# Simplest Cubic Fields 

Franz Lemmermeyer, Attila Peth $\ddot{q}^{11}$

Franz Lemmermeyer<br>Bilkent University<br>Department of Mathematics<br>06800 Bilkent, Ankara<br>Turkey<br>franz@fen.bilkent.edu.tr

Attila Pethő<br>Laboratory of Informatics<br>University of Medicine<br>Nagyerdei Krt. 98<br>H-4032 Debrecen<br>Hungary<br>pethoe@peugeot.dote.hu

## 1. Introduction

In this paper we intend to show that certain integers do not occur as the norms of principal ideals in a family of cubic fields studied by Cohn [C], Shanks [Sh, and Ennola [E]. These results will simplify the construction of certain unramified quadratic extensions of such fields (cf. Wa, W] etc.).

For a natural number $a$, let $f_{a}=x^{3}-a x^{2}-(a+3) x-1$, and let $K=K_{a}$ be the cyclic cubic number field generated by a root $\alpha$ of $f_{a}$. Let N denote the Norm $N_{K / \mathbb{Q}}$. Elements in $K$ are said to be associated if their quotient is a unit in $\mathbb{Z}[\alpha]$. The polynomial $f=f_{a}$ has discriminant disc $f=m^{2}$, where $m=a^{2}+3 a+9$; if we assume $m$ to be squarefree, then we have disc $K=\operatorname{disc} f=m^{2}$ and $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$ (there exist infinitely many such $m$, cf. Cusick $[\mathrm{Cu}]$ ). Moreover it is easy to see that $\left\{1, \alpha, \alpha^{\prime}\right\}$ also is an integral basis of $\mathcal{O}_{K}$ : in fact, this follows from $(\alpha+1)\left(\alpha^{2}-(a+1) \alpha-2\right)=-1$. For this family of cyclic cubic fields, we will prove the following result:

Theorem 1. For all $\gamma \in \mathbb{Z}[\alpha]$ either $|N \gamma| \geq 2 a+3$, or $\gamma$ is associated to an integer. Moreover, if $|N \gamma|=2 a+3$, then $\gamma$ is associated to one of the conjugates of $\alpha-1$.

## 2. The Proof

We start the proof with the observation that the assertion is correct for $a<7$ ("proof by inspection" using the decomposition law for cyclic cubic fields or by using the method described below, but with the actual values of $\alpha, \alpha^{\prime}$ and $\left.\alpha^{\prime \prime}\right)$. Moreover, we remark that $\alpha, \alpha^{\prime}=-\frac{\alpha+1}{\alpha}$ and $\alpha^{\prime \prime}=-\frac{1}{\alpha+1}$ are the roots of $f$. Choosing $\alpha$ as the smallest of the three roots and applying Newton's method, we find that

$$
-1-\frac{1}{a}<\alpha<-1-\frac{1}{2 a}, \quad-\frac{1}{a+2}<\alpha^{\prime}<-\frac{1}{a+3}, \quad a+1<\alpha^{\prime \prime}<a+1+\frac{2}{a} .
$$

These inequalities imply (for $a \geq 7$ )

$$
\left|\alpha-\alpha^{\prime}\right|<1+\frac{1}{a}, \quad\left|\alpha^{\prime}-\alpha^{\prime \prime}\right|<a+1+\frac{3}{a}, \quad \text { and }\left|\alpha^{\prime \prime}-\alpha\right|<a+2+\frac{3}{a}
$$

In particular, we have

$$
\left|\alpha-\alpha^{\prime}\right|+\left|\alpha^{\prime}-\alpha^{\prime \prime}\right|+\left|\alpha^{\prime \prime}-\alpha\right|<2 a+4+\frac{7}{a} \leq 2 a+5
$$

[^0]Moreover, we will need the relation

$$
m=\alpha^{2}+\alpha^{\prime 2}+\alpha^{\prime \prime 2}-\alpha \alpha^{\prime}-\alpha^{\prime} \alpha^{\prime \prime}-\alpha^{\prime \prime} \alpha=\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
\alpha & \alpha^{\prime} & \alpha^{\prime \prime} \\
\alpha^{\prime} & \alpha^{\prime \prime} & \alpha
\end{array}\right),
$$

which can be deduced easily from the well known fact that the square of this determinant equals disc $\left(1, \alpha, \alpha^{\prime}\right)=m^{2}$, making use of the formulae

$$
\alpha \alpha^{\prime}=-\alpha-1, \quad \alpha^{2}=a+2+a \alpha-\alpha^{\prime} .
$$

