2]. Conversely, an ideal class in Cl+(k)2[2] is gener-
ated by an ambiguous ideal a with norm a | ∆, and since its class is a square, its
character system is trivial, so the descendant T (a) is in the Selmer group.



HIGHER DESCENT ON PELL CONICS 17

Theorem 6.4. We have an exact sequence

0 −−−−→ W (C) −−−−→ Sel2(C) −−−−→ Cl+(k)2[2] −−−−→ 0.

In particular, X2(C) ' Cl+(k)2[2].

Observe that, for finite abelian groups G, we have the exact sequence

1 −−−−→ G2 ∩G[2] −−−−→ G2 [2]−−−−→ G4 −−−−→ 1

showing that G2 ∩G[2] ' G2/G4 (non-canonically via duality), hence Cl+(k)2[2] '
Cl+(k)2/Cl+(k)4. Since this group can be made arbitrarily large, we find

Corollary 6.5. For Pell conics C : X2 − ∆Y 2 = 4, the Tate-Shafarevich group
X2(C) can have arbitrarily large 2-rank as ∆ varies.

6.4. For Whom the Pell Tolls. Let us now derive some results about Pell equa-
tions that follow from studying the 2-Selmer group.

Selmer Groups. The following result connects the structure of the Selmer group
to various invariants studied in [Lem2003b]:

Proposition 6.6. Let ∆ be a discriminant not divisble by any prime ≡ 3 mod 4,
let C : X2−∆Y 2 = 4 be the corresponding Pell conic, and let γ(∆) be the associated
nondirected graph (see [Lem2003b]). Then the following claims are equivalent:

(1) γ(∆) is odd;
(2) Sel2(C) ' Z/2Z;
(3) X(C)[2] = 0;
(4) 4-rank Cl+2 (k) = 0.

Proof. The equivalence of the statements (2)-(4) follow from the exact sequence (4)
and Theorem 6.4.

The fact that γ(∆) is odd if and only if none of the equations ar2 − bs2 = 4 has
Fp-rational points for all primes p was proved in [Lem2003b]. �

Nontrivial Tate-Shafarevich Groups. If a is a quadratic residue modulo a
prime p, then we write (a

p )4 = +1 or −1 according as a is a fourth power modulo p
or not. If p ≡ 1 mod 8, then we define (p

2 )4 = (−1)(p−1)/8. We extend these residue
symbols multiplicatively to composite denominators.

Theorem 6.7. Let ∆ = p1 · · · pn be a product of primes pi ≡ 1 mod 4. If ab = ∆
and ar2−bs2 = 4 has an integral solution, then the following conditions are satisfied:

(1) (a/q) = 1 for all primes q | b;
(2) (b/p) = 1 for all primes p | a;
(3) (b/a)4 = +1.

Proof. The first two assertions are clear and follow from the existence of a rational
point.

For any prime p | a, we have (−b/p)4 = (2s/p); since (−1/p)4 = (2/p), this
implies (b/p)4 = (s/p), hence (b/a)4 = (s/a). Now write s = 2js′ with s′ odd;
then (b/a)4 = (s/a) = (2/a)j . If j = 0 or j = 2, we are done. The case j = 1 is
impossible: putting r = 2r′ we find ar′2 − bs′

2 = 1, which leads to a contradiction
modulo 4 since bs′2 ≡ 1 mod 4. Finally, if j ≥ 3, then dividing ar2 − bs2 = 4
through by 4 and reducing modulo 8 shows that (2/a) = +1. �
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There are similar results for even ∆ not divisible by primes ≡ 3 mod 4.
Let us now apply this result to the Pell equation X2 − pqY 2 = 1, where p ≡

q ≡ 1 mod 4. The first descendants pr2 − qs2 = ±1 are not solvable in integers if
(p/q) = −1, so in this case we conclude that X2 − pqY 2 = −1 is solvable. Assume
that (p/q) = +1. Then Theorem 6.7 provides us with necessary conditions for the
descendant Ta to be solvable: Thus if (p/q)4 = (q/p)4 = −1, the negative Pell

a equation condition
1 X2 − pqY 2 = 1 none
p pX2 − qY 2 = 1 (q/p)4 = 1
q qX2 − pY 2 = 1 (p/q)4 = 1
pq pqX2 − Y 2 = 1 ?

