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Abstract. In this article we study the Tate-Shafarevich groups corresponding

to 2-isogenies of the curve Ek : y2 = x(x2 − k2) and construct infinitely many

examples where these groups have odd 2-rank. Our main result is that among
the curves Ek, where k = pl ≡ 1 mod 8 for primes p and l, the curves with

rank 0 have density ≥ 1
2
.

1. Introduction

The elliptic curves Ek : y2 = x(x2−k2) with k ∈ Z have been studied extensively,
mainly because of their connection with the ancient problem of congruent numbers
(see Guy [13] or Koblitz [17]). Many authors constructed families of non-congruent
numbers by minimizing the Selmer groups attached to 2-isogenies of Ek (see Feng
[9, 10], Goto [12], Iskra [15], T. Ono [31], Serf [36], to name but the most recent
contributors; actually results of this type go back to Genocchi [11] in the last
century). Sharper results were obtained notably by J. Lagrange [19, 20] and, more
recently, Wada [39], Nemenzo [28], and Li & Tian [24], who found better bounds on
the rank of Ek by taking the 2-part of the Tate-Shafarevich groups into account. In
this article, we will refine the criteria obtained by Lagrange and show that curves
Ek, where k = pl for primes p ≡ l ≡ 1 mod 8, very rarely have Tate-Shafarevich
groups with trivial 2-part.

Notation. We recall the relevant notation from [22] (the standard reference for
notions not explained here is Silverman [37]): elliptic curves E with a rational
point T of order 2 as our curves Ek come attached with a 2-isogeny φ : E −→ Ê
(depending on the choice of T if E has three rational points of order 2). For
T = (0, 0) we find the isogenous curve

Êk : y2 =

{
x(x2 + 4k2) if k is odd, and
x(x2 + k2/4) if k is even

(the distinction is made in order to minimize the coefficients of the curve; we could
just as well work with only y2 = x(x2 + 4k2) as both models are isomorphic). The
dual isogeny Êk −→ Ek will be denoted by ψ. If k is fixed, we will suppress this
index and write E and Ê for Ek and Êk.

The main part of this article was written in 1999 while the author was at the MPI Bonn; he

would like to thank everyone there for the hospitality and the stimulating environment, and the
DFG for financial support during that time.
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Consider the torsors (often also called principal homogeneous spaces)

T (ψ)(b1) : N2 = b1M
4 + b2e

4, b1b2 = −k2 and

T (φ)(b1) : N2 = b1M
4 + b2e

4, b1b2 =

{
4k2 if k is odd,
k2/4 if k is even.

The Selmer group Sel(ψ)(Ê/Q) is defined as the subgroup of Q×/Q×2 consisting
of classes b1Q×2 such that T (ψ)(b1) has a nontrivial (6= (0, 0, 0)) rational point
in every completion Qv of Q; the subgroup of Sel(ψ)(Ê/Q) such that the torsors
T (ψ)(b1) corresponding to b1Q×2 have a rational point will be denoted by W (Ê/Q)
(from now on, rational point will stand for non-trivial rational point; we may and do
assume moreover that its coordinates are integral and primitive, that is, (M, e) = 1).
Similarly we define Sel(φ)(E/Q) andW (E/Q). Finally, the Tate-Shafarevich groups
are defined via the exact sequences

0 −−−−→ W (E/Q) −−−−→ Sel(φ)(E/Q) −−−−→ X(E/Q)[φ] −−−−→ 0,

0 −−−−→ W (Ê/Q) −−−−→ Sel(ψ)(Ê/Q) −−−−→ X(Ê/Q)[ψ] −−−−→ 0.

Below, we will often write 〈x, . . . , z〉 for the subgroup 〈x · Q×2, . . . , z · Q×2〉 of
Q×/Q×2 generated by x, . . . , z.

The Selmer and Tate-Shafarevich groups attached to a pair of isogenies φ and ψ
with ψ ◦ φ = [n] for some integer n ≥ 2 are related to the n-torsion of Selmer and
Tate-Shafarevich groups as follows (see diagram (3.9) in Razar [32, p. 139]; Feng
[9, 10] erroneously claims that we always have C = Ĉ = 0):

Proposition 1. With the notation as above, we have the following exact and com-
mutative diagram:

B B 0y y y
0 −−−−→ Ê(K)

φ(E(K)) −−−−→ Sel(φ)(E/Q) −−−−→ X(E/Q)[φ] −−−−→ 0y id

y ψ

y
0 −−−−→ E(K)

n(E(K)) −−−−→ Sel(n)(E/Q) −−−−→ X(E/Q)[n] −−−−→ 0y φ

y id

y
0 −−−−→ E(K)

ψ(Ê(K))
−−−−→ Sel(ψ)(Ê/Q) −−−−→ X(Ê/Q)[ψ] −−−−→ 0y y y

0 Ĉ Ĉ

Here, the vertical maps from B are injections, and those into Ĉ are surjections.
There is a corresponding diagram with the roles of φ and ψ reversed, and with
groups B̂ and C. Moreover, C and Ĉ are groups of even rank.

There exist various methods for constructing elements of order 2 in Tate-Shafa-
revich groups: one can perform a second 2-descent (cf. Birch and Swinnerton-Dyer
[2], Razar [32], Lagrange [19, 20], Wada [39] and Nemenzo [27]), employ the Cassels
pairing (see e.g. Aoki [1], Bölling [3], Cassels [5], and McGuinness [26]), compare
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the Selmer groups Sel(ψ)(Ê/Q) and Sel(2)(E/Q) as Kramer [18] (essentially, the
methods mentioned so far are all equivalent to the classical second 2-descent),
or use the method usually attributed to Lind [25] but actually going back (in a
slightly different context) to Rédei [33] and Dirichlet [8] (I learned this technique
from Stroeker & Top [38] and used it in [22] and [21]). In this paper, we continue
to use this last method; as we shall see, it will allow us to obtain results that are
stronger than those provided by simple second 2-descents.

Our main results are the solvability criteria in Table 4 below; this will imply the
lower bound 1

2 for the density of rank-0 curves among the Epl.

2. Preliminaries

In the calculations below we will have use quite a number of elementary results
on quadratic reciprocity and genus theory. The following subsections recall what
we will need.

2.1. Some reciprocity laws. In the following, p and l will denote primes ≡ 1 mod
8, and π and λ will denote primary primes in Z[i] with norms p and l, respectively.
A prime π of norm p ≡ 1 mod 8 is called primary if π is congruent to a square
modulo 4. For π ∈ Z[i], Π ∈ Z[

√
2 ] and Π∗ ∈ Z[

√
−2 ] we can always choose

associates satisfying π ≡ 1 mod 2 + 2i, Π ≡ 1 mod 2
√

2 and Π∗ ≡ 1 mod 2
√
−2,

and these elements are primary.
We will need a few elementary results on quadratic residue symbols; as in [22],

we let (p/l)4 denote the biquadratic residue symbol for primes l ≡ 1 mod 4 such
that (p/l) = 1, and we let [ · / · ] denote the quadratic residue symbol in Z[i]. We
also note that, for primes l = λλ ≡ 1 mod 8, the relation (1+ i)4 = −4 implies that
[1 + i/λ] = (−4/l)8 (this is the rational octic residue symbol). Moreover, [π/λ] =
(p/l)4(l/p)4 for primes p = ππ and l = λλ such that (p/l) = 1 by Burde’s rational
reciprocity law. Finally, it is easy to check that (ε2/p) = [1+i/π] = (−4/p)8, where
ε2 = 1 +

√
2 (see [23]).