The units $\alpha^{\prime-1}$ and $\alpha^{\prime \prime}$ satisfy the inequalities

$$
a+2<\left|\alpha^{\prime-1}\right|<a+3, \quad a+1<\left|\alpha^{\prime \prime}\right|<a+2,
$$

and this implies that, given two positive real numbers $c_{1}$ and $c_{2}$ and an element $\gamma \in Z[\alpha]$, we can find a unit $\eta$ such that

$$
\begin{equation*}
c_{1} \leq|\gamma \eta|<(a+3) c_{1}, \quad c_{2} \leq\left|\gamma^{\prime} \eta^{\prime}\right|<(a+4) c_{2} . \tag{1}
\end{equation*}
$$

This is a special case of a more general result which is valid for all number fields with unit rank $\geq 1$; we will, however, give the proof only for totally real cubic fields K because the notation simplifies considerably. Let $u_{1}$ and $u_{2}$ be two independent units in $K$; their images in $\mathbb{R}^{2}$ upon their logarithmic embedding are $\log \left(u_{1}\right)=v_{1}=\left(\log \left|u_{1}\right|, \log \left|u_{1}^{\prime}\right|\right)$ and $\log \left(u_{2}\right)=v_{2}=\left(\log \left|u_{2}\right|, \log \left|u_{2}^{\prime}\right|\right)$. Dirichlet's unit theory shows that $v_{1}$ and $v_{2}$ are linear independent vectors. This implies that, for any $\xi \in K$, its image $\log (\xi)$ can be moved into the fundamental domain spanned by $v_{1}$ and $v_{2}$ by adding and subtracting suitable multiples of $v_{1}$ and $v_{2}$, i.e. we can find a translate $\eta$ of $\log (\xi)$ such that

$$
\begin{aligned}
& c_{1}<|\eta| \leq c_{1}+|\log | u_{1}| |+|\log | u_{2}| |, \\
& c_{2}<\left|\eta^{\prime}\right| \leq c_{2}+|\log | u_{1}^{\prime}| |+|\log | u_{2}^{\prime}| |
\end{aligned}
$$

Translating this back to the field $K$ and using the units $\alpha$ and $\alpha^{\prime \prime}$, we see that we can find a unit $\eta$ such that

$$
c_{1} \leq|\gamma \eta|<\left|\alpha \alpha^{\prime \prime}\right| c_{1}, \quad c_{2} \leq\left|\gamma^{\prime} \eta^{\prime}\right|<\left|\alpha^{\prime-1} \alpha\right| c_{2},
$$

where we have chosen the exponents of $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}$ in such a way that their absolute value is $>1$ (this comes from the absolute values on the log's). Inserting the bounds on $|\alpha|,\left|\alpha^{\prime}\right|,\left|\alpha^{\prime \prime}\right|$ we get equation (1).

Writing $\xi=\gamma \eta=r+s \alpha+t \alpha^{\prime}$ and $n=\left|N_{K / \mathbb{Q}} \xi\right|$, we find $\left(T=T_{K / \mathbb{Q}}\right.$ denotes the trace):

$$
m t=T\left(\xi\left(\alpha^{\prime}-\alpha^{\prime \prime}\right)\right), \quad m s=T\left(\xi\left(\alpha^{\prime \prime}-\alpha\right)\right), \quad m r=T\left(\xi\left(\alpha \alpha^{\prime}-\alpha^{\prime \prime 2}\right)\right) .
$$

