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Introduction

Let k be a number field and K/k a V4-extension, i.e., a normal extension with
Gal(K/k) = V4, where V4 is Klein’s four-group. K/k has three intermediate fields,
say k1, k2, and k3. We will use the symbol N i (resp. Ni) to denote the norm of
K/ki (resp. ki/k), and by a widespread abuse of notation we will apply N i and Ni

not only to numbers, but also to ideals and ideal classes. The unit groups (groups
of roots of unity, , groups of fractional ideals, class numbers) in these fields will be
denoted by Ek, E1, E2, E3, EK (Wk, W1, . . . , JK , J1, . . . , hk, h1, . . . ) respectively,
and the (finite) index q(K) = EK : E1E2E3) is called the unit index of K/k.

For k = Q, k1 = Q(
√
−1 ) and k2 = Q(

√
m ) it was already known to Dirichlet1 [5]

that hK = 1
2q(K)h2h3. Bachmann [2], Amberg [1] and Herglotz [12] generalized this

class number formula gradually to arbitrary extensions K/Q whose Galois groups
are elementary abelian 2-groups. A remark of Hasse [11, p. 3] seems to suggest2

that Varmon [30] proved a class number formula for extensions with Gal(K/k)
an elementary abelian p-group; unfortunately, his paper was not accessible to me.
Kuroda [18] later gave a formula in case there is no ramification at the infinite
primes. Wada [31] stated a formula for 2-extensions of k = Q without any restriction
on the ramification (and without proof), and finally Walter [32] used Brauer’s class
number relations to deduce the most general Kuroda-type formula.

As we shall see below, Walter’s formula for V4-extensions does not always give
correct results if K contains the 8th roots of unity. This does not, however, seem
to effect the validity of the work of Parry [22, 23] and Castela [4], both of whom
made use of Walter’s formula.

The proofs mentioned above use analytic methods; for V4-extensions K/Q, how-
ever, there exist algebraic proofs given by Hilbert [14] (if

√
−1 ∈ K), Kuroda [17]

(if
√
−1 ∈ K), Halter-Koch [9] (if K is imaginary), and Kubota [15, 16]. For base

fields k 6= Q, on the other hand, no non-analytic proofs seem to be known except
for very special cases (see e.g. the very recent work of Berger [3]).

In this paper we will show how Kubota’s proof can be generalized. The proof
consists of two parts; in the first part, where we measure the extent to which Cl(K)
is generated by classes coming from the Cl(ki), we will use class field theory in its
ideal-theoretic formulation (see Hasse [10] or Garbanati [7]). The second part of
the proof is a somewhat lengthy index computation.

1Eisenstein [Über die Anzahl der quadratischen Formen in den verschiedenen complexen The-

orieen, J. Reine Angew. Math. 27 (1844), 311–316; Mathematische Werke I, Chelsea, New York,

1975, 89–94] proved a similar formula for K = Q(
√
−3,

√
m ).

2I have meanwhile had a chance to verify Hasse’s claim.
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1. Kuroda’s Formula

For any number field F , let Clu(F ) be the odd part of the ideal class group
of F ,i.e., the direct product of the p-Sylow subgroups of Cl(F ) for all odd primes
p. It was already noticed by Hilbert that the odd part of Cl(F ) behaves well in
2-extensions, and the following fact is a special case of a theorem of Nehrkorn [21]
(this special case can also be found in Kuroda [18] or Reichardt [27]):

(1) Clu(K) '
( 3∏

i=1

Clu(ki)/Clu(k)
)
× Clu(k) for V4-extensions K/k.

Here
∏

denotes the direct product. This simple formula allows us to compute the
structure of Clu(K); of course we cannot expect a similar result to hold for Cl2(K),
mainly because of the following two reasons:

(1) Ideal classes of ki may become principal inK (capitulation), and this means
that we cannot regard Cl2(ki) as a subgroup of Cl2(K).

(2) Even if they do not capitulate, ideal classes of subfields may coincide in K:
consider a prime ideal p that ramifies in k1 and k2; then the prime ideals
above p in k1 and k2 will generate the same ideal class in K.

