KURODA'S CLASS NUMBER FORMULA

FRANZ LEMMERMEYER

INTRODUCTION

Let k be a number field and K/k a V_4 -extension, i.e., a normal extension with $\operatorname{Gal}(K/k) = V_4$, where V_4 is Klein's four-group. K/k has three intermediate fields, say k_1 , k_2 , and k_3 . We will use the symbol N^i (resp. N_i) to denote the norm of K/k_i (resp. k_i/k), and by a widespread abuse of notation we will apply N^i and N_i not only to numbers, but also to ideals and ideal classes. The unit groups (groups of roots of unity, , groups of fractional ideals, class numbers) in these fields will be denoted by E_k , E_1 , E_2 , E_3 , E_K (W_k , W_1 , ..., J_K , J_1 , ..., h_k , h_1 , ...) respectively, and the (finite) index $q(K) = E_K : E_1E_2E_3$) is called the unit index of K/k.

For $k = \mathbb{Q}$, $k_1 = \mathbb{Q}(\sqrt{-1})$ and $k_2 = \mathbb{Q}(\sqrt{m})$ it was already known to Dirichlet¹ [5] that $h_K = \frac{1}{2}q(K)h_2h_3$. Bachmann [2], Amberg [1] and Herglotz [12] generalized this class number formula gradually to arbitrary extensions K/\mathbb{Q} whose Galois groups are elementary abelian 2-groups. A remark of Hasse [11, p. 3] seems to suggest² that Varmon [30] proved a class number formula for extensions with $\operatorname{Gal}(K/k)$ an elementary abelian *p*-group; unfortunately, his paper was not accessible to me. Kuroda [18] later gave a formula in case there is no ramification at the infinite primes. Wada [31] stated a formula for 2-extensions of $k = \mathbb{Q}$ without any restriction on the ramification (and without proof), and finally Walter [32] used Brauer's class number relations to deduce the most general Kuroda-type formula.

As we shall see below, Walter's formula for V_4 -extensions does not always give correct results if K contains the 8th roots of unity. This does not, however, seem to effect the validity of the work of Parry [22, 23] and Castela [4], both of whom made use of Walter's formula.

The proofs mentioned above use analytic methods; for V_4 -extensions K/\mathbb{Q} , however, there exist algebraic proofs given by Hilbert [14] (if $\sqrt{-1} \in K$), Kuroda [17] (if $\sqrt{-1} \in K$), Halter-Koch [9] (if K is imaginary), and Kubota [15, 16]. For base fields $k \neq \mathbb{Q}$, on the other hand, no non-analytic proofs seem to be known except for very special cases (see e.g. the very recent work of Berger [3]).

In this paper we will show how Kubota's proof can be generalized. The proof consists of two parts; in the first part, where we measure the extent to which $\operatorname{Cl}(K)$ is generated by classes coming from the $\operatorname{Cl}(k_i)$, we will use class field theory in its ideal-theoretic formulation (see Hasse [10] or Garbanati [7]). The second part of the proof is a somewhat lengthy index computation.

¹Eisenstein [*Über die Anzahl der quadratischen Formen in den verschiedenen complexen Theorieen*, J. Reine Angew. Math. **27** (1844), 311–316; Mathematische Werke I, Chelsea, New York, 1975, 89–94] proved a similar formula for $K = \mathbb{Q}(\sqrt{-3}, \sqrt{m})$.

²I have meanwhile had a chance to verify Hasse's claim.

FRANZ LEMMERMEYER

1. Kuroda's Formula

For any number field F, let $\operatorname{Cl}_u(F)$ be the odd part of the ideal class group of F, i.e., the direct product of the p-Sylow subgroups of Cl(F) for all odd primes p. It was already noticed by Hilbert that the odd part of Cl(F) behaves well in 2-extensions, and the following fact is a special case of a theorem of Nehrkorn [21] (this special case can also be found in Kuroda [18] or Reichardt [27]):

(1)
$$\operatorname{Cl}_{u}(K) \simeq \left(\prod_{i=1}^{3} \operatorname{Cl}_{u}(k_{i}) / \operatorname{Cl}_{u}(k)\right) \times \operatorname{Cl}_{u}(k) \text{ for } V_{4}\text{-extensions } K/k.$$

Here \prod denotes the direct product. This simple formula allows us to compute the structure of $\operatorname{Cl}_{u}(K)$; of course we cannot expect a similar result to hold for $\operatorname{Cl}_{2}(K)$, mainly because of the following two reasons:

- (1) Ideal classes of k_i may become principal in K (capitulation), and this means that we cannot regard $\operatorname{Cl}_2(k_i)$ as a subgroup of $\operatorname{Cl}_2(K)$.
- (2) Even if they do not capitulate, ideal classes of subfields may coincide in K: consider a prime ideal p that ramifies in k_1 and k_2 ; then the prime ideals above \mathfrak{p} in k_1 and k_2 will generate the same ideal class in K.

Nevertheless there is a homomorphism

$$j: \operatorname{Cl}(k_1) \times \operatorname{Cl}(k_2) \times \operatorname{Cl}(k_3) \longrightarrow \operatorname{Cl}(K)$$

defined as follows: let $c_i = [\mathfrak{a}_i]$ be the ideal class in k_i generated by \mathfrak{a}_i ; then $\mathfrak{a}_i \mathcal{O}_K$ is the ideal in \mathcal{O}_K (the ring of integers in K) generated by \mathfrak{a}_i , and it is obvious that $j(c_1, c_2, c_3) = [\mathfrak{a}_1 \mathfrak{a}_2 \mathfrak{a}_3 \mathcal{O}_K]$ is a well defined group homomorphism, and that moreover

$$h(K) = \frac{\operatorname{cok} j}{\ker j} \cdot h_1 h_2 h_3.$$

In order to compute h(K) we have to determine the orders of the groups ker j and $\operatorname{cok} i = \operatorname{Cl}(K) / \operatorname{im} i$. This will be done as follows:

Proposition 1. Let \hat{j} be the restriction of j to the subgroup $\widehat{C} = \{(c_1, c_2, c_3) \mid N_1 c_1 N_2 c_3 N_2 c_3 = 1\}$

$$\widehat{C} = \{ (c_1, c_2, c_3) \mid N_1 c_1 N_2 c_2 N_3 c_3 = 1 \}$$

of the direct product $\operatorname{Cl}(k_1) \times \operatorname{Cl}(k_2) \times \operatorname{Cl}(k_2)$. Then

(2)
$$h_k \cdot \frac{\operatorname{cok} j}{\operatorname{ker} j} = \frac{\operatorname{cok} j}{\operatorname{ker} j}.$$

Now Artin's reciprocity law, combined with Galois theory, gives a correspondence $\stackrel{Art}{\longleftrightarrow}$ between subgroups of $\operatorname{Cl}(K)$ and subfields of the Hilbert class field K^1 of K. We will find that $\operatorname{im} \hat{j} \stackrel{Art}{\longleftrightarrow} K_{\text{gen}}$, the genus class field of K with respect to k, and then the well known formula of Furuta [6] shows

(3)
$$\#\operatorname{cok}\widehat{j} = (\operatorname{Cl}(K) : \operatorname{im}\widehat{j}) = (K_{\operatorname{gen}} : k) = 2^{d-2}h_k \frac{\prod e(\mathfrak{p})}{(E_k : H)},$$

where

- d is the number of infinite places ramified in K/k;
- $e(\mathfrak{p})$ is the ramification index in K/k of a prime ideal \mathfrak{p} in k, and \prod is extended over all (finite)³ prime ideals of k;

³The contribution from the infinite primes is taken care of by the factor 2^d .

• *H* is the group of units in E_k that are norm residues⁴ in K/k.

The computation of $\# \ker \hat{j}$ is a bit tedious, but in the end we will find

(4)
$$\# \ker \widehat{j} = 2^{v-1} h_k^2 \prod e(\mathfrak{p}) \cdot (H : E_k^2) / q(K)$$

where v = 1 if $K = k(\sqrt{\varepsilon}, \sqrt{\eta})$ with units $\varepsilon, \eta \in E_k$, and v = 0 otherwise.