Letting $c_{1}=c_{2}=\sqrt[3]{n /(a+3)}$ we get $|\xi|,\left|\xi^{\prime}\right|,\left|\xi^{\prime \prime}\right|<\sqrt[3]{n} \cdot(a+3)^{2 / 3}$, and this implies the bounds

$$
\begin{aligned}
|m t| & \leq|\xi|\left|\alpha^{\prime}-\alpha^{\prime \prime}\right|+\left|\xi^{\prime}\right|\left|\alpha^{\prime \prime}-\alpha\right|+\left|\xi^{\prime \prime}\right|\left|\alpha-\alpha^{\prime}\right| \\
& <\sqrt[3]{n}(a+3)^{2 / 3}(2 a+5) ; \\
|m s| & \leq|\xi|\left|\alpha^{\prime \prime}-\alpha\right|+\left|\xi^{\prime}\right|\left|\alpha-\alpha^{\prime}\right|+\left|\xi^{\prime \prime}\right|\left|\alpha^{\prime}-\alpha^{\prime \prime}\right| \\
& <\sqrt[3]{n}(a+3)^{2 / 3}(2 a+5) .
\end{aligned}
$$

Using $n \leq 2 a+3$ and $a \geq 7$ we find that $|t| \leq 2,|s| \leq 2$. Computing the actual values of $\alpha, \alpha^{\prime}$ and $\alpha^{\prime \prime}$ for $1 \leq a \leq 6$ and carrying out the above procedure we get the same result.

Now we will look at the $\xi=r+s \alpha+t \alpha^{\prime}$ that satisfy the following system of inequalities:

$$
\begin{gathered}
|s| \leq 2,|t| \leq 2, \quad\left|\xi \xi^{\prime} \xi^{\prime \prime}\right| \leq n \leq 2 a+3, \\
|\xi|,\left|\xi^{\prime}\right|,\left|\xi^{\prime \prime}\right|<\sqrt[3]{n}(a+3)^{2 / 3} .
\end{gathered}
$$

A somewhat tedious computation yields $N_{K / \mathbb{Q}}\left(r+s \alpha+t \alpha^{\prime}\right)=r^{3}+s^{3}+t^{3}+a r^{2} s+a r^{2} t+$ $3 s t^{2}-\left(a^{2}+3 a+6\right) s^{2} t-(a+3) r t^{2}-(a+3) r s^{2}+\left(a^{2}+a+3\right) r s t$, so for fixed $s, t$ the norm of $r+s \alpha+t \alpha^{\prime}$ is a cubic polynomial in $r$. This polynomial will be minimal for values of $r$ in the neighborhood of its roots. We will distinguish the following cases:
(1) $s=t=0$ : then $\xi \in \mathbb{Z}$, and $\xi$ (as well as $\gamma$ ) is associated to a natural number;
(2) $s= \pm 1, t=0$ : then $\xi=\alpha-r$ for some $r \in \mathbb{Z}$, and we find
$N_{K / \mathbb{Q}} \xi=-f(r)=-r^{3}+a r^{2}+(a+3) r+1$.
The roots of this polynomial are $r \approx 0, r \approx-1$, and $r \approx a+1$, and now
$N \alpha=-N(\alpha+1)=1$,
$N(\alpha-1)=N(\alpha+2)=2 a+3, \quad N(\alpha-a-1)=2 a+3$,
$N(\alpha-a)=-N(\alpha-a-2)=a^{2}+3 a+1>2 a+3$, if $a \geq 2$
show that either $\xi$ is associated to 1 , or $|N \xi| \geq 2 a+3$.
(3) $s= \pm 2, t=0$ : proceeding as in case 2 and keeping in mind that we need examine only those $\xi=2 \alpha-r$ with $r$ odd, we find that
$N(2 \alpha+1)=-(2 a+3), \quad N(2 \alpha-1)=6 a+19$,
$N(2 \alpha+3)=6 a-1, \quad N(2 \alpha-2 a-1)=4 a^{2}+24 a+19$,
$N(2 \alpha-2 a-3)=-4 a^{2}+17$.
(4) $s=0, t= \pm 1$ and $s=0, t= \pm 2$ : this yields nothing new, because $\xi^{\prime}=r+s \alpha^{\prime}$ has already been examined.
(5) $s=t= \pm 1$ : then $\xi=\alpha+\alpha^{\prime}-r=-\alpha^{\prime \prime}+a-r$, and therefore $\xi^{\prime}=-\alpha+a-r$ is of the type studied in 2 ; since $N \xi=N \xi^{\prime}$ we are done.
(6) $s=-t= \pm 1$ : then $\xi=r+\alpha-\alpha^{\prime}$, and

$$
f(r)=N(\xi)=r^{3}-\left(a^{2}+3 a+9\right) r+\left(a^{2}+3 a+9\right)
$$

$$
\begin{array}{llllll}
f(1) & & 1, & f(2) & = & -a^{2}-3 a-1 \\
f(a+1) & = & -6 a+1, & f(a+2) & = & 2 a^{2}-1 \\
f(-a-2) & = & 6 a+19, & f(-a-3) & = & -2 a^{2}-6 a+9
\end{array}
$$