Now recall that primes p ≡ 1 mod 8 are norms from Z[ζ8], say p = Nα for some
α ≡ 1 mod (2 + 2ζ8), and in fact there exist primary elements π ∈ Z[i], Π ∈ Z[

√
2 ]

and Π∗ ∈ Z[
√
−2 ] with norm p. For primes l ≡ 1 mod 8, we define λ, Λ and Λ∗

similarly. Unless explicitly stated otherwise, this notation is valid for the rest of
this article.

The following result shows that solvability criteria involving the quadratic symbol
[Π∗/Λ∗] can be reduced to criteria involving only [Π/Λ] and rational quartic residue
symbols:

Proposition 2. Let p ≡ l ≡ 1 mod 8 be primes such that (p/l) = +1. Then[Π
Λ

][Π∗

Λ∗

]
=

[π
λ

]
=

(p
l

)
4

( l
p

)
4
,

where the first three symbols [ · / · ] denote the quadratic residue symbol in Z[
√

2 ],
Z[
√
−2 ] and Z[i], respectively.

Proof. We know that there exists an element α ∈ Z[ζ8] such that Π∗ = α1α3

(here αj = σj(α), where σj is the automorphism that sends ζ8 to ζj8 ; in particular
α1 = α), π = α1α5 and Π = α1α7 (observe that such norms are necessarily totally
positive). Defining β accordingly we have [Π/Λ] = (α1α7/β), where ( · / · ) is the
quadratic residue symbol in Z[ζ8]. Similarly, we have [Π∗/Λ∗] = (α1α3/β), hence
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[Π/Λ][Π∗/Λ∗] = (α3α7/β). But this last symbol equals [π/λ], and since (p/l) = +1
this coincides with [π/λ]. This proves our claim by Burde’s reciprocity law. �

We also note that [Λ/Π] = [Π/Λ] and [Λ∗/Π∗] = [Π∗/Λ∗] by the quadratic
reciprocity laws in Z[

√
2 ] and Z[

√
−2 ], respectively. Finally, if K/k is an extension

of number fields, if [ · / · ] and ( · / · ) denote the quadratic residue symbols in K and
k, respectively, and if a is an ideal in Ok with odd norm, then [α/a] = (NK/kα/a)
directly from the definition of residue symbols. Similarly, for ideals A in OK with
relative norm a and elements α ∈ k coprime to a, we have [α/A] = (α/a). For more
on rational reciprocity laws, see [23, Chap. 5].

2.2. The class groups of Q(
√
±2l ). Let us begin by reviewing the basic results

of Scholz as pertaining to the special case k = Q(
√

2l ), where l ≡ 1 mod 4 is
prime. Let ε, h and h+ denote the fundamental unit, the class number and the
class number in the strict sense of k. Moreover, define (l/2)4 = (−1/l)8 for primes
l ≡ 1 mod 8; then (−4/l)8 = (2/l)4(l/2)4. The following proposition is the special
case p = 2 of a more general result due to Scholz [34]:

Proposition 3. With the notation as above, there are the following cases:
• (2/l) = −1: then Nε = −1 and h ≡ h+ ≡ 2 mod 4;
• (2/l) = +1:

(1) if (2/l)4 = −(l/2)4, then Nε = +1, h ≡ 2 mod 4, and h+ ≡ 4 mod 8.
(2) if (2/l)4 = (l/2)4 = −1, then Nε = −1 and h ≡ h+ ≡ 4 mod 8;
(3) if (2/l)4 = (l/2)4 = +1, then 4 | h and 8 | h+.

Note that the prime ideal 2 above 2 in Q(
√

2l ) is principal in the usual sense if
and only ifNε = +1 for the fundamental unit ε of Q(

√
2l ). This follows by applying

the class number formula for strictly ambiguous ideals Cam = 2t−1/(EF /NEK) in
quadratic extensions K/F , where t denotes the number of ramified primes, and
where EF and EK are the unit groups of OF and OK , respectively.

Let a
+∼ 2 be short for “the ideal a is equivalent in the strict sense to the square

of some ideal”, and define a
+∼ 4 similarly.

If d = d1d2 is a product of two prime discriminants, then classical genus theory
tells us that, for some ideal a with norm a (the existence of a implies (d/a) = +1),
we have a

+∼ 2 if and only if (d1/a) = (d2/a) = +1.

Lemma 4. Let p ≡ l ≡ 1 mod 8 be primes such that (p/l) = +1, and let p denote
the prime ideal above p in k = Q(

√
2l ). Then p

+∼ 4 ⇐⇒ [Λ/Π] = 1.

Proof. If 4 | h+, then the corresponding quartic cyclic unramified extension K/k is
given by K = k(

√
Λ ). A prime ideal p of degree 1 will split completely in K/k if

and only if its ideal class is a fourth power in Cl+(k); on the other hand, Kummer
theory shows that p splits if and only if Λ is a quadratic residue modulo any prime
ideal above p in Q(

√
2 ), that is, if and only if [Λ/Π] = 1. �

Lemma 5. Let k = Q(
√

2l ) and assume that (−4/l)8 = −1. Then the prime ideal
2 above 2 in Ok is principal in the strict sense if and only if (2/l)4 = −1.

Proof. First observe that our assumption implies by Proposition 3 that the funda-
mental unit of k has positive norm, that 2 is principal in the wide sense, and that
h+ ≡ 4 mod 8.
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Assume that 2 is principal in the strict sense. Then X2 − 2ly2 = +2 is solvable,
hence so is 2x2 − ly2 = 1 (we have put X = 2x). Now clearly 2 - x, hence x2 ≡
1 mod 8 and 2x2 ≡ 2 mod 16; on the other hand, (2/y) = +1, hence y2 ≡ 1 mod 16.
Together this implies that l ≡ 1 mod 16, that is, (−1/l)8 = +1. Since (−4/l)8 = −1
by assumption, this is equivalent to (2/l)4 = −1.

Now assume that 2 is not principal in the strict sense. Then X2 − 2ly2 = −2,
and with X = 2x we get 2x2 − ly2 = −1. Now (2/l)4 = (x/l) = (l/x′), where
x = 2jx′ with x′ odd, and (l/x′) = +1 by reducing our equation modulo x′. Thus
(2/l)4 = +1. �

3. The case k = 2p

We will now investigate which torsors of E2p do not have rational points al-
though they are everywhere locally solvable. These curves were already studied by
Lagrange [20] using second 2-descents and by Kings [16] using the Cassels pairing
on X(E/Q). The curves E2p are the simplest examples where X(E/Q)[φ] and
X(Ê/Q)[ψ] may have odd dimension:

Theorem 6. Let p ≡ 1 mod 8 be a prime and consider the elliptic curve E : y2 =
x(x2 − 4p2). Then the Selmer groups are given by

Sel(ψ)(Ê/Q) = 〈−1, 2, p〉, Sel(φ)(E/Q) = 〈p〉,

and if p ≡ 9 mod 16, then we have X(Ê/Q)[ψ] = 〈p〉 and X(E/Q)[φ] = 〈p〉.
Moreover, X(E/Q)[2] ' X(Ê/Q)[2] ' (Z/2Z)2.