If we collect these results, define κ to be the \mathbb{Z} -rank of k, and recall the formula $(E_k : E_k^2) = 2^{\kappa+1}$, we obtain

Theorem 1. Let K/k we a V₄-extension of number fields. Then Kuroda's class number formula holds:

(5)
$$h(K) = 2^{d-\kappa-2-\nu}q(K)h_1h_2h_3/h_k^2.$$

In particular,

$$h(K) = \begin{cases} \frac{1}{4}q(K)h_1h_2h_3 & \text{if } k = \mathbb{Q} \text{ and } K \text{ is real,} \\ \frac{1}{2}q(K)h_1h_2h_3 & \text{if } k = \mathbb{Q} \text{ and } K \text{ is complex,} \\ \frac{1}{4}q(K)h_1h_2h_3/h_k^2 & \text{if } k \text{ is a complex quadratic extension of } \mathbb{Q}. \end{cases}$$

2. The proofs

In order to prove (2), we define a homomorphism

$$\nu: C = \operatorname{Cl}(K_1) \times \operatorname{Cl}(k_2) \times \operatorname{Cl}(k_3) \longrightarrow \operatorname{Cl}(k), \quad \nu(c_1, c_2, c_3) = N_1 c_1 N_2 c_2 N_3 c_3.$$

If at least one of the extensions k_i/k is ramified,⁵ we know $N_i \operatorname{Cl}(k_i) = \operatorname{Cl}(k)$ by class field theory. If all the k_i/k are unramified, the groups $N_i \operatorname{Cl}(k_i)$ will have index $2 = (k_i : k)$ in $\operatorname{Cl}(k)$, and they will be different since

$$k_i/k \stackrel{Art}{\longleftrightarrow} N_i \operatorname{Cl}(k_i)$$

in this case. Therefore ν is onto, and putting $\widehat{C} = \ker \nu$ we get an exact sequence $1 \longrightarrow \widehat{C} \longrightarrow C \longrightarrow \operatorname{Cl}(k) \longrightarrow 1$.

Let \hat{j} be the restriction of j to \hat{C} ; then the diagram

is exact and commutes. The snake lemma gives us an exact sequence

 $1 \longrightarrow \ker \hat{j} \longrightarrow \ker j \longrightarrow \operatorname{Cl}(k) \longrightarrow \operatorname{cok} \hat{j} \longrightarrow \operatorname{cok} j \longrightarrow 1,$

and this implies the index relation (2) we wanted to prove.

Before we start proving (3), we define $K^{(2)}$ to be the maximal subextension of K_{gen}/k such that $\text{Gal}(K^{(2)}/k)$ is an elementary abelian 2-group. Moreover, we let J_K (resp. H_K) denote the group of (fractional) ideals (resp. principal ideals) of K.

⁴A norm residue is an element of k that is a local norm for K/k everywhere.

⁵At a finite or infinite prime.

Proposition 2. To every subfield F of the Hilbert class field K^1 of K there is a unique ideal group \mathfrak{h}_F such that $H_K \subseteq \mathfrak{h}_F \subseteq J_K$. Under this correspondence,

$$\operatorname{Gal}(K^1/F) \simeq \operatorname{Cl}(K)/(J_K/\mathfrak{h}_F) \simeq \mathfrak{h}_F/H_K,$$

and we find the following diagram of subextensions F/k of K/k and corresponding Galois groups $Gal(K^1/F)$:

Proof. The correspondence $K^{(2)} \longleftrightarrow im j$ will not be needed in the sequel and is included only for the sake of completeness; the main ingredient for a proof can be found in Kubota [16, Hilfssatz 16].

Before we start proving $K_{\text{gen}} \longrightarrow \text{in } \hat{j}$, we recall that K_{gen} is the class field of k for the ideal group $N_{K/k}H_K^{(m)} \cdot H_m^{(1)}$ of the norm residues modulo \mathfrak{m} , where the defining modulus \mathfrak{m} is a multiple of the conductor $\mathfrak{f}(K/k)$ (the notation is explained in Hasse [10] or Garbanati [7], the result can be found in Scholz [29] or Gurak [8]). The assertion of Herz [13, Prop. 1] that K_{gen} is the class field for $N_{K/k}H_K^{(m)}$ is faulty: one mistake in his proof lies in the erroneous assumption that every principal ideal of K is the norm of an ideal from K^1 . Although this is true for prime ideals, it does not hold in general, as the following simple counter example shows: the Hilbert class field of $K = \mathbb{Q}(\sqrt{-5})$ is $K^1 = K(\sqrt{-1})$, and the principal ideal $(1 + \sqrt{-5})$ cannot be a norm from K^1 since the prime ideals above $(2, 1 + \sqrt{-5})$ and $(3, 1 + \sqrt{-5})$ are inert in K^1/K . Moreover, contrary to Herz's claim, not every ideal in the Hilbert class field of K is principal: this is, of course, only true for ideals coming from K.

Proof of (3). Our task now is to transfer the ideal group $N_{K/k}H_K^{(\mathfrak{m})} \cdot H_{\mathfrak{m}}^{(1)}$ in k, which is defined modulo \mathfrak{m} , to an ideal group in K defined modulo (1). To do this we need

Proposition 3. For V_4 -extensions K/k, the following assertions are equivalent:

- (i) $r \in k^{\times}$ is a norm residue in K/k at every place of k;
- (ii) $r \in k^{\times}$ is a (global) norm from k_1/k and k_2/k ;
- (iii) there exist $\alpha \in K^{\times}$ and $a \in k^{\times}$ such that $r = a^2 \cdot N_{K/k} \alpha$.

The elements of $N_{K/k}H_K^{(\mathfrak{m})} \cdot H_{\mathfrak{m}}^{(1)}$ therefore have the form $a^2 \cdot N_{K/k}\alpha$, where $a \in k, \alpha \in K$, and $(\alpha) + \mathfrak{m} = (1)$. Using the Verschiebungssatz we find that K_{gen}/K belongs to the group

$$\mathfrak{h}_{\text{gen}} = \{ \mathfrak{a} \in J_K \, | \, \mathfrak{a} + \mathfrak{m} = (1), N_{K/k} \mathfrak{a} \in N_{K/k} H_K^{(\mathfrak{m})} \cdot H_{\mathfrak{m}}^{(1)} \}.$$

 $\langle \rangle$

(1)

Now $N_{K/k}\mathfrak{a} = a \cdot N_{K/k}\alpha$ if and only if $N_{K/k}(\mathfrak{a}/\alpha) = (a)$; we put $\mathfrak{b} = \mathfrak{a}/\alpha$ and claim that there are ideals \mathfrak{a}_i in k_i such that $\mathfrak{b} = \mathfrak{a}_1\mathfrak{a}_2\mathfrak{a}_3$. We assume without loss of generality that \mathfrak{b} is an (integral) ideal in \mathcal{O}_K . We may also assume that no ideal lying in a subfield k_i divides \mathfrak{b} . But then any $\mathfrak{P} \mid \mathfrak{b}$ necessarily has inertial degree 1, and no conjugate of \mathfrak{P} divides \mathfrak{b} . Writing $\mathfrak{p}^m \parallel \mathfrak{b}$ we deduce

$$N_{K/k}\mathfrak{P}^m \parallel N_{K/k}\mathfrak{b} = (a^2),$$

and this implies $2 \mid m$.

Let σ , τ and $\sigma\tau$ denote the nontrivial automorphisms of K/k fixing the elements of k_1 , k_2 and k_3 , respectively; the identity

$$2 = 1 + \sigma + \tau + \sigma\tau - (1 + \sigma\tau)\sigma$$

in $\mathbb{Z}[\operatorname{Gal}(K/k)]$ shows $\mathfrak{P}^2 = N^1 \mathfrak{P} \cdot N^2 \mathfrak{P} \cdot (N^3 \mathfrak{P})^{-\sigma}$, and we are done.

