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1. Introduction

In this paper we intend to show that certain integers do not occur as the norms of principal
ideals in a family of cubic fields studied by Cohn [C], Shanks [Sh], and Ennola [E]. These
results will simplify the construction of certain unramified quadratic extensions of such fields
(cf. [Wa], [W] etc.).

For a natural number a, let fa = x3 − ax2 − (a + 3)x − 1, and let K = Ka be the cyclic
cubic number field generated by a root α of fa. Let N denote the Norm NK/Q. Elements in
K are said to be associated if their quotient is a unit in Z[α]. The polynomial f = fa has
discriminant disc f = m2, where m = a2 + 3a + 9; if we assume m to be squarefree, then we
have disc K = disc f = m2 and OK = Z[α] (there exist infinitely many such m, cf. Cusick
[Cu]). Moreover it is easy to see that {1 , α , α′} also is an integral basis of OK : in fact, this
follows from (α + 1)(α2 − (a + 1)α − 2) = −1. For this family of cyclic cubic fields, we will
prove the following result:

Theorem 1. For all γ ∈ Z[α] either |Nγ| ≥ 2a+3, or γ is associated to an integer. Moreover,
if |Nγ| = 2a + 3, then γ is associated to one of the conjugates of α− 1.

2. The Proof

We start the proof with the observation that the assertion is correct for a < 7 (”proof by
inspection” using the decomposition law for cyclic cubic fields or by using the method described
below, but with the actual values of α, α′ and α′′). Moreover, we remark that α, α′ = −α+1

α

and α′′ = − 1
α+1 are the roots of f . Choosing α as the smallest of the three roots and applying

Newton’s method, we find that

−1− 1
a

< α < −1− 1
2a

, − 1
a + 2

< α′ < − 1
a + 3

, a + 1 < α′′ < a + 1 +
2
a
.

These inequalities imply (for a ≥ 7)

|α− α′| < 1 +
1
a
, |α′ − α′′| < a + 1 +

3
a
, and |α′′ − α| < a + 2 +

3
a
.

In particular, we have

|α− α′|+ |α′ − α′′|+ |α′′ − α| < 2a + 4 +
7
a
≤ 2a + 5.
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Moreover, we will need the relation

m = α2 + α′2 + α′′2 − αα′ − α′α′′ − α′′α = det

 1 1 1
α α′ α′′

α′ α′′ α

 ,

which can be deduced easily from the well known fact that the square of this determinant
equals disc (1, α, α′) = m2, making use of the formulae

αα′ = −α− 1, α2 = a + 2 + aα− α′.

The units α′−1 and α′′ satisfy the inequalities

a + 2 < |α′−1| < a + 3, a + 1 < |α′′| < a + 2,

and this implies that, given two positive real numbers c1 and c2 and an element γ ∈ Z[α], we
can find a unit η such that

(1) c1 ≤ |γη| < (a + 3)c1, c2 ≤ |γ′η′| < (a + 4)c2.

This is a special case of a more general result which is valid for all number fields with
unit rank ≥ 1; we will, however, give the proof only for totally real cubic fields K because
the notation simplifies considerably. Let u1 and u2 be two independent units in K; their
images in R2 upon their logarithmic embedding are Log (u1) = v1 = (log |u1|, log |u′1|) and
Log (u2) = v2 = (log |u2|, log |u′2|). Dirichlet’s unit theory shows that v1 and v2 are linear
independent vectors. This implies that, for any ξ ∈ K, its image Log (ξ) can be moved into
the fundamental domain spanned by v1 and v2 by adding and subtracting suitable multiples
of v1 and v2, i.e. we can find a translate η of Log(ξ) such that

c1 < |η| ≤ c1 +
∣∣∣ log |u1|

∣∣∣ +
∣∣∣ log |u2|

∣∣∣,
c2 < |η′| ≤ c2 +

∣∣∣ log |u′1|
∣∣∣ +

∣∣∣ log |u′2|
∣∣∣

Translating this back to the field K and using the units α and α′′, we see that we can find
a unit η such that

c1 ≤ |γη| < |αα′′|c1, c2 ≤ |γ′η′| < |α′−1α|c2,

where we have chosen the exponents of α, α′, α′′ in such a way that their absolute value is > 1
(this comes from the absolute values on the log’s). Inserting the bounds on |α|, |α′|, |α′′| we
get equation (1).