Proof. We leave the proofs that X(Ê/Q)[ψ] and X(E/Q)[φ] both have order 2
as an exercise to the reader (they are much simpler than the proofs in the sections
below). The claims X(E/Q)[2] ' X(Ê/Q)[2] ' (Z/2Z)2 follow from the exact
sequences extracted from the diagram in Proposition 1:

0 −→ X(Ê/Q)[ψ] −→ X(Ê/Q)[2] −→ X(E/Q)[φ] −→ C −→ 0
0 −→ X(E/Q)[φ] −→ X(E/Q)[2] −→ X(Ê/Q)[ψ] −→ Ĉ −→ 0

where C and Ĉ are finite groups of square order by results of Cassels (this follows
from the existence of the Cassels pairing on X, first proved in [6] in the special case
of curves x3 + y3 + dz3 = 0. The special case that we need here simply expresses
the fact that the difference between the rank estimates of the first and the second
descent is always even). Since in our case they are quotients of groups of order 2,
it follows that C = Ĉ = 0, and this implies our claim. �

4. The case k = pl ≡ 1 mod 8

The simplest cases are those where p and l are primes such that p ≡ l ≡
3, 5, 7 mod 8; they were already discussed by Lagrange [19]; Table 1 gives the Selmer
groups Sel(ψ)(Ê/Q) and Sel(φ)(E/Q) attached to the 2-isogenies described above.

Lagrange also found necessary criteria for the solvability of certain torsors. Here
are the results, reformulated using our notation:

Proposition 7. Let p and l be distinct primes such that p ≡ l ≡ 3, 5, 7 mod 8. If
the torsors in each row of the table below have a rational point, then the conditions
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p mod 8 l mod 8 (p/l) Sel(ψ)(Ê/Q) Sel(φ)(E/Q)
1 1 +1 〈−1, p, l〉 〈2, p, l〉

−1 〈−1, pl〉 〈2, pl〉
5 5 +1 〈−1, pl〉 〈p, l〉

−1 〈−1, pl〉 〈2p, 2l〉
3 3 〈−1, pl〉 1
7 7 〈−1, p, l〉 〈2〉

Table 1. Selmer groups Sel(ψ)(Ê/Q) and Sel(φ)(E/Q) for E and
Ê, where p and q are primes such that pl ≡ 1 mod 8.

in the last column of the corresponding row must be satisfied:

p mod 8 l mod 8 (p/l) torsors conditions

5 5 +1 T (φ)(p), T (φ)(l), T (φ)(pl) (p/l)4 = (l/p)4

5 5 −1 T (φ)(2p), T (φ)(2l), T (φ)(pl) [(1 + i)π/λ] = +1

7 7 +1 T (φ)(2), T (ψ)(p), T (ψ)(l) [Λ/Π] = +1

In the last row, Λ ∈ Z[
√

2 ] is a primary element with norm −l, and Π ∈ Z[
√

2 ] has
norm ±p.

Observe that [Λ/Π] is well defined since [Λ/Π][Λ/Π] = [−l/Π] = (−l/p) =
(p/l) = +1.

The proofs for p ≡ l ≡ 5 mod 8 are straight forward and left as an exercise to
the reader. Here we give some details for the case p ≡ l ≡ 7 mod 8: Consider the
torsor T (p) : pn2 = M4 − l2e4. Reduction modulo l shows immediately that either
1) l - M and (p/l) = +1, or 2) l | M and (p/l) = −1. Moreover, either A) 2 - Me
and 2 | n, or B) 2 - ne and 2 | M . As in the case p ≡ l ≡ 1 mod 8, we get four
equations per case:

case I II III IV

1A) M2 + le2 = 2pa2 M2 − le2 = 2b2 pa2 + b2 = M2 pa2 − b2 = le2

1B) M2 + le2 = pa2 M2 − le2 = b2 pa2 + b2 = 2M2 pa2 − b2 = 2le2

2A) lm2 + e2 = 2a2 lm2 − e2 = 2pb2 a2 − pb2 = e2 a2 − pb2 = lm2

2B) lm2 + e2 = a2 lm2 − e2 = pb2 a2 − pb2 = 2e2 a2 − pb2 = 2lm2

Now we distinguish these four cases:

1A) Writing II) and III) in the form M2 − 2b2 = le2 and M2 − b2 = pa2

we find that [λ/Π] = [M + b
√

2/Π], where λ ∈ Z[
√

2 ] is the element of
norm l that divides M + b

√
2. We would like to use the congruence b ≡

±M mod p coming from second equation and conclude that [λ/Π] = [1 ±√
2/Π], but unfortunately the last symbol depends on the choice of the sign.

We therefore have to work a little harder.
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First observe that, for M > 0, we have (M/p) = (−p/M) = +1 from the
second equation. Now we factor pa2 = (M − b)(M + b) and consider the
following two cases:

a) M − b = 2pr2, M + b = 2s2 (the negative signs cannot hold here:
otherwise we would get M = −s2 − rp2 contradicting our assumption
that M > 0); then b = s2−pr2 ≡ 1 mod 4, and we get [M +b

√
2/Π] =

(M/p)[1 +
√

2/Π] = [1 +
√

2/Π].
b) M − b = 2r2, M + b = 2ps2; then b = ps2 − r2 ≡ 3 mod 4, and now

[M + b
√

2/Π] = [1−
√

2/Π].
Thus [λε/Π] = +1, where ε = 1 + (−1/b)

√
2. Now it is easy to check

that λε is primary: in fact, r + s
√

2 with 2 | s is primary if and only if
r + s ≡ 1 mod 4, and since λε is primary if and only if (M + b

√
2 )ε is, we

find

(M + b
√

2 )ε =

{
M + 2b+ (M + b)

√
2 if b ≡ 1 mod 4,

M − 2b+ (b−M)
√

2 if b ≡ 3 mod 4,

and 2M +3b ≡ 2−b ≡ 1 mod 4 in the first and −b ≡ 1 mod 4 in the second
case. Thus in this case [Λ/Π] = +1, where Λ = λε is primary with norm
−l.

1B) Here b2 − 2M2 = −pa2 and b2 − M2 = −le2. Again, choosing M > 0
guarantees (M/l) = (−l/M) = +1. Next, M − b = r2 and M + b = ls2

imply 2b = ls2−r2 and b ≡ 1 mod 4, while M−b = lr2 and M+b = s2 give
2b = s2 − lr2 and b ≡ 3 mod 4. Thus we get [b+M

√
2/Λ] = [−1 +

√
2/Λ]

if b ≡ 1 mod 4 and [b + M
√

2/Λ] = [1 +
√

2/Λ] if b ≡ 3 mod 4. Putting
ε = −(−1/b) +

√
2, it is easy to check that (b+M

√
2 )ε is totally positive.

Now Hasse [14] has shown that we have the reciprocity law [α/β] = [β/α] in
an arbitrary algebraic number field if the conductors of α and β are coprime.
Since (b+M

√
2 )ε� 0, the gcd of the conductors of (b+M

√
2 )ε and Λ do

not contain infinite primes, and since Λ is primary, the gcd does not contain
primes above 2. But then (b+M

√
2,Λ) = (1) gurantees that the conductors

are indeed coprime, and the reciprocity law gives 1 = [(b + M
√

2)ε/Λ] =
[Λ/b + M

√
2 ]. Since (b + M

√
2 ) = (Πα2) by unique factorization, we

conclude that [Λ/b+M
√

2 ] = [Λ/Π].
2A) Equations I and III correspond to III and II in case 1B) with the roles of p

and l switched.
2B) Again, this reduces to case 1A).

We have proved:

Proposition 8. Let di denote the density of rank 0 curves among the Epl, where
p ≡ l ≡ i mod 8 are primes. Then we have d3 = 1, d5 ≥ 1

2 and d7 ≥ 1
2 .

The main result of this paper is that we also have d1 ≥ 1
2 (this is much stronger

than the result obtained by Lagrange [20]). Although numerical computations seem
to suggest that di = 1, it seems that the bounds derived in this article cannot be
improved using our methods.