Nevertheless there is a homomorphism

j : Cl(k1)× Cl(k2)× Cl(k3) −→ Cl(K)

defined as follows: let ci = [ai] be the ideal class in ki generated by ai; then aiOK

is the ideal in OK (the ring of integers in K) generated by ai, and it is obvious
that j(c1, c2, c3) = [a1a2a3OK ] is a well defined group homomorphism, and that
moreover

h(K) =
cok j
ker j

· h1h2h3.

In order to compute h(K) we have to determine the orders of the groups ker j and
cok j = Cl(K)/ im j. This will be done as follows:

Proposition 1. Let ĵ be the restriction of j to the subgroup

Ĉ = {(c1, c2, c3) |N1c1N2c2N3c3 = 1}
of the direct product Cl(k1)× Cl(k2)× Cl(k2). Then

(2) hk ·
cok j
ker j

=
cok ĵ
ker ĵ

.

Now Artin’s reciprocity law, combined with Galois theory, gives a correspondence
Art←→ between subgroups of Cl(K) and subfields of the Hilbert class field K1 of K.
We will find that im ĵ

Art←→ Kgen, the genus class field of K with respect to k, and
then the well known formula of Furuta [6] shows

(3) # cok ĵ = (Cl(K) : im ĵ) = (Kgen : k) = 2d−2hk

∏
e(p)

(Ek : H)
,

where
• d is the number of infinite places ramified in K/k;
• e(p) is the ramification index in K/k of a prime ideal p in k, and

∏
is

extended over all (finite)3 prime ideals of k;

3The contribution from the infinite primes is taken care of by the factor 2d.
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• H is the group of units in Ek that are norm residues4 in K/k.

The computation of # ker ĵ is a bit tedious, but in the end we will find

(4) # ker ĵ = 2v−1h2
k

∏
e(p) · (H : E2

k)/q(K),

where v = 1 if K = k(
√
ε,
√
η ) with units ε, η ∈ Ek, and v = 0 otherwise.

If we collect these results, define κ to be the Z-rank of k, and recall the formula
(Ek : E2

k) = 2κ+1, we obtain

Theorem 1. Let K/k we a V4-extension of number fields. Then Kuroda’s class
number formula holds:

(5) h(K) = 2d−κ−2−vq(K)h1h2h3/h
2
k.

In particular,

h(K) =


1
4q(K)h1h2h3 if k = Q and K is real,
1
2q(K)h1h2h3 if k = Q and K is complex,
1
4q(K)h1h2h3/h

2
k if k is a complex quadratic extension of Q.

2. The proofs

In order to prove (2), we define a homomorphism

ν : C = Cl(K1)× Cl(k2)× Cl(k3) −→ Cl(k), ν(c1, c2, c3) = N1c1N2c2N3c3.

If at least one of the extensions ki/k is ramified,5 we know Ni Cl(ki) = Cl(k) by
class field theory. If all the ki/k are unramified, the groups Ni Cl(ki) will have
index 2 = (ki : k) in Cl(k), and they will be different since

ki/k
Art←→ Ni Cl(ki)

in this case. Therefore ν is onto, and putting Ĉ = ker ν we get an exact sequence
1 −−−−→ Ĉ −−−−→ C −−−−→ Cl(k) −−−−→ 1.

Let ĵ be the restriction of j to Ĉ; then the diagram

1 −−−−→ Ĉ −−−−→ C −−−−→ Cl(k) −−−−→
ν

1yĵ

yj

y
1 −−−−→ Cl(L) −−−−→ Cl(L) −−−−→ 1

is exact and commutes. The snake lemma gives us an exact sequence

1 −−−−→ ker ĵ −−−−→ ker j −−−−→ Cl(k) −−−−→ cok ĵ −−−−→ cok j −−−−→ 1,

and this implies the index relation (2) we wanted to prove.
Before we start proving (3), we define K(2) to be the maximal subextension of

Kgen/k such that Gal(K(2)/k) is an elementary abelian 2-group. Moreover, we let
JK (resp. HK) denote the group of (fractional) ideals (resp. principal ideals) of K.