Now $(a^2) = N_{K/k} \mathfrak{b} = N_{K/k} \mathfrak{a}_1 \mathfrak{a}_2 \mathfrak{a}_3 = (N_1 \mathfrak{a}_1 \cdot N_2 \mathfrak{a}_2 \cdot N_3 \mathfrak{a}_3)^2$, and extracting the square root we obtain $(a) = N_1 \mathfrak{a}_1 \cdot N_2 \mathfrak{a}_2 \cdot N_3 \mathfrak{a}_3$.

Conversely, all ideals $\mathfrak{a} = \mathfrak{a}_1 \mathfrak{a}_2 \mathfrak{a}_3$ with $\mathfrak{a} + \mathfrak{m} = (1)$ and $(a) = N_1 \mathfrak{a}_1 \cdot N_2 \mathfrak{a}_2 \cdot N_3 \mathfrak{a}_3$ lie in $\mathfrak{h}_{\text{gen}}$, and the same is true of all principal ideals prime to \mathfrak{m} since the class field $K_{\mathfrak{h}}$ corresponding to \mathfrak{h} is unramified if and only if $H_K^{(\mathfrak{m})} \subseteq \mathfrak{h}$. Therefore

 $\mathfrak{h}_{\text{gen}} = \{\mathfrak{a} = \mathfrak{a}_1 \mathfrak{a}_2 \mathfrak{a}_3 \mid \mathfrak{a} + \mathfrak{m} = (1), N_1 \mathfrak{a}_1 \cdot N_2 \mathfrak{a}_2 \cdot N_3 \mathfrak{a}_3 = (a) \text{ for some } a \in k\} \cdot H_K^{(\mathfrak{m})},$ and by removing the condition $\mathfrak{a} + \mathfrak{m} = (1)$, which amounts to replacing $\mathfrak{h}_{\text{gen}}$ by an equivalent ideal group, we finally see

$$\mathfrak{h}_{\text{gen}} = \{\mathfrak{a} = \mathfrak{a}_1 \mathfrak{a}_2 \mathfrak{a}_3 \mid N_1 \mathfrak{a}_1 \cdot N_2 \mathfrak{a}_2 \cdot N_3 \mathfrak{a}_3 = (a) \text{ for some } a \in k\} \cdot H_K.$$

The corresponding class group is J_K/\mathfrak{h}_{gen} , and this gives

$$\operatorname{Gal}(K_{\text{gen}}/K) \simeq \mathfrak{h}_{\text{gen}}/H_K = \{ c = c_1 c_2 c_3 \mid N_1 c_1 N_2 c_2 N_3 c_3 = 1 \} = C.$$

Now (3) follows from Furuta's formula for the genus class number.

Proof of Prop. 3. It remains to prove Prop. 3; this result is due to Pitti [24, 25, 26], and similar observations have been made by Leep & Wadsworth [19, 20]. Our proof of (ii)
$$\implies$$
 (iii) goes back to Kubota [15, Hilfssatz 14], while (iii) \implies (i) has already been noticed by Scholz [28, p. 102].

(i) \implies (ii) is just an application of Hasse's norm residue theorem for cyclic extensions.

(ii) \implies (iii). Choose $\alpha_1 \in k_1$ and $\alpha_2 \in k_2$ with $N_1\alpha_1 = N_2\alpha_2 = r$. Since $\sigma\tau$ acts non-trivially on k_1 and k_2 , this implies $(\alpha_1/\alpha_2)^{1+\sigma\tau} = 1$. Hilbert's Theorem 90 shows the existence of $\alpha \in K^{\times}$ such that $\alpha_1/\alpha_2 = \alpha^{1-\sigma\tau}$. Now

$$\alpha^{1-\sigma\tau} = \alpha^{1+\sigma} (\alpha^{1+\tau})^{-\sigma} \quad \text{and} \quad \alpha^{1+\sigma} / \alpha_1 = (\alpha^{1+\tau})^{\sigma} / \alpha_2 \in k_1 \cap k_2 = k.$$

Put $a = \alpha^{1+\sigma}/\alpha_1$ and verify $N_{K/k}\alpha = (\alpha^{1+\sigma})^{1+\tau} = ra^2$.

(iii) \implies (i) is a consequence of formula (9) in §6 of Part II of Hasse's Bericht [10], which says

$$\Big(\frac{\beta, k_1k_2}{\mathfrak{p}}\Big) = \Big(\frac{\beta, k_1}{\mathfrak{p}}\Big)\Big(\frac{\beta, k_2}{\mathfrak{p}}\Big).$$

Since $r = N_i(N^i \alpha)/a$ for i = 1, 2, we see that r is a norm from k_1 and k_2 , and Hasse's formula tells us that r is a norm residue in $k_1k_2 = K$ at every place.

Before we proceed with the computation of $\# \ker \hat{j}$, let us pause for a moment and look at Prop. 2 with more care. The fact that K_{gen} is the class field of kfor the ideal group $N_{K/k}H_K^{(\mathfrak{m})} \cdot H_{\mathfrak{m}}^{(\mathfrak{n})}$ is well known for abelian K/k. Moreover, the

FRANZ LEMMERMEYER

principal genus theorem of class field theory says that K_{gen} is the class field of K for the class group $\operatorname{Cl}(K)^{1-\sigma} = \{c^{1-\sigma} \mid c \in \operatorname{Cl}(K)\}$ if $\operatorname{Gal}(K/k) = \langle \sigma \rangle$ is cyclic. If K/k is abelian but not necessarily cyclic, the class field K_{cen} for the class group $\{c^{1-\sigma} \mid c \in \operatorname{Cl}(K), \sigma \in \operatorname{Gal}(K/k)\}$ is called the *central class field*, and in general K_{cen} is strictly bigger than K_{gen} . A description of K_{gen} in terms of the ideal class group of K is unknown for non-cyclic K/k, and Prop. 2 answers this question for the simplest non-cyclic group, the four-group $V_4 \simeq (\mathbb{Z}/2\mathbb{Z})^2$. For other non-cyclic groups, this remains an open problem.

In the V₄-case, the fact that $\langle c^{\sigma-1} | c \in \operatorname{Cl}(K), \sigma \in \operatorname{Gal}(K/k) \rangle \subseteq \operatorname{im} \hat{j}$ can be verified directly by noting that $c^{\sigma-1} = (c^{\sigma})^{\sigma\tau+1} \cdot (c^{-1})^{\tau+1} \in C_2 \times C_3$ is annihilated by ν .

Proof of (4). The calculation of $\# \ker \hat{j}$ will be done in several steps. We call an ideal \mathfrak{a}_1 in k_1 ambiguous if $\mathfrak{a}_1^\tau = \mathfrak{a}_1$. An ideal class $c \in \operatorname{Cl}(k_1)$ is called ambiguous if $c^\tau = c$, and strongly ambiguous if $c = [\mathfrak{a}_1]$ for some ambiguous ideal \mathfrak{a}_1 . Let A_i denote the group of strongly ambiguous ideal classes in k_i (i = 1, 2, 3). Then $A = A_1 \times A_2 \times A_3$ is a subgroup of C, and $\widehat{A} = \widehat{C} \cap A$ is a subgroup of \widehat{C} . The idea of the proof is to restrict \widehat{j} (once more) from \widehat{C} to \widehat{A} and to compute the kernel of this restriction by using the formula for the number of ambiguous ideal classes.