Writing ξ = γη = r + sα + tα′ and n = |NK/Qξ|, we find (T = TK/Q denotes the trace):

mt = T
(
ξ(α′ − α′′)

)
, ms = T

(
ξ(α′′ − α)

)
, mr = T

(
ξ(αα′ − α′′2)

)
.

Letting c1 = c2 = 3
√

n/(a + 3) we get |ξ|, |ξ′|, |ξ′′| < 3
√

n · (a + 3)2/3, and this implies the
bounds

|mt| ≤ |ξ||α′ − α′′|+ |ξ′||α′′ − α|+ |ξ′′||α− α′|
< 3

√
n(a + 3)2/3(2a + 5);

|ms| ≤ |ξ||α′′ − α|+ |ξ′||α− α′|+ |ξ′′||α′ − α′′|
< 3

√
n(a + 3)2/3(2a + 5).

Using n ≤ 2a + 3 and a ≥ 7 we find that |t| ≤ 2, |s| ≤ 2. Computing the actual values of α, α′

and α′′ for 1 ≤ a ≤ 6 and carrying out the above procedure we get the same result.
Now we will look at the ξ = r + sα + tα′ that satisfy the following system of inequalities:

|s| ≤ 2, |t| ≤ 2, |ξξ′ξ′′| ≤ n ≤ 2a + 3,

|ξ|, |ξ′|, |ξ′′| < 3
√

n(a + 3)2/3.

A somewhat tedious computation yields NK/Q(r + sα + tα′) = r3 + s3 + t3 + ar2s + ar2t +
3st2 − (a2 + 3a + 6)s2t− (a + 3)rt2 − (a + 3)rs2 + (a2 + a + 3)rst, so for fixed s, t the norm of
r + sα + tα′ is a cubic polynomial in r. This polynomial will be minimal for values of r in the
neighborhood of its roots. We will distinguish the following cases:

(1) s = t = 0: then ξ ∈ Z, and ξ (as well as γ) is associated to a natural number;
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(2) s = ±1, t = 0: then ξ = α− r for some r ∈ Z, and we find
NK/Qξ = −f(r) = −r3 + ar2 + (a + 3)r + 1.
The roots of this polynomial are r ≈ 0, r ≈ −1, and r ≈ a + 1, and now
Nα = −N(α + 1) = 1,
N(α− 1) = N(α + 2) = 2a + 3, N(α− a− 1) = 2a + 3,
N(α− a) = −N(α− a− 2) = a2 + 3a + 1 > 2a + 3, if a ≥ 2
show that either ξ is associated to 1, or |Nξ| ≥ 2a + 3.

(3) s = ±2, t = 0: proceeding as in case 2 and keeping in mind that we need examine only
those ξ = 2α− r with r odd, we find that
N(2α + 1) = −(2a + 3), N(2α− 1) = 6a + 19,
N(2α + 3) = 6a− 1, N(2α− 2a− 1) = 4a2 + 24a + 19,
N(2α− 2a− 3) = −4a2 + 17.

(4) s = 0, t = ±1 and s = 0, t = ±2: this yields nothing new, because ξ′ = r + sα′ has
already been examined.

(5) s = t = ±1: then ξ = α + α′ − r = −α′′ + a − r, and therefore ξ′ = −α + a − r is of
the type studied in 2; since Nξ = Nξ′ we are done.

(6) s = −t = ±1: then ξ = r + α− α′, and

f(r) = N(ξ) = r3 − (a2 + 3a + 9)r + (a2 + 3a + 9),

f(1) = 1, f(2) = −a2 − 3a− 1,
f(a + 1) = −6a + 1, f(a + 2) = 2a2 − 1,
f(−a− 2) = 6a + 19, f(−a− 3) = −2a2 − 6a + 9

(7) s = ±2, t = ∓1: then ξ = r + 2α− α′, and

f(r) = N(ξ) = r3 + ar2 − (2a2 + 7a + 21)r + (4a2 + 12a + 37),

f(2) = 2a + 3, f(3) = −2a2 + 1,
f(a + 1) = −12a + 17, f(a + 2) = 3a2 − 7a + 3,
f(−2a− 3) = 30a + 37, f(−2a− 4) = −6a2 + 2a + 57

(8) s = ±2, t = ±1: then ξ = r + 2α + α′ = r + a + α − α′′, and we can proceed as in 5,
refering to case 6 instead of 2.