4A norm residue is an element of k that is a local norm for K/k everywhere.
5At a finite or infinite prime.
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Proposition 2. To every subfield F of the Hilbert class field K1 of K there is a
unique ideal group hF such that HK ⊆ hF ⊆ JK . Under this correspondence,

Gal(K1/F ) ' Cl(K)/(JK/hF ) ' hF /HK ,

and we find the following diagram of subextensions F/k of K/k and corresponding
Galois groups Gal(K1/F ):

K1 � - 1

Kgen
� - im ĵ

K(2) � - im j

K � - Cl(K)

Proof. The correspondence K(2) ←→ im j will not be needed in the sequel and is
included only for the sake of completeness; the main ingredient for a proof can be
found in Kubota [16, Hilfssatz 16].

Before we start proving Kgen ←→ im ĵ, we recall that Kgen is the class field of
k for the ideal group NK/kH

(m)
K ·H(1)

m of the norm residues modulo m, where the
defining modulus m is a multiple of the conductor f(K/k) (the notation is explained
in Hasse [10] or Garbanati [7], the result can be found in Scholz [29] or Gurak [8]).
The assertion of Herz [13, Prop. 1] that Kgen is the class field for NK/kH

(m)
K is

faulty: one mistake in his proof lies in the erroneous assumption that every principal
ideal of K is the norm of an ideal from K1. Although this is true for prime ideals,
it does not hold in general, as the following simple counter example shows: the
Hilbert class field of K = Q(

√
−5 ) is K1 = K(

√
−1 ), and the principal ideal

(1 +
√
−5 ) cannot be a norm from K1 since the prime ideals above (2, 1 +

√
−5 )

and (3, 1+
√
−5 ) are inert in K1/K. Moreover, contrary to Herz’s claim, not every

ideal in the Hilbert class field of K is principal: this is, of course, only true for
ideals coming from K.

Proof of (3). Our task now is to transfer the ideal group NK/kH
(m)
K ·H(1)

m in k,
which is defined modulo m, to an ideal group in K defined modulo (1). To do this
we need

Proposition 3. For V4-extensions K/k, the following assertions are equivalent:
(i) r ∈ k× is a norm residue in K/k at every place of k;
(ii) r ∈ k× is a (global) norm from k1/k and k2/k;
(iii) there exist α ∈ K× and a ∈ k× such that r = a2 ·NK/kα.

The elements of NK/kH
(m)
K · H(1)

m therefore have the form a2 · NK/kα, where
a ∈ k, α ∈ K, and (α) + m = (1). Using the Verschiebungssatz we find that
Kgen/K belongs to the group

hgen = {a ∈ JK | a + m = (1), NK/ka ∈ NK/kH
(m)
K ·H(1)

m }.
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Now NK/ka = a · NK/kα if and only if NK/k(a/α) = (a); we put b = a/α and
claim that there are ideals ai in ki such that b = a1a2a3. We assume without loss
of generality that b is an (integral) ideal in OK . We may also assume that no ideal
lying in a subfield ki divides b. But then any P | b necessarily has inertial degree
1, and no conjugate of P divides b. Writing pm ‖ b we deduce

NK/kPm ‖ NK/kb = (a2),

and this implies 2 | m.
Let σ, τ and στ denote the nontrivial automorphisms of K/k fixing the elements

of k1, k2 and k3, respectively; the identity

2 = 1 + σ + τ + στ − (1 + στ)σ

in Z[Gal(K/k)] shows P2 = N1P ·N2P · (N3P)−σ, and we are done.
Now (a2) = NK/kb = NK/ka1a2a3 = (N1a1 · N2a2 · N3a3)2, and extracting the

square root we obtain (a) = N1a1 ·N2a2 ·N3a3.
Conversely, all ideals a = a1a2a3 with a + m = (1) and (a) = N1a1 ·N2a2 ·N3a3

lie in hgen, and the same is true of all principal ideals prime to m since the class
field Kh corresponding to h is unramified if and only if H(m)

K ⊆ h. Therefore

hgen = {a = a1a2a3 | a + m = (1), N1a1 ·N2a2 ·N3a3 = (a) for some a ∈ k} ·H(m)
K ,

and by removing the condition a + m = (1), which amounts to replacing hgen by an
equivalent ideal group, we finally see

hgen = {a = a1a2a3 |N1a1 ·N2a2 ·N3a3 = (a) for some a ∈ k} ·HK .

The corresponding class group is JK/hgen, and this gives

Gal(Kgen/K) ' hgen/HK = {c = c1c2c3 |N1c1N2c2N3c3 = 1} = Ĉ.