From now on, we will assume that p and q are both primes ≡ 1 mod 8.
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4.1. The case (p/l) = −1. Let k = pl be a product of primes p ≡ l ≡ 1 mod 8
with (p/l) = −1. Then (see [20])

Sel(ψ)(Ê/Q) = 〈−1, pl〉 = W (Ê/Q), Sel(φ)(E/Q) = 〈2, pl〉.

In particular, X(Ê/Q)[ψ] = 0, so we only have to discuss the φ-part of X(E/Q).
Note that X(Ê/Q)[ψ] = 0 implies Ĉ = 0, hence X(E/Q)[2] = X(E/Q)[φ] in this
case.

Proposition 9. If k = pl is a product of primes p ≡ l ≡ 1 mod 8 with (p/l) = −1,
then X(E/Q)[φ] = 〈2, pl〉 whenever (−4/p)8(−4/l)8 = −1. If this condition holds,
we have #X(E/Q)[2] = 4.

Proof. Consider T (φ)(2) : N2 = 2M4 + 2p2l2e4.
• Assume first that (M,pl) = 1; then N = 2n gives 2n2 = M4 + p2l2e4.

Now M2 + ple2i ≡ 1 + i mod 8 and unique factorization in Z[i] shows that
M2 + ple2i = (1 + i)ν2. Write p = ππ for primes π, π ≡ 1 mod 2 + 2i;
reducing modulo π gives [1 + i/π] = +1, that is, (−4/p)8 = +1, and
similarly (−4/l)8 = +1.

• If (M,pl) = p, put M = mp and N = 2pn; then we get 2n2 = (pm2 +
le2i)(pm2 + le2i), and again pm2 + le2i = (1 + i)ν2. Reducing modulo π
gives [1 + i/π] = [l/π] = (l/p) = −1, hence (−4/p)8 = (−4/l)8 = −1.

• The cases (M,pl) = l and (M,pl) = pl are treated similarly.
Next take T (φ)(pl) : N2 = plM4 +4ple4. With N = pln this gives pln2 = M4 +4e4;
since we may switch the roles of M and e we may assume that M is odd and e is
even. Reducing modulo p and l shows that (−4/pl)8 = (Me/p). Write e = 2je′

with e′ odd: then (e/p) = (e′/p) = (p/e′) = 1 and (M/p) = (p/M) = 1. Thus
(−4/pl)8 = 1.

Finally look at T (φ)(2pl) : 2pln2 = M4 + e4. As above, M2 + ie2 = (1 + i)πλν2;
adding this equation to its conjugate gives 2M2 = (1 + i)πλν2 + (1 − i)πλν2.
Reducing modulo π gives 1 = (2/p) = [1 + i/π][π/π][λ/π]. Now [π/π] = 1 and
[λ/π] = [λ/π], hence (−4/p)8 = [π/λ]. Similarly, (−4/l)8 = [π/λ], and the claim
follows. Note that [π/λ] depends on the choice of π and λ. �

From Prop. 9 we get by a standard application of Chebotarev’s density theorem
the following

Corollary 10. The curves of rank 0 among Epl, where p ≡ l ≡ 1 mod 8 are primes
such that (p/l) = −1, have density at least 1

2 .

4.2. The case (p/l) = +1. Let k = pl be a product of primes p ≡ l ≡ 1 mod 8
with (p/l) = +1. Then (see [20])

Sel(ψ)(Ê/Q) = 〈−1, p, l〉, Sel(φ)(E/Q) = 〈2, p, l〉.

Moreover 〈−1, pl〉 ⊆W (Ê/Q). As above, we will now compute nontrivial elements
of X(E/Q)[φ] and X(Ê/Q)[ψ].

The ψ-part

First we observe that W (Ê/Q) always contains 〈−1, pl〉. Thus

either W (Ê/Q) = 〈−1, p, l〉 and X(Ê/Q)[ψ] = 0,

or W (Ê/Q) = 〈−1, pl〉 and X(Ê/Q)[ψ] = 〈p〉,
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where 〈p〉 represents the class of pQ×2 (which is the same as the class of lQ×2 in
view of plQ×2 ∈W (Ê/Q)) in X(Ê/Q)[ψ].

It is therefore sufficient to consider the torsor T (ψ)(p) : N2 = pM4−pl2e4. Here
the right hand side factors over Q as N2 = p(M2 − le2)(M2 + le2). We have the
following possibilities concerning divisibility

by 2:

{
1) 2 | e, 2 - MN

2) 2 | N, 2 - Me,
by l:

{
A) l - MN

B) l |M, l | N,
and by p:

{
a) p | (M2 + le2)
b) p | (M2 − le2).

Thus we have to consider eight different cases. We claim

Proposition 11. Let E be the elliptic curve defined by y2 = x(x2 − k2), where
k = pl and where p ≡ l ≡ 1 mod 8 are primes such that (p/l) = 1. If the torsor

(1) T (ψ)(p) : N2 = pM4 − pl2e4,

has a rational solution, then the conditions in Table 2 hold according to the case we
are in.

case conditions(∗)

1Aa) [Π/Λ] = (l/p)4 = (−4/p)8 = 1

1Ab) [Π/Λ] = (p/l)4 = (l/p)4(−4/p)8 = 1

1Ba) [Π/Λ] = (−4/pl)8, (l/p)4 = (p/l)4(−4/p)8 = 1

1Bb) [Π/Λ] = (−4/l)8, (p/l)4 = (−4/p)8 = 1

2Aa) [Π/Λ] = (−4/p)8, (l/p)4 = (−4/l)8 = 1

2Ab) [Π/Λ] = (l/p)4 = (p/l)4(−4/l)8 = 1

2Ba) [Π/Λ] = (−4/pl)8, (p/l)4 = (l/p)4(−4/l)8 = 1

2Bb) [Π/Λ] = (p/l)4 = (−4/l)8 = 1

Table 2. Let p ≡ l ≡ 1 mod 8 be primes such that (p/l) = 1. If
T (ψ)(p) has a rational point, then the conditions (*) hold.

If we are in case 1A), then putting N = pn in (1) gives pn2 = M4− l2e4 = (M2−
le2)(M2 + le2). In case 1Aa), these two factors are coprime, hence M2 + le2 = pa2

(I) and M2 − le2 = b2 (II), where ab = n. By adding and subtracting (I) and (II)
we get 2M2 = b2 + pa2 (III) and 2le2 = pa2 − b2 (IV). In a similar way we find
the following table displaying the four equations (I)–(IV) whose solvability follows
from the existence of a rational point on (1):
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case I II III IV

1Aa) M2 + le2 = pa2 M2 − le2 = b2 2M2 = b2 + pa2 2le2 = pa2 − b2

1Ab) M2 + le2 = a2 M2 − le2 = pb2 2M2 = a2 + pb2 2le2 = a2 − pb2

1Ba) lm2 + e2 = pa2 lm2 − e2 = b2 2lm2 = b2 + pa2 2e2 = pa2 − b2

1Bb) lm2 + e2 = a2 lm2 − e2 = pb2 2lm2 = a2 + pb2 2e2 = a2 − pb2

2Aa) M2 + le2 = 2pa2 M2 − le2 = 2b2 M2 = b2 + pa2 le2 = pa2 − b2

2Ab) M2 + le2 = 2a2 M2 − le2 = 2pb2 M2 = a2 + pb2 le2 = a2 − pb2

2Ba) lm2 + e2 = 2pa2 lm2 − e2 = 2b2 lm2 = b2 + pa2 e2 = pa2 − b2

2Bb) lm2 + e2 = 2a2 lm2 − e2 = 2pb2 lm2 = a2 + pb2 e2 = a2 − pb2

In order to save some work we prove a general result that may be applied to
each of these cases:

Proposition 12. Let A,B,C,D ∈ N be pairwise coprime integers, each a product
of distinct primes ≡ 1 mod 4, and assume that these primes are quadratic residues
of each other. If there are x, y, v, w ∈ N such that

Ax2 +By2 = Cv2,(2)
Ax2 −By2 = Dw2,(3)

then C ≡ D mod 8, and A,B,C and D satisfy the relations(AB
C

)
4

(AD
B

)
4

(BD
A

)
4

= 1(4)

and

(−1)
C−D

8

( 2
CD

)
4

(BC
D

)
4

(BD
C

)
4

(CD
A

)
4

= 1.(5)

Proof. Assume that we have a congruenceAr2 = Bs2 mod D with (r,D) = (s,D) =
1, and assume moreover that (AB/p) = +1 for all p | D. Then for each such p we
have Ar2 = Bs2 mod p, and raising this congruence to the p−1

4 -th power we find
that (A/p)4(r/p) = (B/p)4(s/p); multiplying these relations together shows that
(AB/D)4 = (rs/D). We will use this type of reasoning without comment below.

We may (and will) assume that (x, y) = 1. From 2y2 ≡ 2By2 = Cv2 −Dw2 ≡
v2 − w2 mod 4 we then deduce that 2 | y and 2 - xvw.

Reducing (2) modulo C gives (−AB/C)4 = (xy/C). Writing y = 2jy′ for some
odd y′ gives (y/C) = (2/C)j(y′/C) = (2/C)j(C/y′). Reducing (2) modulo y′ we
see (C/y′) = (A/y′). Similarly, we get (x/C) = (C/x) = (B/x) = (x/B) from
(2), and (x/B) = (AD/B)4(w/B). Since (w/B) = (B/w) = (A/w) = (w/A) =
(−BD/A)4(y/A) = (−BD/A)4(2/A)j(A/y′), collecting our results gives the rela-
tion (−AB/C)4 = (AD/B)4(−BD/A)4(2/AC)j . Next we have (−1/A)4 = (2/A)
and (−1/C) = (2/C), hence the relation becomes (AB/C)4(AD/B)4(BD/A)4 =
(2/AC)j+1.

Now there are two cases: if j = 1, then A ≡ C + 4 mod 8, hence (2/AC) = −1,
but (2/AC)j+1 = 1; if j ≥ 2, then A ≡ C mod 8, hence (2/AC) = 1. In both cases,
we arrive at the desired relation.
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By adding and subtracting (2) and (3), we get

2Ax2 = Cv2 +Dw2,(6)

2By2 = Cv2 −Dw2.(7)

From (7) and the fact that y is even we deduce that C ≡ D mod 8.
Reducing (7) modulo D yields (2BC/D)4 = (vy/D). From (7) we deduce that

(y/D) = (2/D)j(y′/D) = (2/D)j(D/y′) = (2/D)j(C/y′) and (v/D) = (D/v) =
(2A/v), so (2BC/D)4 = (2A/v)(2/D)j(C/y′). Similarly, (−2BD/C)4 = (wy/C),
(y/C) = (2/C)j(C/y′) and (w/C) = (C/w) = (2A/w). Combining these results
yields (2BC/D)4(−2BD/C)4 = (2A/vw)(2/CD)j . Since C ≡ D mod 8, we have
(2/CD) = 1, and using (−1/C)4 = (2/C) we conclude that(2BC

D

)
4

(2BD
C

)
4

=
(2A
vw

)( 2
C

)
.

Next, (A/w) = (w/A) = (−BD/A)4(y/A) and (A/v) = (v/A) = (BC/A)4(y/A),
thus (A/vw) = (−BD/A)4(BC/A)4 = (2/A)(CD/A)4 since (B/A) = +1. This
gives us ( 2

CD

)
4

(BC
D

)
4

(BD
C

)
4

(CD
A

)
4

=
( 2
vw

)( 2
C

)
.

If j = 1, then Cv2 ≡ Dw2 + 8 mod 16, hence C ≡ D + 8 mod 16 if and only if
(2/v) = (2/w), or (2/vw) = −(−1)(C−D)/8. Moreover, 2Ax2 ≡ 2Cv2 + 8 mod 16
implies (2/AC) = −1, so we get (2/vw)(2/AC) = (−1)(C−D)/8.

If j ≥ 2, then Cv2 ≡ Dw2 mod 16, and this shows that C ≡ D mod 16 if and
only if (2/v) = (2/w), hence (2/vw) = (−1)(C−D)/8. Moreover, (6) implies that
A ≡ C mod 8, hence (2/AC) = +1, and again (2/vw)(2/AC) = (−1)(C−D)/8. �

In order to apply this result we have to identify the coefficients A,B,C and D.
We find

case (1) (2) A B C D case (1) (2) A B C D

1Aa) I II 1 l p 1 2Aa) III IV p 1 1 l

1Ab) I II 1 l 1 p 2Ab) III IV 1 p 1 l

1Ba) I II l 1 p 1 2Ba) III IV p 1 l 1

1Bb) I II l 1 1 p 2Bb) III IV 1 p l 1

This takes care of all the conditions not involving [Π/Λ]. For completing the
proof we need the following

Lemma 13. Let P ≡ L ≡ 1 mod 8 be primes such that (P/L) = +1. Let Π,Λ ∈
Z[
√

2 ] be primary elements of norm P and L, respectively. If there exist integers
x, y, z, w ∈ N such that

x2 − 2y2 = −Pz2, and x2 − y2 = εLw2

for some ε = ±1, then [Π/Λ] = +1.

Proof. Unique factorization gives x+y
√

2 = ε2Πα2, where ε2 is a fundamental unit
of Z[

√
2 ] and where Nα = z. Thus [Π/Λ] = [ε2/Λ][x+y

√
2Λ]. Now y ≡ ±x mod Λ

from the second equation, hence [x+y
√

2/Λ] = [x/Λ][1±
√

2/Λ]. But [1±
√

2/Λ] =
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[ε2/Λ] since the expression [±1 ±
√

2/Λ] does not depend on the choice of signs,
and we get [Π/Λ] = [x/Λ] = (x/L). If ε = +1, then (x/L) = (y/L) = (L/y) = +1,
and if ε = −1, then (x/L) = (L/x) = +1. This proves our claim. �

Lemma 13 takes care of four out of our eight cases:

case x y z w P L ε

1Aa) b M a e p l −1

1Ab) a M b e p l +1

2Ab) M a e b l p +1

2Bb) e a m b l p −1

For the remaining four cases, the role of Lemma 13 is taken over by

Lemma 14. Let P ≡ L ≡ 1 mod 8 be primes such that (P/L) = +1. Let Π,Λ ∈
Z[
√

2 ] be primary elements of norm P and L, respectively. If there exist integers
x, y, z, w ∈ N such that

x2 + 2εy2 = Pz2, and x2 + εy2 = Lw2

for some ε = ±1, then[Π
Λ

]
=

{(−4
L

)
8

if ε = −1,(
P
L

)
4

(
L
P

)
4

(−4
L

)
8

if ε = +1.