(7) $s= \pm 2, t=\mp 1$ : then $\xi=r+2 \alpha-\alpha^{\prime}$, and

$$
f(r)=N(\xi)=r^{3}+a r^{2}-\left(2 a^{2}+7 a+21\right) r+\left(4 a^{2}+12 a+37\right)
$$

$$
\begin{array}{llrlrr}
f(2) & = & 2 a+3, & f(3) & = & -2 a^{2}+1 \\
f(a+1) & = & -12 a+17, & f(a+2) & = & 3 a^{2}-7 a+3 \\
f(-2 a-3) & = & 30 a+37, & f(-2 a-4) & = & -6 a^{2}+2 a+57
\end{array}
$$

(8) $s= \pm 2, t= \pm 1$ : then $\xi=r+2 \alpha+\alpha^{\prime}=r+a+\alpha-\alpha^{\prime \prime}$, and we can proceed as in 5 , refering to case 6 instead of 2 .
(9) $s=-t= \pm 2$ : then $\xi=r+2 \alpha-2 \alpha^{\prime}$, and according to 6 we have to consider only the case $r$ odd, thus

\[

\]

(10) $s=t= \pm 2$ : then $\xi=r+2 \alpha+2 \alpha^{\prime}=r+2\left(-\alpha^{\prime \prime}+a\right)=r+2 a-2 \alpha^{\prime \prime}$ and we can proceed as in 5 .
Assume now that $|N \gamma|=2 a+3$. Then the proof of the first assertion shows that $\gamma$ is associated to one of the elements given in the second column Table 1.

In the third column we have given the factorization of the corresponding element as $\alpha-1$ or $(\alpha-1)^{\prime}$ or $(\alpha-1)^{\prime \prime}$ times a unit. The table consists of four subtables: in the first we collected those numbers whose norms are $2 a+3$ for any $a$. In the remaining subtables you find the exceptional elements which appear only for $a=1,2$ or 3 . The subtables are indicated with the values of $a$. The proof of the identities is straightforward and therefore omitted.

This completes the proof of Theorem 1. We acknowledge the help of Maple V (version 4.4) and PARI (version 1.38.3) in checking the computations.

## 3. Applications

From Theorem 1 we deduce the following
Corollary 2. Assume that $m$ is squarefree and that $2 a+3=b^{2}$ for some $b \in \mathbb{Z}$. Then, $L=K\left(\sqrt{\alpha+2}, \sqrt{\alpha^{\prime}+2}\right)$ is a quartic unramified extension of $K$ with $\operatorname{Gal}(L / K) \cong C_{2} \times C_{2}$. In particular, $C l(L)$ contains a subgroup of type $C_{2} \times C_{2}$.

TABLE 1.