Now (3) follows from Furuta’s formula for the genus class number. �

Proof of Prop. 3. It remains to prove Prop. 3; this result is due to Pitti [24, 25, 26],
and similar observations have been made by Leep & Wadsworth [19, 20]. Our proof
of (ii) =⇒ (iii) goes back to Kubota [15, Hilfssatz 14], while (iii) =⇒ (i) has already
been noticed by Scholz [28, p. 102].

(i) =⇒ (ii) is just an application of Hasse’s norm residue theorem for cyclic
extensions.

(ii) =⇒ (iii). Choose α1 ∈ k1 and α2 ∈ k2 with N1α1 = N2α2 = r. Since στ
acts non-trivially on k1 and k2, this implies (α1/α2)1+στ = 1. Hilbert’s Theorem
90 shows the existence of α ∈ K× such that α1/α2 = α1−στ . Now

α1−στ = α1+σ(α1+τ )−σ and α1+σ/α1 = (α1+τ )σ/α2 ∈ k1 ∩ k2 = k.

Put a = α1+σ/α1 and verify NK/kα = (α1+σ)1+τ = ra2.
(iii) =⇒ (i) is a consequence of formula (9) in § 6 of Part II of Hasse’s Bericht

[10], which says (β , k1k2

p

)
=

(β , k1

p

)(β , k2

p

)
.

Since r = Ni(N iα)/a) for i = 1, 2, we see that r is a norm from k1 and k2, and
Hasse’s formula tells us that r is a norm residue in k1k2 = K at every place.

Before we proceed with the computation of # ker ĵ, let us pause for a moment
and look at Prop. 2 with more care. The fact that Kgen is the class field of k
for the ideal group NK/kH

(m)
K ·H(1)

m is well known for abelian K/k. Moreover, the
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principal genus theorem of class field theory says that Kgen is the class field of K
for the class group Cl(K)1−σ = {c1−σ | c ∈ Cl(K)} if Gal(K/k) = 〈σ〉 is cyclic. If
K/k is abelian but not necessarily cyclic, the class field Kcen for the class group
{c1−σ | c ∈ Cl(K), σ ∈ Gal(K/k)} is called the central class field, and in general
Kcen is strictly bigger than Kgen. A description of Kgen in terms of the ideal class
group of K is unknown for non-cyclic K/k, and Prop. 2 answers this question for
the simplest non-cyclic group, the four-group V4 ' (Z/2Z)2. For other non-cyclic
groups, this remains an open problem.

In the V4-case, the fact that 〈cσ−1 | c ∈ Cl(K), σ ∈ Gal(K/k)〉 ⊆ im ĵ can be
verified directly by noting that cσ−1 = (cσ)στ+1 · (c−1)τ+1 ∈ C2×C3 is annihilated
by ν.

Proof of (4). The calculation of # ker ĵ will be done in several steps. We call an
ideal a1 in k1 ambiguous if aτ

1 = a1. An ideal class c ∈ Cl(k1) is called ambiguous
if cτ = c, and strongly ambiguous if c = [a1] for some ambiguous ideal a1. Let
Ai denote the group of strongly ambiguous ideal classes in ki (i = 1, 2, 3). Then
A = A1×A2×A3 is a subgroup of C, and Â = Ĉ ∩A is a subgroup of Ĉ. The idea
of the proof is to restrict ĵ (once more) from Ĉ to Â and to compute the kernel of
this restriction by using the formula for the number of ambiguous ideal classes.

In (3) we defined H as the group of units in Ek that are norm residues in K/k
at every place of k. Using Prop. 3 we see that

H = {η ∈ Ek | η = Niαi for some αi ∈ ki, i = 1, 2, 3}.

Let H0 = EN
1 ∩ EN

2 ∩ EN
3 be the subgroup of H consisting of those units that are

relative norms of units for every ki/k. The computation of # ker ĵ starts with the
following observation:

Lemma 1. Let j∗ denote the restriction of ĵ to Â; then

(6) # ker ĵ = (H : H0) ·# ker j∗.

Postponing the proof of Lemma 1 for a moment, let us see how this implies (4).
Let R = {a1a2a3 | ai ∈ Ii is ambiguous in ki/k} and Rπ = R ∩HK ; then

(7) #ker j∗ = #A/(R : Rπ).