(9) s = −t = ±2: then ξ = r + 2α− 2α′, and according to 6 we have to consider only the
case r odd, thus

f(r) = N(ξ) = r3 − (12a + 36 + 4a2)r + 8a2 + 24a + 72,

f(1) = 4a2 + 12a + 37, f(3) = −4a2 − 12a− 9,
f(2a + 1) = −8a2 − 54a + 37, f(2a + 3) = 8a2 − 30a− 9,
f(−2a− 3) = 8a2 + 78a + 153, f(−2a− 5) = −8a2 + 6a + 127.

(10) s = t = ±2 : then ξ = r + 2α + 2α′ = r + 2(−α′′ + a) = r + 2a − 2α′′ and we can
proceed as in 5.

Assume now that |Nγ| = 2a + 3. Then the proof of the first assertion shows that γ is
associated to one of the elements given in the second column Table 1.

In the third column we have given the factorization of the corresponding element as α−1 or
(α− 1)′ or (α− 1)′′ times a unit. The table consists of four subtables: in the first we collected
those numbers whose norms are 2a + 3 for any a. In the remaining subtables you find the
exceptional elements which appear only for a = 1, 2 or 3. The subtables are indicated with the
values of a. The proof of the identities is straightforward and therefore omitted.

This completes the proof of Theorem 1. We acknowledge the help of Maple V (version 4.4)
and PARI (version 1.38.3) in checking the computations.

3. Applications

From Theorem 1 we deduce the following

Corollary 2. Assume that m is squarefree and that 2a + 3 = b2 for some b ∈ Z. Then,
L = K(

√
α + 2,

√
α′ + 2) is a quartic unramified extension of K with Gal(L/K) ∼= C2 × C2.

In particular, Cl(L) contains a subgroup of type C2 × C2.
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Table 1.

α− 1
α + 2 −(α− 1)′′(α + 1)
α− (a + 1) −(α− 1)′/(α + 1)
2α + 1 −(α− 1)′α
α + α′ − a + 1 −(α− 1)′′

α + α′ − a− 2 (α− 1)′α/(α + 1)
α + α′ + 1 (α− 1)(α + 1)/α
2α− α′ + 2 −(α− 1)′(α + 1)
2α + 2α′ − 2a− 1 −(α− 1)/(α + 1)

a = 1 α− 3 (α− 1)′′/(α + 1)
2α + 3 (α− 1)(α + 1)2/α
α + α′ + 2 −(α− 1)′(α + 1)/α
α− α′ + 2 (α− 1)(α + 1)
2α + α′ − 3 −(α− 1)′′α/(α + 1)
2α + 2α′ − 5 (α− 1)′′α2/(α + 1)

a = 2 α− α′ + 4 (α− 1)α
2α− α′ + 3 (α− 1)(α + 1)
2α + α′ − 6 (α− 1)′′/(α + 1)

a = 3 2α− α′ + 5 (α− 1)α
2α− α′ − 10 −(α− 1)′′/α(α + 1)

Proof. Suppose that α + 2 is a square in OK ; since N(α + 2) = 2a + 3 = b2, this implies that
there is an element γ of norm b < 2a + 3. Theorem 3.1. implies that γ is associated to an
integer r ∈ Z, hence α + 2 = r2ε for some unit ε ∈ O×

K . But {1, α, α′} is an integral basis of
OK , hence r | (α + 2) implies that r = ±1.

The rest of the proof is the same as in [Wa], [W] or [L].

Similarly, we can show (cf. [Wa]):

Corollary 3. Assume that m > 13 is squarefree and that 6a + 19 = b2 for some b ∈ Z. Then,
L = K(

√
α(2α− 1),

√
α′(2α′ − 1)) is a quartic unramified extension of K with Gal(L/K) ∼=

C2 × C2. In particular, Cl(L) contains a subgroup of type C2 × C2.

Remark: If a = 1, m = 13, we have 6a + 19 = (2a + 3)2, i.e. b is a norm.
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