In (3) we defined H as the group of units in E_k that are norm residues in K/k at every place of k. Using Prop. 3 we see that

$$H = \{\eta \in E_k \mid \eta = N_i \alpha_i \text{ for some } \alpha_i \in k_i, i = 1, 2, 3\}.$$

Let $H_0 = E_1^N \cap E_2^N \cap E_3^N$ be the subgroup of H consisting of those units that are relative norms of units for every k_i/k . The computation of $\# \ker \hat{j}$ starts with the following observation:

Lemma 1. Let j^* denote the restriction of \hat{j} to \hat{A} ; then

(6)
$$\# \ker \widehat{j} = (H : H_0) \cdot \# \ker j^*.$$

Postponing the proof of Lemma 1 for a moment, let us see how this implies (4). Let $R = \{\mathfrak{a}_1 \mathfrak{a}_2 \mathfrak{a}_3 | \mathfrak{a}_i \in I_i \text{ is ambiguous in } k_i/k\}$ and $R_{\pi} = R \cap H_K$; then

(7)
$$\# \ker j^* = \# A / (R : R_\pi).$$

Now the computation of $\# \ker \hat{j}$ is reduced to the determination of $(H : H_0)$ and $(R : R_{\pi})$; let $t = \# \operatorname{Ram}(K/k)$ denote the number of (finite) prime ideals of k that ramify in K, and let λ denote the \mathbb{Z} -rank of E_K . We will prove

(8)
$$(R:R_{\pi}) = 2^{t+\kappa-\lambda-2-\nu}q(K)h_k \cdot \frac{\prod(E_i^N:E_k^2)}{(H_0:E_k^2)}.$$

The number $#A_i$ of strongly ambiguous ideal classes in k_i/k is given by the well known formula (cf. Hasse [10, Teil Ia, §13]):

Lemma 2. We have

(9)
$$\#A_i = 2^{\delta_i - \kappa - 2} h_k \cdot (E_i^N : E_k^2),$$

where δ_i denotes the number of (finite and infinite) places in k that are ramified in k_i/k .

Once we know how the δ_i are related to t, κ, λ , etc., we will be able to deduce (4) from (7) – (9). To this end, let t_i be the "finite part" of δ_i , i.e., the number $\operatorname{Ram}(k_i/k)$ of prime ideals in k ramified in k_i/k , and let d_i denote the infinite part. Then $\delta_i = d_i + t_i$, and

(10)
$$2^{t_1+t_2+t_3} = 2^t \prod e(\mathfrak{p}), \quad 2d = d_1 + d_2 + d_3, \quad \text{and} \quad \lambda - 4\kappa = 3 - 2d.$$

Since $#A = \prod #A_i$, we obtain from (7) and (9)

$$#A = 2^{\delta_1 + \delta_2 + \delta_3 - 3\kappa - 6} h_k^3 \cdot \prod (E_i^N : E_k^2);$$

dividing by (8) yields

$$\# \ker j^* = 2^{t_1 + t_2 + t_3 - t + d_1 + d_2 + d_3 + \lambda - 4\kappa - 4 + v} h_k^2 \cdot (H_0 : E_k^2) / q(K),$$

and using (10) we find

$$\# \ker j^* = 2^{v-1} h_k^2 \prod e(\mathfrak{p}) \cdot (H_0 : E_k^2) / q(K).$$

Substituting this formula into equation (6) we finally obtain (4).

Proof of Lemma 1. In order to prove (6) let $([\mathfrak{a}_1], [\mathfrak{a}_2], [\mathfrak{a}_3]) \in \ker \hat{j}$; then $\mathfrak{a}_1\mathfrak{a}_2\mathfrak{a}_3 = (\alpha)$ for some $\alpha \in K^{\times}$. Since $(N_{K/k}\alpha) = (N_1\mathfrak{a}_1 \cdot N_2\mathfrak{a}_2 \cdot N_3\mathfrak{a}_3)^2$ (equality of ideals in \mathcal{O}_k) and because $([\mathfrak{a}_1], [\mathfrak{a}_2], [\mathfrak{a}_3]) \in \hat{C}$, there exists $a \in k$ such that $(N_{K/k}\alpha) = (a)^2$. This shows that $\eta = (N_{K/k}\alpha)/a^2$ is a unit in E_k , which is unique mod $NE_K \cdot E_k^2$. Moreover, $\eta \in H$ since $\eta = N_i((N^i\alpha)/a)$. Therefore

 $\theta_0: \ker \widehat{j} \longrightarrow H/NE_K \cdot E_k^2, \quad ([\mathfrak{a}_1], [\mathfrak{a}_2], [\mathfrak{a}_3]) \longmapsto \eta NE_K \cdot E_k^2,$

is a well defined homomorphism. We want to show that θ_0 is onto: to this end, let $\eta \in H$; using Prop. 3 we can find an $a \in k$ such that $N_{K/k}\alpha = \eta a^2$. In the proof of Prop. 2 we have seen that an equation $N_{K/k}\mathfrak{a} = (a)^2$ implies the existence of ideals \mathfrak{a}_i in k_i such that $\mathfrak{a} = \mathfrak{a}_1\mathfrak{a}_2\mathfrak{a}_3$. This gives $(\alpha) = \mathfrak{a}_1\mathfrak{a}_2\mathfrak{a}_3$.

Now $(N_1\mathfrak{a}_1 \cdot N_2\mathfrak{a}_2 \cdot N_3\mathfrak{a}_3)^2 = (N_{K/k}\alpha) = (a)^2$ yields $(a) = (N_1\mathfrak{a}_1 \cdot N_2\mathfrak{a}_2 \cdot N_3\mathfrak{a}_3)$, and we have shown $\eta \in \operatorname{im} \theta_0$.

Since θ_0 : ker $\hat{j} \longrightarrow H/NE_K \cdot E_k^2$ is onto, the same is true for any homomorphism ker $\hat{j} \longrightarrow H/H_0$ that is induced by an inclusion $NE_K \cdot E_k^2 \subseteq H_0 \subseteq H$. Obviously, the group $H_0 = E_1^N \cap E_2^N \cap E_3^N$ defined above is such a group, and so θ : ker $\hat{j} \longrightarrow H/H_0$ is onto. An element $([\mathfrak{a}_1], [\mathfrak{a}_2], [\mathfrak{a}_3]) \in \ker \hat{j}$ belongs to ker θ if and only if

$$\mathfrak{a}_1\mathfrak{a}_2\mathfrak{a}_3 = (\alpha), \quad (a) = N_1\mathfrak{a}_1 \cdot N_2\mathfrak{a}_2 \cdot N_3\mathfrak{a}_3, \quad (N_{L/K}\alpha)/a^2 = \eta \in H_0$$

Let $\rho_i = (N^i \alpha)/a$; then $\mathfrak{a}_1^{1-\tau} = (\rho_1)$, $\mathfrak{a}_2^{1-\sigma\tau} = (\rho_2)$, $\mathfrak{a}_3^{1-\sigma} = (\rho_3)$ and $N_i \rho_i = \eta \in H_0$. Writing $\eta = N_i \varepsilon_i$, where $\varepsilon_i \in E_i$, and replacing ρ_i by ρ_i/ε_i , we may assume that $N_i \rho_i = 1$. Hilbert's Theorem 90 shows $\rho_1 = \beta_1^{1-\tau}$, $\rho_2 = \beta_2^{1-\sigma\tau}$, and $\rho_3 = \beta_3^{1-\sigma}$ for some $\beta_i \in k_i$. The ideals $\mathfrak{b}_i = \mathfrak{a}_u \beta_i^{-1}$ are ambiguous, and we have $[\mathfrak{b}_i] = [\mathfrak{a}_i]$. This means that the ideal classes $[\mathfrak{a}_i]$ are strongly ambiguous, and we conclude

$$\ker \theta \subseteq \ker \hat{j} \cap A_1 \times A_2 \times A_3 = \ker j^*.$$

If, on the other hand, $([\mathfrak{a}_1], [\mathfrak{a}_2], [\mathfrak{a}_3]) \in \ker \hat{j}$ and if the ideals \mathfrak{a}_i are ambiguous, then the $\rho_i = (N^i \alpha)/a$ are units, and

$$\eta = \theta([\mathfrak{a}_1], [\mathfrak{a}_2], [\mathfrak{a}_3]) = N_i \rho_i \in E_1^N \cap E_2^N \cap E_3^N = H_0.$$

We have seen that $\ker \theta = \ker j^*$, which shows that the sequence

$$1 \longrightarrow \ker j^* \longrightarrow \ker \widehat{j} \longrightarrow H/H_0 \longrightarrow$$

is exact; (6) follows at once.