Now the computation of # ker ĵ is reduced to the determination of (H : H0) and
(R : Rπ); let t = #Ram(K/k) denote the number of (finite) prime ideals of k that
ramify in K, and let λ denote the Z-rank of EK . We will prove

(8) (R : Rπ) = 2t+κ−λ−2−vq(K)hk ·
∏

(EN
i : E2

k)
(H0 : E2

k)
.

The number #Ai of strongly ambiguous ideal classes in ki/k is given by the well
known formula (cf. Hasse [10, Teil Ia, §13]):

Lemma 2. We have

(9) #Ai = 2δi−κ−2hk · (EN
i : E2

k),

where δi denotes the number of (finite and infinite) places in k that are ramified in
ki/k.
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Once we know how the δi are related to t, κ, λ, etc., we will be able to deduce
(4) from (7) – (9). To this end, let ti be the “finite part” of δi, i.e., the number
Ram(ki/k) of prime ideals in k ramified in ki/k, and let di denote the infinite part.
Then δi = di + ti, and

(10) 2t1+t2+t3 = 2t
∏

e(p), 2d = d1 + d2 + d3, and λ− 4κ = 3− 2d.

Since #A =
∏

#Ai, we obtain from (7) and (9)

#A = 2δ1+δ2+δ3−3κ−6h3
k ·

∏
(EN

i : E2
k);

dividing by (8) yields

# ker j∗ = 2t1+t2+t3−t+d1+d2+d3+λ−4κ−4+vh2
k · (H0 : E2

k)/q(K),

and using (10) we find

# ker j∗ = 2v−1h2
k

∏
e(p) · (H0 : E2

k)/q(K).

Substituting this formula into equation (6) we finally obtain (4).

Proof of Lemma 1. In order to prove (6) let ([a1], [a2], [a3]) ∈ ker ĵ; then a1a2a3 =
(α) for some α ∈ K×. Since (NK/kα) = (N1a1 ·N2a2 ·N3a3)2 (equality of ideals in
Ok) and because ([a1], [a2], [a3]) ∈ Ĉ, there exists a ∈ k such that (NK/kα) = (a)2.
This shows that η = (NK/kα)/a2 is a unit in Ek, which is unique mod NEK · E2

k.
Moreover, η ∈ H since η = Ni((N iα)/a). Therefore

θ0 : ker ĵ −→ H/NEK · E2
k, ([a1], [a2], [a3]) 7−→ ηNEK · E2

k,

is a well defined homomorphism. We want to show that θ0 is onto: to this end, let
η ∈ H; using Prop. 3 we can find an a ∈ k such that NK/kα = ηa2. In the proof
of Prop. 2 we have seen that an equation NK/ka = (a)2 implies the existence of
ideals ai in ki such that a = a1a2a3. This gives (α) = a1a2a3.

Now (N1a1 ·N2a2 ·N3a3)2 = (NK/kα) = (a)2 yields (a) = (N1a1 ·N2a2 ·N3a3),
and we have shown η ∈ im θ0.

Since θ0 : ker ĵ −→ H/NEK ·E2
k is onto, the same is true for any homomorphism

ker ĵ −→ H/H0 that is induced by an inclusionNEK ·E2
k ⊆ H0 ⊆ H. Obviously, the

group H0 = EN
1 ∩EN

2 ∩EN
3 defined above is such a group, and so θ : ker ĵ −→ H/H0

is onto. An element ([a1], [a2], [a3]) ∈ ker ĵ belongs to ker θ if and only if

a1a2a3 = (α), (a) = N1a1 ·N2a2 ·N3a3, (NL/Kα)/a2 = η ∈ H0.

Let ρi = (N iα)/a; then a1−τ
1 = (ρ1), a1−στ

2 = (ρ2), a1−σ
3 = (ρ3) and Niρi = η ∈

H0. Writing η = Niεi, where εi ∈ Ei, and replacing ρi by ρi/εi, we may assume
that Niρi = 1. Hilbert’s Theorem 90 shows ρ1 = β1−τ

1 , ρ2 = β1−στ
2 , and ρ3 = β1−σ

3

for some βi ∈ ki. The ideals bi = auβ
−1
i are ambiguous, and we have [bi] = [ai].