|  | $\alpha-1$ |  |
| :--- | :--- | :--- |
|  | $\alpha+2$ | $-(\alpha-1)^{\prime \prime}(\alpha+1)$ |
|  | $\alpha-(a+1)$ | $-(\alpha-1)^{\prime} /(\alpha+1)$ |
|  | $2 \alpha+1$ | $-(\alpha-1)^{\prime} \alpha$ |
|  | $\alpha+\alpha^{\prime}-a+1$ | $-(\alpha-1)^{\prime \prime}$ |
|  | $\alpha+\alpha^{\prime}-a-2$ | $(\alpha-1)^{\prime} \alpha /(\alpha+1)$ |
|  | $\alpha+\alpha^{\prime}+1$ | $(\alpha-1)(\alpha+1) / \alpha$ |
|  | $2 \alpha-\alpha^{\prime}+2$ | $-(\alpha-1)^{\prime}(\alpha+1)$ |
|  | $2 \alpha+2 \alpha^{\prime}-2 a-1$ | $-(\alpha-1) /(\alpha+1)$ |
| $a=1$ | $\alpha-3$ | $(\alpha-1)^{\prime \prime} /(\alpha+1)$ |
|  | $2 \alpha+3$ | $(\alpha-1)(\alpha+1)^{2} / \alpha$ |
|  | $\alpha+\alpha^{\prime}+2$ | $-(\alpha-1)^{\prime}(\alpha+1) / \alpha$ |
|  | $\alpha-\alpha^{\prime}+2$ | $(\alpha-1)(\alpha+1)$ |
|  | $2 \alpha+\alpha^{\prime}-3$ | $-(\alpha-1)^{\prime \prime} \alpha /(\alpha+1)$ |
|  | $2 \alpha+2 \alpha^{\prime}-5$ | $(\alpha-1)^{\prime \prime} \alpha^{2} /(\alpha+1)$ |
| $a=2$ | $\alpha-\alpha^{\prime}+4$ | $(\alpha-1) \alpha$ |
|  | $2 \alpha-\alpha^{\prime}+3$ | $(\alpha-1)(\alpha+1)$ |
|  | $2 \alpha+\alpha^{\prime}-6$ | $(\alpha-1)^{\prime \prime} /(\alpha+1)$ |
| $a=3$ | $2 \alpha-\alpha^{\prime}+5$ | $(\alpha-1) \alpha$ |
|  | $2 \alpha-\alpha^{\prime}-10$ | $-(\alpha-1)^{\prime \prime} / \alpha(\alpha+1)$ |

Proof. Suppose that $\alpha+2$ is a square in $\mathcal{O}_{K}$; since $N(\alpha+2)=2 a+3=b^{2}$, this implies that there is an element $\gamma$ of norm $b<2 a+3$. Theorem 3.1. implies that $\gamma$ is associated to an integer $r \in \mathbb{Z}$, hence $\alpha+2=r^{2} \varepsilon$ for some unit $\varepsilon \in \mathcal{O}_{K}^{\times}$. But $\left\{1, \alpha, \alpha^{\prime}\right\}$ is an integral basis of $\mathcal{O}_{K}$, hence $r \mid(\alpha+2)$ implies that $r= \pm 1$.

The rest of the proof is the same as in Wa , W ] or L .
Similarly, we can show (cf. Wa]):
Corollary 3. Assume that $m>13$ is squarefree and that $6 a+19=b^{2}$ for some $b \in \mathbb{Z}$. Then, $L=K\left(\sqrt{\alpha(2 \alpha-1)}, \sqrt{\alpha^{\prime}\left(2 \alpha^{\prime}-1\right)}\right)$ is a quartic unramified extension of $K$ with $G a l(L / K) \cong$ $C_{2} \times C_{2}$. In particular, $C l(L)$ contains a subgroup of type $C_{2} \times C_{2}$.

Remark: If $a=1, m=13$, we have $6 a+19=(2 a+3)^{2}$, i.e. $b$ is a norm.

## References

[C] H. Cohn, A device for generating fields of even class number, Proc. Amer. Math. Soc. 7 (1956), 595-598 1
[Cu] T.W. Cusick, Lower bounds for regulators, in.: Number Theory Noordwijkerhout, 1983, pp. 63-73, Ed.: H. Jager, LNM Vol. 1068, Springer Verlag, 19841
[E] V. Ennola, Cubic fields with exceptional units, Computational Number Theory Debrecen, Hungary 1989, pp. 103-128, Eds.: A. Pethő, M.E. Pohst, H.C. Williams and H.G. Zimmer, Walter deGruyter Verlag, 1991. 1
[L] Y.-Z. Lan, Arithmetic properties of a class of cyclic cubic fields, Sci. China 32 (1989), 922-928 4
[Sh] D. Shanks, The simplest cubic number fields, Math. Comp. 28 (1974), 1137-1152 1 .
[Wa] L. Washington, Class numbers of the simplest cubic fields, Math. Comp. 48 (1987), 371-384 1, 4
[W] M. Watabe, On certain cubic fields IV, Proc. Japan Acad. 59A (1983), 387-389 1, 4


[^0]:    ${ }^{1}$ Research supported in part by Grant 1641 from the Hungarian National Foundation for Scientific Research