Proof of (7). The proof of (7) will be done in two steps. First we notice that im j^* consists of those ideal classes in $j(\hat{C})$ that are generated by ambiguous ideals in k_i/k . Define

$$\begin{split} R &= \{\mathfrak{A} \mid \mathfrak{A} = \mathfrak{a}_1 \mathfrak{a}_2 \mathfrak{a}_3, \mathfrak{a}_i \in J_i \text{ ambiguous}\}, \\ \widehat{R} &= \{\mathfrak{A} \mid \mathfrak{A} = \mathfrak{a}_1 \mathfrak{a}_2 \mathfrak{a}_3, \mathfrak{a}_i \in J_i \text{ ambiguous}, \ \nu([\mathfrak{a}_1], [\mathfrak{a}_2], [\mathfrak{a}_3]) = 1\}, \end{split}$$

and let π be the homomorphism mapping $\mathfrak{A} \in \widehat{R} \subseteq J_K$ to $[\mathfrak{A}] \in \operatorname{Cl}(K)$. Then $\pi : \widehat{R} \longrightarrow \operatorname{im} j^*$ is obviously onto, and $\ker \pi = \widehat{R} \cap H_K$. But if $\rho \in K$ and $(\rho) = \mathfrak{a}_1 \mathfrak{a}_2 \mathfrak{a}_3 \in \widehat{R}$, then

$$(\rho)^2 = (\mathfrak{a}_1 \mathfrak{a}_2 \mathfrak{a}_3)^2 = (N \mathfrak{a}_1 \cdot N \mathfrak{a}_2 \cdot N \mathfrak{a}_3) = (r)$$

for some $r \in k$. This shows

ker
$$\pi = \{(\rho) \mid \rho \in K, (\rho)^2 = (r) \text{ for some } r \in k\} = R_{\pi},$$

therefore

$$(\widehat{R}:R_{\pi}) = \#\operatorname{im} \pi = \#\operatorname{im} j^* = (\widehat{A}:\ker j^*),$$

which is equivalent to

(11)
$$\# \ker j^* = \frac{\#A}{(\hat{R}:R_{\pi})}$$

The homomorphism $\nu: C \longrightarrow \operatorname{Cl}(k)$ defined at the beginning of Section 2 sends $([\mathfrak{a}_1], [\mathfrak{a}_2], [\mathfrak{a}_3]) \in A = A_1 \times A_2 \times A_3 \subseteq C$ to $[\mathfrak{a}_1 \mathfrak{a}_2 \mathfrak{a}_3]^2 \in \operatorname{Cl}(k)$ (remember that the square of an ambiguous ideal of k_i/k is an ideal in \mathcal{O}_k), and we see that

$$1 \longrightarrow \widehat{A} \longrightarrow A \xrightarrow{\nu} A_1^2 A_2^2 A_3^2 \longrightarrow 1$$

is a short exact sequence. Now

$$1 \longrightarrow \widehat{R} \longrightarrow R \xrightarrow{\overline{\nu}} A_1^2 A_2^2 A_3^2 \longrightarrow 1,$$

where $\overline{\nu}(\mathfrak{a}_1\mathfrak{a}_2\mathfrak{a}_3) = \nu([\mathfrak{a}_1], [\mathfrak{a}_2], [\mathfrak{a}_3]) = [\mathfrak{a}_1\mathfrak{a}_2\mathfrak{a}_3]^2$, is also exact. From these facts we conclude that $(A : \widehat{A}) = (R : \widehat{R})$, and this allows us to transform (11):

$$\#\ker j^* = \frac{\#\widehat{A}}{(\widehat{R}:R_{\pi})} = \frac{(A:\widehat{A})\cdot\#\widehat{A}}{(R:\widehat{R})(\widehat{R}:R_{\pi})} = \frac{\#A}{(R:R_{\pi})}.$$

This is just (7).

Next we determine $(R : R_{\pi})$. To this end, let $(\rho) \in R_{\pi}$. Then $(\rho)^2 = (r)$ for some $r \in k^{\times}$, and $\eta = \rho^2/r$ is a unit in \mathcal{O}_K . Since the ideal (ρ) is fixed by $\operatorname{Gal}(K/k), \eta_i = (N^i \rho)/r$ is a unit in E_i . If $\sigma \in \operatorname{Gal}(K/k)$ is an automorphism that acts nontrivially on k_3/k , we find that $\eta = \eta_1 \eta_2 \eta_3^{-\sigma} \in E_1 E_2 E_3$, where

$$N_1\eta_1 = N_2\eta_2 = N_3(\eta_3^{-\sigma}) = (N_{K/k}\rho)/r^2.$$

The unit η we have found is determined up to a factor $\in E_k E^2$ (from now on, the unit group E_K will appear quite often, so we will write E instead of E_K), and we can define a homomorphism $\varphi: R_{\pi} \longrightarrow E/E_k E^2$ by assigning the class of the unit $\eta = \rho^2/r$ to an ideal $(\rho) \in R_{\pi}$ that satisfies $(\rho)^2 = (r), r \in k^{\times}$. We cannot expect

1

8

 φ to be onto because only those units $\eta_1\eta_2\eta_3 \in E_1E_2E_3$ can lie in the image of φ whose norms $N_i\eta_i$ coincide. Therefore we define

$$E^* = \{e_1 e_2 e_3 \mid e_i \in E_i, N_1 e_1 \equiv N_2 e_2 \equiv N_3 e_3 \mod E_k^2\}$$

and observe that $\operatorname{im} \varphi \subseteq E^*/E_k E^2$. Moreover,

Lemma 3. For $\eta = e_1 e_2 e_3 \in E^*$, the extension $K(\sqrt{\eta})/k$ is normal with elementary abelian Galois group $\operatorname{Gal}(K(\sqrt{\eta})/k)$, and there are $\rho \in K^{\times}$ and $r \in k^{\times}$ such that $\eta = \rho^2/r$.

Proof. $K(\sqrt{\eta})/k$ is normal if and only if for every $\sigma \in \text{Gal}(K/k)$ there exists an $\alpha_{\sigma} \in K^{\times}$ such that $\eta^{1-\sigma} = \alpha_{\sigma}^2$. Let $\text{Gal}(K/k) = \{1, \sigma, \tau, \sigma\tau\}$ and suppose that σ fixes k_1 ; then

$$\eta^{1-\sigma} = (e_1 e_2 e_3)^{1-\sigma} = (e_2 e_3)^{1-\sigma} = (e_2 e_3)^2 / (N_2 e_2 \cdot N_3 e_3),$$

and this is a square in K^{\times} since $N_2 e_2 \equiv N_3 e_3 \mod E_k^2$.

It is an easy exercise to show that $\operatorname{Gal}(K(\sqrt{\eta})/k)$ is elementary abelian if and only if $\alpha_{\sigma}^{1+\sigma} = \alpha_{\tau}^{1+\tau} = \alpha_{\sigma\tau}^{1+\sigma\tau} = +1$. In our case, these equations are easily verified (for example $\alpha_{\sigma} = e_2 e_3/e$ for some $e \in E_k$ such that $e^2 = N_2 e_2 \cdot N_3 e_3$, and therefore $\alpha_{\sigma}^{1+\sigma} = (N_2 e_2 \cdot N_3 e_3)/e^2 = +1$).

Now $K(\sqrt{\eta})/k$ is elementary abelian, and so $k(\sqrt{\eta}) = k(\sqrt{r})$ for some $r \in k^{\times}$. This implies the existence of $\rho \in k^{\times}$ such that $\rho^2 = \eta r$.