Proof. Let π, λ ∈ Z[
√

2ε ] be primary elements of norm P and L, respectively. Then
from πα2 = x + y

√
2ε we get [π/λ] = [x + y

√
2ε/λ]. The second equation gives

x ≡ ±y
√
ε mod l, where l denotes a prime ideal above l in Q(ζ8). Letting { · / · }

denote the quadratic residue symbol in Z[ζ8], we find [x+y
√

2ε/λ] = {x+y
√

2ε/l} =
{x± x

√
2/l} = (x/L)[1±

√
2/Λ]. Now if ε = 1 then (x/L) = (L/x) = +1, whereas

if ε = −1 then (x/L) = (y/L) = (y′/L) = (L/y′) = +1. Thus [π/λ] = [1+
√

2/Λ] =
(−4/L)8. If ε = −1, then π = Π and λ = Λ, but if ε = +1 then π = Π∗ and
λ = Λ∗, Π∗,Λ∗ ∈ Z[

√
−2 ] are primary elements of norm p and l, respectively. Thus

[Π/Λ] = [Π∗/Λ∗](P/L)4(L/P )4 = (P/L)4(L/P )4(−4/L)8. �

Lemma 14 covers the remaining four cases:

case x y z w P L ε resulting condition

1Ba) b e a m p l +1 [Π/Λ] = (−4/pl)8

1Bb) a e m b p l −1 [Π/Λ] = (−4/l)8

2Aa) M b a e l p −1 [Π/Λ] = (−4/p)8

2Ba) e b m a l p +1 [Π/Λ] = (−4/pl)8

Note that, in case 1Ba), Lemma 14 gives [Π/Λ] = (−4/l)8(p/l)4(l/p)4; but since
(p/l)4(l/p)4 = (−4/p)8 by Lemma 13, we get the relation in the table above.

As a matter of fact, the criteria involving [Π/Λ] can just as well be obtained
using genus theory (compare the discussion of T (φ)(2p) below). As the discussion
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of the φ-part below shows, however, it seems that arguments from genus theory
cannot always be replaced by the direct calculation of residue symbols.

The φ-part

Our aim in this section is to show

Proposition 15. If the torsor T (φ)(b1) with 1 6= b1 ∈ 〈2, p, l〉 has a rational point,
then the conditions in Table 3 must be satisfied.

b1 conditions (*)

2 (−4/p)8 = (−4/l)8 = [Π/Λ] = 1

p (p/l)4 = (l/p)4 = (−4/p)8 = 1

2p (p/l)4(l/p)4 = (−4/l)8, (−4/p)8 = 1, [Π/Λ] = (l/p)4

l (p/l)4 = (l/p)4 = (−4/l)8 = 1

2l (p/l)4(l/p)4 = (−4/p)8, (−4/l)8 = 1, [Π/Λ] = (p/l)4

pl (p/l)4 = (l/p)4, (−4/p)8 = (−4/l)8 = 1

2pl (p/l)4(l/p)4 = (−4/p)8 = (−4/l)8, [Π/Λ] = 1

Table 3. Let p ≡ l ≡ 1 mod 8 be primes such that (p/l) = 1. If
T (φ)(b1) has a rational point, then the conditions (*) must be sat-
isfied.

For the proof of Prop. 15, we need the following proposition dealing with a
slightly more general situation:

Proposition 16. Let k be a product of pairwise distinct primes ≡ 1 mod 8 that are
quadratic residues of each other. Let k = AB for A,B ∈ N; if the torsor T (φ)(A)
of Ek has a nontrivial rational point, then there is a primary α ∈ Z[i] with norm
A such that the following conditions hold:

(1) (−4/A)8 = +1;
(2) [α/π] = +1 for all π | B;
(3) (−4/p)8 = (B/p)4 for all p | A.
(4) [α∗/π] = +1 for all π | α, where α = α∗π.

Proof. We have T (φ)(A) : AN2 = M4 +4B2e4; let b = gcd(M,B) be normalized by
b > 0. Putting N = bn and M = bm, we get An2 = b2m4 + 4c2e4, where bc = B.
We may assume that m is odd: otherwise we switch the roles of m and e. Note
that A ≡ 1 mod 8 implies that 4 | e.

Factoring the right hand side on Z[i] gives αν2 = bm2 + 2cie2 for some primary
α ∈ Z[i] with norm Nα = A. First observe that we have αν2 ≡ bm2 ≡ 1 mod 8:
thus α is congruent to a square modulo 8, and this implies 1. Moreover, [α/π] =
[b/π] = (b/p) = +1 for all π | c with Nπ = p, and similarly [α/π] = 1 for π | b,
hence criterion 2.

Reducing the equation modulo some π | α gives [1+ i/π](c/p)4 = (−b/p)4, hence
(−4/p)8 = (B/p)4 for all p | A, and this is 3.
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Finally, subtracting αν2 = bm2 + 2cie2 from its conjugate yields αν2 − αν2 =
4cie2; reducing modulo some π | α we get [α/π] = (2c/p) = +1. Since [π/π] = +1,
this is equivalent to [α∗/π] = +1, proving 4. �

Proof of Prop. 15. In the case T (φ)(p) we have A = p and B = l, so (−4/p)8 = 1
from 16.(1), (p/l)4(l/p)4 = [π/λ] = 1 from 16.(2), (−4/p)8 = (l/p)4 from 16.(3) and
no condition from 16.(4). In this way we find all criteria given in Table 3 except
those involving [Π/Λ]. These have to be derived in an ad hoc manner:
• T (φ)(2) : 2n2 = M4 + p2l2e4. Write the torsor in the form −p2l2e4 = (M2 +
n
√

2 )(M2 − n
√

2 ). We assume that (M,pl) = 1; the other cases are treated
similarly. Then M2 +n

√
2 = ηΠ2Λ2α4 for primes Π,Λ ∈ Z[

√
2 ] such that NΠ = p,

NΛ = l and Π ≡ Λ ≡ 1 mod 2. Moreover, η = ε±1 with ε = 1 +
√

2. Adding
the last equation to its conjugate gives 2M2 = (

√
2M)2 = ηΠ2Λ2α4 + ηΠ

2
Λ

2
α4.

Replacing M by Mε if necessary we may assume without loss of generality that
η = ε. Thus

ε−1(
√

2M)2 = Π2Λ2α4 − ε2Π
2
Λ

2
α4 = (ΠΛα2 + εΠΛα2)(ΠΛα2 − εΠΛα2).

Now ΠΛα2+εΠΛα2 ≡
√

2 mod 2, hence ΠΛα2+εΠΛα2 =
√

2µ2, ΠΛα2−εΠΛα2 =√
2ε−1µ2. Reducing modulo Π and using [Π/Π] = (2/p)4, [ε/Π] = (−4/p)8 = 1 (in

this case), as well as [Λ/Π] = [Λ/Π] we find that the solvability of T (φ)(2) implies
[Λ/Π] = 1.
• T (φ)(2p): Factoring 2pn2 = M4 + l2e4 as 2pn2 = (M2 + le2 +Me

√
2l )(M2 + le2−

Me
√

2l ) and observing that Me ≡ 1 mod 2 implies that each factor is divisible
exactly once by the prime ideal 2 above 2. Thus 2pn2 = (M2 + le2 + Me

√
2l ),

where n is an ideal with norm n. Let h+ denote the class number of Q(
√

2l ) in the
strict sense. We have to distinguish several cases:

(1) h ≡ 2 mod 4, h+ ≡ 4 mod 8. By Proposition 3, this holds if and only if
(−4/l)8 = −1, and we also know that Nε2l = +1 and that 2 is principal
in the wide sense. Now [Π/Λ] = +1 ⇐⇒ p

+∼ 4 by Lemma 4, and since
2pn2 is principal in the strict sense, this happens if and only if 2n2 +∼ 4 .
If (2/l)4 = −1, then 2

+∼ 1 is principal in the strict sense, and this happens
if and only if n2 +∼ 4 , thus by genus theory ⇐⇒ (2/n) = (l/n) = +1.
But (2/n) = (2p/l)4 = −(p/l)4. Finally, solvability of T (φ)(2p) implies
(−4/l)8 = (p/l)4(l/p)4, so (p/l)4 = (−4/l)8(l/p)4 = −(l/p)4, and we see
that [Π/Λ] = (l/p)4 as claimed. If (2/l)4 = +1, on the other hand, then 2

is not principal in the strict sense, hence [Π/Λ] = +1 ⇐⇒ n2 +� 4 , that
is, iff −1 = (2/n) = (p/l)4, and as above this gives [Π/Λ] = (l/p)4.