Table 1. Solvability Criteria for T

equation X2−pqY 2 = −1 must be solvable. If, say, (p/q)4 = −(q/p)4, however, we
do not get a precise result because Theorem 6.7 does not give us any condition for
the solvability of Tpq. For this, we have to dig deeper:

Proposition 6.8. If Tpq : pxr2 − s2 = 1 has an integral solution, where p ≡ q ≡
1 mod 4 are primes with (p/q) = 1, then (p/q)4 = (q/p)4.

This implies the following result, parts of which were first proved by Scholz
[Sch1934] using class field theory:

Proposition 6.9. Let p ≡ q ≡ 1 mod 4 be primes. If the conditions (∗) are verified,
the descendant Ta of the Pell conic X2 − pqY 2 = 1 is solvable:

(∗) a

(p/q) = −1 pq

(p/q) = +1, (p/q)4 = −1, (q/p)4 = +1 p

(p/q) = +1, (p/q)4 = +1, (q/p)4 = −1 q

(p/q) = +1, (p/q)4 = −1, (q/p)4 = −1 pq

Note that this implies e.g. that if (p/q) = +1, (p/q)4 = +1 and (q/p)4 = −1,
then Tq is an element of the Selmer group without an integral point, hence represents
an element of order 2 in X(C).

The proof of Proposition 6.9 presents no problems; thus it remains to prove
Proposition 6.8. This is done as follows: factor the right hand side of pqs2 = r2 +1
over the Gaussian integers Z[i]. Since gcd(r+ i, r− i) divides 2i, and since r is even,
the factors r + i and r − i are coprime. Now observe that p = ππ and q = ρρ for
π, ρ ∈ Z[i], where the bars denote the conjugates. Assume that π and ρ are primary,
i.e., that π ≡ ρ ≡ 1 mod 2 + 2i. Then Unique Factorization in Z[i] implies that
r+ i = επρα2 for some α ∈ Z[i] and some unit ε ∈ {±i,±1}. Since r+ i ≡ i mod 2,
and since α2 ≡ 1 mod 2, we have ε = ±i, and by subsuming the square −1 = i2

into α if necessary we arrive at r + i = iπρα2.
If, from this equation, we subtract its conjugate and then divide by i, we arrive

at
2 = πρα2 − πρα2.
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Reducing modulo ρ we find [2/ρ] = [π/ρ][ρ/ρ], where [ · / · ] is the quadratic residue
symbol in Z[i] (see [Lem2000] for the necessary background). Then it is known
that [2/ρ] = (2/q) and [ρ/ρ] = (2/q), as well as [π/ρ] = [π/ρ] = (p/q)4(q/p)4. This
concludes the proof of Proposition 6.8.

This allows us to complete Table 6.4:

a equation condition
1 X2 − pqY 2 = 1 none
p pX2 − qY 2 = 1 (q/p)4 = 1
q qX2 − pY 2 = 1 (p/q)4 = 1
pq pqX2 − Y 2 = 1 (p/q)4(q/p)4 = 1

Table 2. Solvability Criteria for T

In some sense, the solvability condition for the product Tpq of Tp and Tq is the
‘product’ of the conditions for Tp and Tq; although we cannot make this more precise
at the moment, this observation often helps to guess the right criteria.

Observe that the proof of Proposition 6.9 is fully analogous to the calculations
done in [Lem2003a] for computing Tate-Shafarevich groups of elliptic curves con-
nected to the congruent number problem.
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