This means that the ideal classes [ai] are strongly ambiguous, and we conclude

ker θ ⊆ ker ĵ ∩A1 ×A2 ×A3 = ker j∗.

If, on the other hand, ([a1], [a2], [a3]) ∈ ker ĵ and if the ideals ai are ambiguous,
then the ρi = (N iα)/a are units, and

η = θ([a1], [a2], [a3]) = Niρi ∈ EN
1 ∩ EN

2 ∩ EN
3 = H0.
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We have seen that ker θ = ker j∗, which shows that the sequence

1 −−−−→ ker j∗ −−−−→ ker ĵ θ−−−−→ H/H0 −−−−→ 1

is exact; (6) follows at once. �

Proof of (7). The proof of (7) will be done in two steps. First we notice that im j∗

consists of those ideal classes in j(Ĉ) that are generated by ambiguous ideals in
ki/k. Define

R = {A |A = a1a2a3, ai ∈ Ji ambiguous},
R̂ = {A |A = a1a2a3, ai ∈ Ji ambiguous, ν([a1], [a2], [a3]) = 1},

and let π be the homomorphism mapping A ∈ R̂ ⊆ JK to [A] ∈ Cl(K). Then
π : R̂ −→ im j∗ is obviously onto, and kerπ = R̂ ∩ HK . But if ρ ∈ K and
(ρ) = a1a2a3 ∈ R̂, then

(ρ)2 = (a1a2a3)2 = (Na1 ·Na2 ·Na3) = (r)

for some r ∈ k. This shows

kerπ = {(ρ) | ρ ∈ K, (ρ)2 = (r) for some r ∈ k} = Rπ,

therefore
(R̂ : Rπ) = # imπ = # im j∗ = (Â : ker j∗),

which is equivalent to

(11) # ker j∗ =
#Â

(R̂ : Rπ)
.

The homomorphism ν : C −→ Cl(k) defined at the beginning of Section 2 sends
([a1], [a2], [a3]) ∈ A = A1 × A2 × A3 ⊆ C to [a1a2a3]2 ∈ Cl(k) (remember that the
square of an ambiguous ideal of ki/k is an ideal in Ok), and we see that

1 −−−−→ Â −−−−→ A
ν−−−−→ A2

1A
2
2A

2
3 −−−−→ 1

is a short exact sequence. Now

1 −−−−→ R̂ −−−−→ R
ν−−−−→ A2

1A
2
2A

2
3 −−−−→ 1,

where ν(a1a2a3) = ν([a1], [a2], [a3]) = [a1a2a3]2, is also exact. From these facts we
conclude that (A : Â) = (R : R̂), and this allows us to transform (11):

# ker j∗ =
#Â

(R̂ : Rπ)
=

(A : Â) ·#Â
(R : R̂)(R̂ : Rπ)

=
#A

(R : Rπ)
.

This is just (7).
Next we determine (R : Rπ). To this end, let (ρ) ∈ Rπ. Then (ρ)2 = (r)

for some r ∈ k×, and η = ρ2/r is a unit in OK . Since the ideal (ρ) is fixed by
Gal(K/k), ηi = (N iρ)/r is a unit in Ei. If σ ∈ Gal(K/k) is an automorphism that
acts nontrivially on k3/k, we find that η = η1η2η

−σ
3 ∈ E1E2E3, where

N1η1 = N2η2 = N3(η−σ
3 ) = (NK/kρ)/r2.

The unit η we have found is determined up to a factor ∈ EkE
2 (from now on, the

unit group EK will appear quite often, so we will write E instead of EK), and we
can define a homomorphism ϕ : Rπ −→ E/EkE

2 by assigning the class of the unit
η = ρ2/r to an ideal (ρ) ∈ Rπ that satisfies (ρ)2 = (r), r ∈ k×. We cannot expect
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ϕ to be onto because only those units η1η2η3 ∈ E1E2E3 can lie in the image of ϕ
whose norms Niηi coincide. Therefore we define

E∗ = {e1e2e3 | ei ∈ Ei, N1e1 ≡ N2e2 ≡ N3e3 mod E2
k}

and observe that imϕ ⊆ E∗/EkE
2. Moreover,

Lemma 3. For η = e1e2e3 ∈ E∗, the extension K(
√
η )/k is normal with elemen-

tary abelian Galois group Gal(K(
√
η )/k), and there are ρ ∈ K× and r ∈ k× such

that η = ρ2/r.