(2) h ≡ h+ ≡ 4 mod 8. By Proposition 3, this holds if and only if (2/l)4 = −1
and l ≡ 9 mod 16. Here 22 is principal in the strict sense and 2 is not,
in particular 2

+∼ 2 but 2
+� 4 . Now [Π/Λ] = +1 ⇐⇒ n

+� 2
which in turn happens iff −1 = (2/n) = (2p/l)4 = −(p/l)4. Since 1 =
(−4/l)8 = (p/l)4(l/p)4 from earlier solvability results, this gives [Π/Λ] = 1
⇐⇒ (l/p)4 = 1 as claimed.

(3) h+ ≡ 0 mod 8. By Proposition 3, this holds if and only if (2/l)4 = +1 and
l ≡ 1 mod 16. Here 22 = (2) is principal, and since the class group Cl+2 (k) is
cyclic, 2

+∼ 4 . Thus [Π/Λ] = +1 ⇐⇒ n
+∼ 2 ⇐⇒ 1 = (2p/l)4 = (p/l)4,

and we conclude as above that [Π/Λ] = (l/p)4.
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• T (φ)(2l) : N2 = 2lM4 + 2p2le4. Symmetry reduces this to the discussion of
T (φ)(2p).
• T (φ)(2pl) : N2 = 2plM4+2ple4. We start by factoring the torsor as 2pln2 = M4+
e4 = (M2 + e2 +Me

√
2 )(M2 + e2 −Me

√
2 ). Unique Factorization in Z[

√
2 ] gives

M2 + e2 +Me
√

2 = ε
√

2ΠΛν2 and M2 + e2 −Me
√

2 = −ε
√

2 ΠΛν2. Subtracting
the second equation from the first gives 2Me = εΠΛν2 + εΠΛν2, which in view of
[ε/Π] = (−4/p)8 and [Π/Π] = (2/p)4 gives [Λ/Π] = (Me/p)(−1/p)8.

On the other hand we have 2pln2 = (M2 + ie2)(M2 − ie2), hence M2 + ie2 =
(1+i)πλν2 for some ν ∈ Z[i]. This implies (Me/p) = [Me/π] = [−i/π]4 = (−1/p)8,
hence our claim that [Π/Λ] = 1 is proved. �

The use of genus theory in this connection was suggested by the proofs of Pépin’s
conjectures in [21]. This concludes our discussion of the φ-part of X(E/Q).

5. The Main Result

The main result of this paper is the following theorem:

Theorem 17. Let p ≡ l ≡ 1 mod 8 be primes with (p/l) = 1. The proper-
ties of the Tate-Shafarevich groups X(Ek/Q)[φ] and X(Êk/Q)[ψ] correspond-
ing to the 2-isogenies between the elliptic curves Ek : y2 = x(x2 − p2l2) and
Êk : y2 = x(x2 + 4p2l2) are recorded in Table 4. If the rank given there is 0,
then the given subgroups actually equal X(Ek/Q)[φ] and X(Êk/Q)[ψ], and we
have X(E/Q)[2] ' (Z/2Z)4.

Let us sketch the proof of Theorem 17 by going through an example. Take the
second line; we claim that T (φ)(p) is the only possibly trivial torsor in Sel(φ)(E/Q)
(that means that it is the only one that might have a rational point). In fact, the
torsors T (φ)(2), T (φ)(l), T (φ)(2l) and T (φ)(pl) are nontrivial since (−4/l)8 = −1,
whereas T (φ)(2p) and T (φ)(2pl) are nontrivial because (p/l)4(l/p)4 6= (−4/l)8. The
other claims now follow immediately.

It remains to prove that X(E/Q)[2] has order 16 if rankEpl = 0. Recall the
exact sequence

0 −→ X(E/Q)[φ] −→ X(E/Q)[2] −→ X(Ê/Q)[ψ] −→ Ĉ −→ 0,

where Ĉ is a finite 2-group of even rank by a result of Cassels. Since Ĉ is a
quotient of the group X(Ê/Q)[ψ] of order 2 in our case, we must have Ĉ = 0, and
in particular we get X(E/Q)[2] ' X(E/Q)[φ]⊕X(Ê/Q)[ψ] as claimed.

Corollary 18. The curves of rank 0 among Epl, where p ≡ l ≡ 1 mod 8 are primes
such that (p/l) = +1, have density at least 1

2 . Those with rank 4 have density at
most 1

32 .

Table 5 gives the smallest examples of p and l satisfying the conditions from
Table 4 and such that the given inequality for the rank is an equality (with the
possible exception of the first line with p = 41, l = 2273, where the rank is 2 or 4).
In all cases except one, the given example is the one that occurs first: the exception
is pl = 41 · 1601, where the example pl = 41 · 1321 has the same residue symbols;
yet rank E41·1321 = 0.

If E = Epl is a curve with #X(Ê/Q)[ψ] = 2, then Proposition 1 and the fact
that Ĉ has even rank imply that we must have Ĉ = 0; this in turn implies that
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#
[
Π
Λ

]
( lp )4 (pl )4 (−4

p )8 (−4
l )8 X[ψ] X[φ] rk E W (φ)

1 +1 +1 +1 +1 +1 1 1 ≤ 4 〈2, p, l〉
2 +1 −1 1 〈2p, l〉 ≤ 2 〈p〉
3 −1 +1 1 〈p, 2l〉 ≤ 2 〈l〉
4 −1 −1 〈p〉 〈2, p, l〉 0 1
5 −1 +1 +1 1 〈p, l〉 ≤ 2 〈2〉
6 +1 −1 1 〈p, l〉 ≤ 2 〈2p〉
7 −1 +1 〈p〉 〈2, p, l〉 0 1
8 −1 −1 1 〈2, p〉 ≤ 2 〈2pl〉
9 −1 +1 +1 +1 1 〈p, l〉 ≤ 2 〈2〉