Because of Lemma 3, $\varphi: R_{\pi} \longrightarrow E^*/E_k E^2$ is onto. Moreover,

$$\ker \varphi = \{ (\rho) \in R_{\pi} \mid \rho^{2}/r = ue^{2}, u \in E_{k}, e \in E \}$$

= $\{ (\rho) \in R_{\pi} \mid \exists r \in k^{\times}, e \in E : (\rho/e)^{2} = r \}$
= $\{ (\rho) \in R_{\pi} \mid \rho^{2} = r \text{ for } r \in k^{\times} \}.$

Let $R_0 = \ker \varphi$; the group of principal ideals H_k is a subgroup of R_0 , and it has index $(R_0 : H_k) = 2^{2-u}$, where $2^u = (E^{(2)} : E_k)$ and $E^{(2)} = \{e \in E : e^2 \in E_k\}$. The proof is very easy: let $\Lambda = \{\rho \in K^{\times} | \rho^2 \in k^{\times}\}$ and map Λ/k^{\times} onto R_0/H_k by sending $\rho \cdot k^{\times}$ to $(\rho) \cdot H_k$. The sequence

$$1 \longrightarrow E^{(2)}k^{\times}/k^{\times} \longrightarrow \Lambda/k^{\times} \longrightarrow R_0/H_k \longrightarrow 1$$

is exact, and since Λ/k^{\times} has order $4 (\Lambda/k^{\times} = \{k^{\times}, \sqrt{a} \cdot k^{\times}, \sqrt{b} \cdot k^{\times}, \sqrt{ab} \cdot k^{\times}\}$ for $K = k(\sqrt{a}, \sqrt{b})$ and $E^{(2)}k^{\times}/k^{\times} \simeq E^{(2)}/E_k$, the claim follows. We see

$$(R_0: H_k) = \begin{cases} 1 & \text{if we can choose } a, b \in E_k, \\ 2 & \text{if we can choose } a \in E_k \text{ or } b \in E_k, \text{ but not both,} \\ 4 & \text{otherwise.} \end{cases}$$

Now we find $(R: H_k) = (R: J_k)(J_k: H_k) = 2^t h_k$, where $t = \# \operatorname{Ram}(K/k)$, and

$$(R:R_{\pi}) = \frac{(R:H_k)}{(R_{\pi}:R_0)(R_0:H_k)} = 2^{t-2}h_k \frac{(E^{(2)}:E_k)}{(E^*:E_kE^2)}$$

Since

$$(E: E_k E^2) = \frac{(E: E^2)}{(E_k E^2 : E^2)},$$

$$(E_k E^2 : E^2) = (E_k : E^2 \cap E_k) = \frac{(E_k : E^2)}{(E^2 \cap E_k : E_k^2)} \text{ and }$$

$$(E^2 \cap E_k : E_k^2) = (E^{(2)} : E_k),$$

we get $(E: E_k E^2) = 2^{\lambda - \kappa} (E^{(2)}: E_k)$, where λ and κ denote the \mathbb{Z} -ranks of E and E_k , respectively. Collecting everything, we find

$$(R:R_{\pi}) = 2^{t}h_{k}\frac{1}{(E^{*}:E_{k}E^{2})(R_{0}:H_{k})} = 2^{t}h_{k}\frac{(E:E^{*})(E^{(2)}:E_{k})}{4(E:E_{k}E^{2})}$$
$$= 2^{t+\kappa-\lambda-2}h_{k}(E:E^{*}).$$

But $(E: E^*) = (E: E_1E_2E_3)(E_1E_2E_3: E^*)$, and the first factor is the unit index q(K); this shows

(12)
$$(R:R_{\pi}) = 2^{t+\kappa-\lambda-2}q(K)h_k(E_1E_2E_3:E^*).$$

In order to study the group $E_1E_2E_3/E^*$, we define $E_i^* = \{e_i \in E_i \mid N_ie_i \in E_k^2\}$ and notice that $E_1^*E_2^*E_3^* \subseteq E^* \subseteq E_1E_2E_3 \subseteq E$. The group $E^*/E_1^*E_2^*E_3^*$ is actually one we have encountered before:

Lemma 4. We have

(13)
$$E^*/E_1^*E_2^*E_3^* \simeq H_0/E_k^2$$

Proof. Map $e_1e_2e_3 \in E^*$ to the coset $N_1e_1E_k^2 = N_2e_2E_k^2 = N_3e_3E_k^2$.

It is therefore sufficient to compute the index $(E_1E_2E_3: E^*/E_1^*E_2^*E_3^*)$; to this end we introduce the natural homomorphism

$$\xi: E_1/E_1^* \times E_2/E_2^* \times E_3/E_3^* \longrightarrow E_1 E_2 E_3/E_1^* E_2^* E_3^*,$$

which, of course, is onto. Letting \overline{e}_1 denote the cos t $e_i E_i^*$ we find

 $\ker \xi = \{(\overline{e}_1, \overline{e}_2, \overline{e}_3) : e_1 e_2 e_3 = u_1 u_2 u_3 \text{ for some } u_i \in E_i^*\}.$

We need to characterize ker ξ . Assume that $(\overline{e}_1, \overline{e}_2, \overline{e}_3) \in \ker \xi$; then $e_1e_2e_3 = u_1u_2u_3$ for some $u_i \in E_i^*$. Replacing the $\overline{e}_i = e_iE_i^*$ by $e_iu_i^{-1}E_i^*$ if necessary we may assume that $e_1e_2e_3 = 1$. Applying $1 + \sigma$ to this equation (where σ fixes k_1) yields $e_1^2N_2e_2N_3e_3 = 1$, and this implies $e_2^2 \in E_k$; in a similar way we find $e_2^2 \in E_k$ and $e_3^2 \in E_k$. If N_2e_2 were a square in E_k , so were N_3e_3 , and e_1 would have to lie in E_k : but then $e_i \in E_i^*$ for i = 1, 2, 3, and $(\overline{e}_1, \overline{e}_2, \overline{e}_3)$ is trivial. So if ker $\xi \neq 1$, we must have $e_i \in E_i \setminus E_k$ for i = 2, 3; but we have seen $e_i^2 =: \varepsilon_i \in E_k$, so we get $k_i = k(\sqrt{\varepsilon_i})$ for i = 2, 3 and, therefore, $k_1 = k(\sqrt{\varepsilon_2\varepsilon_3})$. Moreover,

$$\ker \xi = \{1, (\sqrt{\varepsilon_1} \cdot E_1^*, \sqrt{\varepsilon_2} \cdot E_2^*, \sqrt{\varepsilon_3} \cdot E_3^*)\}$$

in this case.

Thus we have shown that $\ker \xi \neq 1$ implies u = 2 and $\# \ker \xi = 2$, where the index $2^u = (E^{(2)} : E_k)$ was introduced above. If, on the other hand, u = 2, then $k_i = k(\sqrt{\varepsilon_i})$ for units $\varepsilon_i \in E_k$, and $(\sqrt{\varepsilon_1} \cdot E_1^*, \sqrt{\varepsilon_2} \cdot E_2^*, \sqrt{\varepsilon_3} \cdot E_3^*)$ is a nontrivial element of ker ξ . Therefore $\# \ker \xi = 2^v$ with $v = 2^u - u - 1$, and

(14)
$$(E_1 E_2 E_3 : E_1^* E_2^* E_3^*) = 2^{-v} \prod (E_i : E_i^*).$$

10

To determine $(E_i : E_i^*)$, we make use of a well known group theoretical lemma:

Lemma 5. Let G be a group and assume that H is a subgroup of finite index in G. If f is a homomorphism from G to another group, then

$$(G:H) = (G^f:H^f)(G_fH:H),$$

where $G^f = \operatorname{im} f$, $G_f = \operatorname{ker} f$, and H^f is the image of the restriction of f to H.

We apply this lemma to $G = E_i$, $H = E_i^*$, and $f = N_i$. Then $G_f = \{\varepsilon \in E_i \mid N_i \varepsilon = 1\} \subseteq E_i^* = H$, $G^f = E_i^N = \{N_i \varepsilon \mid \varepsilon \in E_i\}$, and $H^f = E_k^2$; now Lemma 5 gives

$$(E_i: E_i^*) = (G: H) = (G^f: H^f) = (E_i^N: E_k^2).$$

Putting (12)–(14) together, we find

$$\begin{aligned} (R:R_{\pi}) &= 2^{t+\kappa-\lambda-2}q(K)h_k(E_1E_2E_3:E^*) \\ &= 2^{t+\kappa-\lambda-2}q(K)h_k\frac{(E_1E_2E_3:E_1^*E_2^*E_3^*)}{(E^*:E_1^*E_2^*E_3^*)} \\ &= 2^{t+\kappa-\lambda-2-v}q(K)h_k\prod\frac{(E_i^N:E_k^2)}{(H_0:E_k^2)}, \end{aligned}$$

which is (8).