10 +1 −1 〈p〉 〈2, p, l〉 0 1
11 −1 +1 1 〈p, l〉 ≤ 2 〈2l〉
12 −1 −1 1 〈p, l〉 ≤ 2 〈2pl〉
13 −1 +1 +1 〈p〉 〈p〉 ≤ 2 〈2, pl〉
14 +1 −1 〈p〉 〈2, p, l〉 0 1
15 −1 +1 〈p〉 〈2, p, l〉 0 1
16 −1 −1 〈p〉 〈2, p, l〉 0 1
17 −1 +1 +1 +1 +1 〈p〉 〈2〉 ≤ 2 〈p, l〉
18 +1 −1 1 〈2, l〉 ≤ 2 〈p〉
19 −1 +1 1 〈2, p〉 ≤ 2 〈l〉
20 −1 −1 〈p〉 〈2, p, l〉 0 1
21 −1 +1 +1 〈p〉 〈2, p, l〉 0 1
22 +1 −1 〈p〉 〈2, p, l〉 0 1
23 −1 +1 1 〈2, p〉 ≤ 2 〈2l〉
24 −1 −1 〈p〉 〈2, p, l〉 0 1
25 −1 +1 +1 +1 〈p〉 〈2, p, l〉 0 1
26 +1 −1 1 〈2, l〉 ≤ 2 〈2p〉
27 −1 +1 〈p〉 〈2, p, l〉 0 1
28 −1 −1 〈p〉 〈2, p, l〉 0 1
29 −1 +1 +1 〈p〉 〈p〉 ≤ 2 〈2p, 2l〉
30 +1 −1 〈p〉 〈2, p, l〉 0 1
31 −1 +1 〈p〉 〈2, p, l〉 0 1
32 −1 −1 〈p〉 〈2, p, l〉 0 1

Table 4. The Tate-Shafarevich groups X[φ] := X(Ek/Q)[φ]
and X[ψ] := X(Êk/Q)[ψ] corresponding to the 2-isogenies be-
tween the elliptic curves Ek : y2 = x(x2 − k2) and Êk : y2 =
x(x2 + 4k2) with k = pl, where p and l are primes such that
p ≡ l ≡ 1 mod 8 and (p/l) = +1, have subgroups as indicated.
The column labeled rk E gives bounds for the rank of Ek(Q). The
column W (φ) gives the subgroup of torsors in Sel(φ)(E/Q) that
may have rational points.

every element of Sel(ψ)(Ê/Q) can be lifted to an element in Sel(2)(Ê/Q), in other
words: the second 2-descent via 2-isogenies never detects groups X(Ê/Q)[ψ] of
order 2; in particular, it never predicts rank 0 in the 16 cases where Table 4 does.
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Table 5 compares the rank estimates from Theorem 17 with those produced by
Cremona’s program mwrank; for the column labeled mwrankE I used Ek : y2 =
x(x2 − k2) as the input, whereas for the other one I used the 2-isogenous curve
E−2kl : y2 = x(x2 + 4k2). Although both curves have the same rank, the output
differs considerably. The reason is that with Ek as the input, mwrank chooses the
isogeny with kernel (k, 0) (instead of (0, 0) as we did), and the second 2-descent for
this pair of curves is (in our examples at least) less powerful than for the pair we
have picked. On the other hand, choosing Ek for k = 113 ·257, mwrank produces the
correct rank 2, whereas E−2k does not. While this phenomenon has been observed
before (e.g. by Nils Bruin [4]), it seems that this problem should be investigated
more closely.

Some Examples. In [40], Wada and Taira (extending previous calculations of
Noda & Wada [30]; see also Nemenzo [27]) computed the rank of most curves Ek
for k < 40, 000. For 20 of these curves, they could only prove that the rank was
between 2 and 4. Exactly 8 out of these 20 numbers have the form k = pl with
primes p ≡ l ≡ 1 mod 8, and for these numbers our results show that the rank is in
fact 2 in these cases:

k p l (l/p)4 (p/l)4 (−4/p)8 (−4/l)8 [Π/Λ]
1513 17 89 +1 −1 −1 −1 +1
2329 17 137 +1 −1 −1 +1 −1
4633 41 113 +1 −1 +1 +1 +1
6001 17 353 +1 +1 −1 +1 −1
6953 17 409 +1 +1 −1 +1 −1
7361 17 433 −1 +1 −1 −1 +1
7769 17 457 −1 +1 −1 +1 +1
9809 17 577 +1 −1 −1 +1 −1

We remark in passing that the inequality rank E ≤ 2 in these cases follows
already from the criteria not involving [Π/Λ]. Moreover, the special case k = 1513
was discussed by Wada [39].

The tables of Nemenzo [28, 29] contain 70 more values k = pl < 100, 000 such
that Ek has analytic rank 2 and Selmer rank 4. For 66 of them, the criteria
involving the rational residue symbols suffice to show that the rank is at most 2;
the 4 exceptions are k = 64297 = 113 · 569, 67009 = 113 · 593, 93193 = 41 · 2273
and 94177 = 41 · 2297. For these values of k we find [Λ/Π] = −1 except when
k = 93193.

It would be interesting to compare the results of this paper with the standard
second 2-descent (see e.g. Cremona [7]); I intend to address this problem at another
occasion. The referee observed that mwrank gives the correct rank of the Mordell-
Weil group for 19 out of the 20 open cases in Nemenzo’s paper, the exceptional
curve being Ek with k = 9554 = 2pl with p = 17 and l = 281; as a matter of fact,
running mwrank on the 2-isogenous curve E−pl produces the correct rank 2.
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# mwrank E mwrank Ê r p l

1 2 ≤ r ≤ 4 2 ≤ r ≤ 4 2 ≤ r ≤ 4 41 2273
2 2 ≤ r ≤ 4 2 2 41 769
3 2 ≤ r ≤ 4 2 2 97 353
4 0 ≤ r ≤ 4 0 ≤ r ≤ 2 0 17 1361
5 2 ≤ r ≤ 4 2 2 41 113
6 2 ≤ r ≤ 4 2 2 113 233
7 0 ≤ r ≤ 4 0 ≤ r ≤ 2 0 17 953
8 2 ≤ r ≤ 4 2 2 17 89
9 2 ≤ r ≤ 4 2 2 41 569

10 0 ≤ r ≤ 4 0 ≤ r ≤ 2 0 41 73
11 2 ≤ r ≤ 4 2 2 17 457
12 2 ≤ r ≤ 4 2 2 17 433
13 2 ≤ r ≤ 4 2 ≤ r ≤ 4 2 41 1601
14 0 ≤ r ≤ 4 0 ≤ r ≤ 2 0 41 449
15 0 ≤ r ≤ 4 0 ≤ r ≤ 2 0 17 569
16 0 ≤ r ≤ 4 0 ≤ r ≤ 2 0 17 977
17 2 2 ≤ r ≤ 4 2 113 569
18 2 2 2 41 433
19 2 2 2 17 353
20 0 ≤ r ≤ 2 0 ≤ r ≤ 2 0 73 89
21 0 ≤ r ≤ 2 0 ≤ r ≤ 2 0 41 353
22 0 ≤ r ≤ 2 0 ≤ r ≤ 2 0 113 241
23 2 2 2 17 137
24 0 ≤ r ≤ 2 0 ≤ r ≤ 2 0 89 97
25 0 ≤ r ≤ 2 0 ≤ r ≤ 2 0 41 337
26 2 2 2 113 401
27 0 ≤ r ≤ 2 0 ≤ r ≤ 2 0 17 257
28 0 ≤ r ≤ 2 0 ≤ r ≤ 2 0 73 97
29 2 2 ≤ r ≤ 4 2 113 257
30 0 ≤ r ≤ 2 0 ≤ r ≤ 2 0 41 241
31 0 ≤ r ≤ 2 0 ≤ r ≤ 2 0 89 257
32 0 ≤ r ≤ 2 0 ≤ r ≤ 2 0 17 281

Table 5. A Comparison of Table 4 and mwrank. The column la-
beled mwrank E gives the bounds for the rank of E = Epl produced
by Cremona’s program, and similarly mwrank Ê gives the rank es-
timate produced when running mwrank on Ê = E−2pl; combining
the lower bounds from these columns with the results from Table
4 gives the entries in column r.

reading of the manuscript, and for running Cremona’s program mwrank on some of
the examples treated here; Table 5 was added only afterwards.
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