The only claim left to prove is (10). If \mathfrak{p} is a place in k which ramifies in K/k, then $e(\mathfrak{p}) = 2$ if \mathfrak{p} ramifies in two of the three intermediate fields, and $e(\mathfrak{p}) = 4$ if \mathfrak{p} is ramified in k_i/k for i = 1, 2, 3 (this can only happen for $\mathfrak{p} \mid 2$). This observation yields the first and the second equation in (10).

Npw $n = (k : \mathbb{Q}) = r_k + 2s_k$ and $4n = (K : \mathbb{Q}) = r_K + 2s_K$, where r_* (resp. s_*) denotes the number of real (resp. complex) infinite places in a field. Suppose that exactly d infinite places of k ramify in K/k; then $r_K = 4(r_k - d)$, $s_K = 4s_k + 2d$, and Dirichlet's unit theorem gives $\kappa = r_k + s_k - 1$ and

$$\lambda = r_K + s_K - 1 = 4(r_k - d) + 4s_k + 2d - 1 = 4\kappa - 2d + 3.$$

3. Walter's Formula

Assume that K/k is a normal extension, $\operatorname{Gal}(K/k) = (\mathbb{Z}/l\mathbb{Z})^m$ (*l* prime), and suppose moreover that there is no ramification at the infinite primes of k. The formula given by Kuroda [18] is

$$\frac{H}{h} = l^{-A}(E:E_{\Omega}) \cdot \prod \frac{h_i}{h}.$$

here

- h is the class number of k,
- H is the class number of K,
- h_i is the class number of the intermediate field k_i ; there are exactly $l = \frac{l^m 1}{l 1}$ such fields k_i ;
- E is the unit group of \mathcal{O}_K ,
- $E_{\Omega} = \prod E_i$ is the group generated by the units of the subfields k_i ,

•
$$A = \frac{l^u - 1}{l - 1} - u + \frac{\kappa + 1}{2} \left((m - 1)(l^m - 1) + \frac{l^m - 1}{l - 1} - m \right) - \kappa \left(\frac{l^m - 1}{l - 1} - m \right);$$

• u is the number of independent extensions of type $k(\sqrt[l]{\varepsilon})$, where ε is a unit in \mathcal{O}_k .

Using these notations, the formula given by Walter [32] reads as follows:

$$\frac{H}{h} = l^{-A}(E: WE_{\Omega}) \cdot \prod \frac{h_i}{h},$$

where W is the group of roots of unity in K and

$$A = \frac{l^{u} - 1}{l - 1} - u + \frac{1}{2}(m - 1)(\lambda - 1) - \frac{\kappa - 1}{2}\left(\frac{l^{m} - 1}{l - 1} - 1\right) - w.$$

In order to define w, we have to distinguish two cases:

(A) None of the k_i has the form $k_i = k(\sqrt{-1})$: then w = 0;

(B) l = 2 and $k_1 = k(\sqrt{-1})$, say; then $2^w = (W^{(2)} : W_1^{(2)})$, where $W^{(2)}$ (resp. $W_1^{(2)}$) is the 2-Sylow subgroup of W (resp. W_1), and W_1 is the group of roots of unity in k_1 .

It is easily seen that $2^w = (W : \prod W_i)$ (just remember that the field of p^n th roots of unity has cyclic Galois group over \mathbb{Q} for p > 2). If we recall the fact that Kuroda's formula applies only if no infinite places ramify (which implies that $\lambda + 1 = l^m(\kappa + 1)$), the two formulas give the same result if and only if $\gamma := (E : E_{\Omega})/2^w(E : WE_{\Omega}) = 1$. Obviously $\gamma = 1$ if l > 2; for l = 2 we obtain

$$(E:E_{\Omega}) = (E:WE_{\Omega})(WE_{\Omega}:E_{\Omega}) = (E:WE_{\Omega})(W:E_{\Omega}\cap W).$$

Now $\prod W_i \subset E_\Omega \cap W$, therefore

$$(W: E_{\Omega} \cap W) = \frac{(W: \prod W_i)}{(E_{\Omega} \cap W: \prod W_i)}$$

and

$$\gamma = \frac{(E:E_{\Omega})}{2^{w}(E:WE_{\Omega})} = (E_{\Omega} \cap W: \prod W_{i}).$$

As can be seen, $\gamma = 1$ if and only if $W \cap \prod E_i = \prod W_i$, i.e., if and only if every root of unity that can be written as a product of units from the subfields is actually a product of roots of unity lying in the subfields. If K does not contain the 8th roots of unity, this is certainly true; the following example shows that it does not hold in general.

Take $k = \mathbb{Q}(\sqrt{3}), K = \mathbb{Q}(i, \sqrt{2}, \sqrt{3}) = \mathbb{Q}(\zeta_{24})$; Walter's formula yields h(K) = 2; but $\mathbb{Z}[\zeta_{24}]$ is known to be Euclidean with respect to the norm, and therefore has class number 1.

Put $k_1 = k(i), k_2 = k(\sqrt{2}), k_3 = k(\sqrt{-2})$, and set

$$\begin{split} \varepsilon_2 &= 1 + \sqrt{2}, \quad \varepsilon_3 = 2 + \sqrt{3}, \quad \varepsilon_6 = 5 + 2\sqrt{6}, \\ &\sqrt{\varepsilon_3} = \frac{1 + \sqrt{3}}{\sqrt{2}}, \quad \sqrt{\varepsilon_6} = \sqrt{2} + \sqrt{3}, \\ &\sqrt{-\varepsilon_3} = \frac{1 + \sqrt{3}}{i\sqrt{2}}, \quad \sqrt{i\varepsilon_3} = \frac{1 + \sqrt{3}}{1 - i}, \\ &\sqrt{\zeta_8 \varepsilon_2 \sqrt{\varepsilon_3 \varepsilon_6}} = \frac{1}{4} (4 + 3\sqrt{2} + 2\sqrt{3} + \sqrt{6} + 2i + \sqrt{-2} + \sqrt{-6}). \end{split}$$

Then $\kappa = 1$, $\lambda = 3$, $t_1 = 2$, $t_2 = 3$, d = 2, u = 2 since $k_1 = k(\sqrt{-1})$ and $k_2 = k(\sqrt{\varepsilon_3})$, w = 1 since $W = \langle \zeta_{24} \rangle$ and $W_1 = \langle \zeta_{12} \rangle$, and q(K) = 2 (in this

example, the unit indices $(E : E_{\Omega})$ and $(E : WE_{\Omega})$ coincide, and in Wada [31] it is shown that $(E : E_{\Omega}) = 2$). Walter's formula gives

$$h(K) = \frac{1}{2}q(K)\prod h_i = \frac{1}{2} \cdot 2 \cdot 2 = 2.$$

I have also computed the groups that occur in the proof of Kuroda's formula:

- $E_k = \langle -1, \varepsilon_3 \rangle;$ • $E_1 = \langle \zeta_{12}, \sqrt{i\varepsilon_3} \rangle, \quad E_1^* = \langle \zeta_{12}, \varepsilon_3 \rangle, \quad E_1^N = \langle \varepsilon_3 \rangle;$ • $E_2 = \langle -1, \varepsilon_2, \sqrt{\varepsilon_3}, \sqrt{\varepsilon_6} \rangle, \quad E_2^* = \langle -1, \varepsilon_2^2, \varepsilon_3, \sqrt{\varepsilon_6} \rangle, \quad E_2^N = \langle -1, \varepsilon_3 \rangle;$ • $E_3 = \langle -1, \sqrt{-\varepsilon_3} \rangle, \quad E_3^* = -1, \varepsilon_3 \rangle, \quad E_3^N - \langle \varepsilon_3 \rangle;$ • $\prod(E_i : E_i^*) = 2 \cdot 4 \cdot 2 = 16;$ • $H_0 = \langle \varepsilon_3 \rangle; \quad H = H_0 \text{ since } -1 \text{ is not a norm residue at } \infty;$ • $E = \langle \zeta_{24}, \varepsilon_2, \sqrt{\varepsilon_3}, \sqrt{\zeta_8 \varepsilon_2 \sqrt{\varepsilon_3 \varepsilon_6}} \rangle \text{ (see Wada [31])};$ • $E_1 E_2 E_3 = \langle \zeta_{24}, \varepsilon_2, \sqrt{\varepsilon_3}, \sqrt{\varepsilon_6} \rangle, \quad (\xi_8 = \sqrt{i\varepsilon_3}/\sqrt{\varepsilon_3}), \quad q(K) = 2;$ • $E^* = \langle \zeta_{12}, \varepsilon_2^2, \sqrt{i\varepsilon_3}, \sqrt{\varepsilon_6} \rangle, \quad E : E^*) = 8, \quad (E_1 E_2 E_3 : E^*) = 4;$ • $E_1^* E_2^* E_3^* = \langle \zeta_{12}, \varepsilon_2^2, \varepsilon_3, \sqrt{\varepsilon_6} \rangle, \quad (E^* : E_1^* E_2^* E_3^*) = 2;$ • $E^{(2)} = \langle i, \sqrt{\varepsilon_3} \rangle;$
- ker $\psi = \{(\overline{1}, \overline{1}, \overline{1}), (iE_1^*, \sqrt{\varepsilon_3}E_2^*, \sqrt{-\varepsilon_3}E_3^*)\}$, because $i\sqrt{\varepsilon_3}\sqrt{-\varepsilon_3} = \varepsilon_3$ can be written in the form $\varepsilon_3 = \varepsilon_3 \cdot 1 \cdot 1 \in E_1^* E_2^* E_3^*$, while $\sqrt{\varepsilon_3} \notin E_2^*$.

The prime ideal 2 in k_3 above 2 generates an ideal class of order 2 in Cl(k_3): 2 is not principal, because its relative norm to $\mathbb{Q}(\sqrt{-6})$ is not, and its order divides 2 because $\mathfrak{f}^2 = (1 + \sqrt{3})$. This implies

$$#A_1 = #A_2 = 1, \quad A_3 = \langle [2] \rangle, \quad \ker j = \ker j^* = 1 \times 1 \times A_3 \simeq A_3.$$

References

 E. J. Amberg, Über den Körper, dessen Zahlen sich rational aus zwei Quadratwurzeln zusammensetzen, Diss. Zurich, 1897 1

[2] P. Bachmann, Zur Theorie der complexen Zahlen, J. Reine Angew. Math. 67 (1867), 200–204 1

[3] R. I. Berger, Hasse's class number product formula for generalized Dirichlet fields and other types of number fields, Manuscr. Math. **76** (1992), 397–406 1

[4] C. Castela, Nombre de classes d'idéaux d'une extension diédrale d'un corps de nombres, C. R. Acad. Sci. Paris 287 (1978), 483–486 1

- [5] G. L. Dirichlet, Recherches sur les formes quadratiques à coefficients et à indéterminées complexes, J. Reine Angew. Math. 24 (1842), 291–371 1
- [6] Y. Furuta, The genus field and genus number in algebraic number fields, Nagoya Math. J. 29 (1967), 281–285
- [7] D. Garbanati, Class field theory summarized, Rocky Mt. J. Math 11 (1980), 195–225 1, 4

 [8] S. J. Gurak, Ideal-theoretic characterization of the relative genus field, J. Reine Angew. Math. 296 (1977), 119–124

- [9] F. Halter-Koch, Ein Satz über die Geschlechter relativ-zyklischer Zahlkörper von Primzahlgrad und seine Anwendung auf biquadratisch-bizyklische Zahlkörper, J. Number Theory 4 (1972), 144– 156 1
- [10] H. Hasse, Zahlbericht, 3. Aufl. Physica Verlag 1970 1, 4, 5, 6
- [11] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, 2nd ed. Springer-Verlag 1985 1
- [12] G. Herglotz, Über einen Dirichletschen Satz, Math. Z. 12 (1922), 255-261 1
- [13] C. Herz, Construction of class fields, in: Seminar on Complex Multiplication, Lecture Notes Math. 21, Springer-Berlag 1957, VIII, 1–21. 4

FRANZ LEMMERMEYER

[14] D. Hilbert, Über den Dirichletschen biquadratischen Zahlkörper, Math. Ann. 45 (1894), 309–340; cf. Ges. Abh. I, Springer-Verlag 1970, 24–52

[15] T. Kubota, Über die Beziehungen der Klassenzahlen der Unterkörper des bizyklischen biquadratischen Zahlkörpers, Nagoya Math. J. 6 (1953), 119–127 1, 5

[16] T. Kubota, Über de bizyklischen biquadratischen Zahlkörper, Nagoya Math. J. 10 (1956), 65–85 1, 4

[17] S. Kuroda, Über den Dirichletschen Körper, J. Fac. Sci. Imp. Univ. Tokyo Sec. I 4 (5) (1943), 383–406 1

[18] S. Kuroda, Über die Klassenzahlen algebraischer Zahlkörper, Nagoya Math. J. 1 (1950), 1–10 1, 2, 11

[19] D. B. Leep, A. R. Wadsworth, The transfer ideal of quadratic forms and a Hasse norm theorem mod squares, Trans. Amer. Math. Soc. **315** (1989), 415–431 5

[20] D. B. Leep, A. R. Wadsworth, The Hasse norm theorem mod squares, J. Number Theory 42 (1992), 337–348 5

[21] H. Nehrkorn, Über absolute Idealklassengruppen und Einheiten in algebraischen Zahlkörpern, Abh. Math. Sem. Univ. Hamburg 9 (1933), 318–334 2

[22] Ch. J. Parry, Real quadratic fields with class numbers divisible by five, Math. Comp. 31 (1977), 1019–1029 1

[23] Ch. J. Parry, On the class number of relative quadratic fields, Math. Comp. $\mathbf{32}$ (1978), 1261–1270–1

[24] Ch. Pitti, Étude des normes dans les extensions à groupe de Klein, C. R. Acad. Sci. Paris Sér A 274 (1972), 1433–1435 5

[25] Ch. Pitti, Étude des normes dans les extensions à groupe de Klein, Sém. Delange-Pisot-Poitou 14 (1972/73), no. 7 5

[26] Ch. Pitti, Éléments de norme 1 dans les extensions à groupe de Klein, C. R. Acad. Sci. Paris Sér A 277 (1973), 273–275 5

[27] H. Reichardt, Über die Idealklassengruppe des Dirichletschen biquadratischen Zahlenkörpers, Acta Arith. **21** (1972), 323–327 2

[28] A. Scholz, Totale Normenreste, die keine Normen sind, als Erzeuger nichtabelscher Körpererweiterungen. I, J. Reine Angew. Math. 175 (1936), 100–107 5

[29] A. Scholz, Totale Normenreste, die keine Normen sind, als Erzeuger nichtabelscher Körpererweiterungen. II, J. Reine Angew. Math. **182** (1940), 217–234 4

[30] J. Varmon, Über abelsche Körper, deren alle Gruppeninvarianten aus einer Primzahl l bestehen, und über abelsche Körper als Kreiskörper, Akad. Abh. Lund, 1925 1

[31] H. Wada, On the class number and the unit group of certain algebraic number fields, J. Fac. Sci. Univ. Tokyo 13 (1966), 201–209 1, 12, 13

[32] C. D. Walter, Kuroda's class number relation, Acta Arith. 35 (1979), 41–51 1, 11

BILKENT UNIVERSITY, DEPARTMENT OF MATHEMATICS, 06800 ANKARA, BILKENT, TURKEY *E-mail address:* franz@fen.bilkent.edu.tr