Proof. K(
√
η )/k is normal if and only if for every σ ∈ Gal(K/k) there exists an

ασ ∈ K× such that η1−σ = α2
σ. Let Gal(K/k) = {1, σ, τ, στ} and suppose that σ

fixes k1; then

η1−σ = (e1e2e3)1−σ = (e2e3)1−σ = (e2e3)2/(N2e2 ·N3e3),

and this is a square in K× since N2e2 ≡ N3e3 mod E2
k.

It is an easy exercise to show that Gal(K(
√
η )/k) is elementary abelian if and

only if α1+σ
σ = α1+τ

τ = α1+στ
στ = +1. In our case, these equations are easily verified

(for example ασ = e2e3/e for some e ∈ Ek such that e2 = N2e2 ·N3e3, and therefore
α1+σ

σ = (N2e2 ·N3e3)/e2 = +1).
Now K(

√
η )/k is elementary abelian, and so k(

√
η ) = k(

√
r ) for some r ∈ k×.

This implies the existence of ρ ∈ k× such that ρ2 = ηr. �

Because of Lemma 3, ϕ : Rπ −→ E∗/EkE
2 is onto. Moreover,

kerϕ = {(ρ) ∈ Rπ | ρ2/r = ue2, u ∈ Ek, e ∈ E}
= {(ρ) ∈ Rπ | ∃ r ∈ k×, e ∈ E : (ρ/e)2 = r}
= {(ρ) ∈ Rπ | ρ2 = r for r ∈ k×}.

Let R0 = kerϕ; the group of principal ideals Hk is a subgroup of R0, and it has
index (R0 : Hk) = 22−u, where 2u = (E(2) : Ek) and E(2) = {e ∈ E : e2 ∈ Ek}.
The proof is very easy: let Λ = {ρ ∈ K× | ρ2 ∈ k×} and map Λ/k× onto R0/Hk by
sending ρ · k× to (ρ) ·Hk. The sequence

1 −−−−→ E(2)k×/k× −−−−→ Λ/k× −−−−→ R0/Hk −−−−→ 1

is exact, and since Λ/k× has order 4 (Λ/k× = {k×,
√
a · k×,

√
b · k×,

√
ab · k×} for

K = k(
√
a,
√
b )) and E(2)k×/k× ' E(2)/Ek, the claim follows. We see

(R0 : Hk) =


1 if we can choose a, b ∈ Ek,

2 if we can choose a ∈ Ek or b ∈ Ek, but not both,
4 otherwise.

Now we find (R : Hk) = (R : Jk)(Jk : Hk) = 2thk, where t = #Ram(K/k), and

(R : Rπ) =
(R : Hk)

(Rπ : R0)(R0 : Hk)
= 2t−2hk

(E(2) : Ek)
(E∗ : EkE2)

.
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Since

(E : EkE
2) =

(E : E2)
(EkE2 : E2)

,

(EkE
2 : E2) = (Ek : E2 ∩ Ek) =

(Ek : E2)
(E2 ∩ Ek : E2

k)
and

(E2 ∩ Ek : E2
k) = (E(2) : Ek),

we get (E : EkE
2) = 2λ−κ(E(2) : Ek), where λ and κ denote the Z-ranks of E and

Ek, respectively. Collecting everything, we find

(R : Rπ) = 2thk
1

(E∗ : EkE2)(R0 : Hk)
= 2thk

(E : E∗)(E(2) : Ek)
4(E : EkE2)

= 2t+κ−λ−2hk(E : E∗).

But (E : E∗) = (E : E1E2E3)(E1E2E3 : E∗), and the first factor is the unit index
q(K); this shows

(12) (R : Rπ) = 2t+κ−λ−2q(K)hk(E1E2E3 : E∗).

In order to study the group E1E2E3/E
∗, we define E∗i = {ei ∈ Ei |Niei ∈ E2

k}
and notice that E∗1E

∗
2E

∗
3 ⊆ E∗ ⊆ E1E2E3 ⊆ E. The group E∗/E∗1E

∗
2E

∗
3 is actually

one we have encountered before:

Lemma 4. We have

(13) E∗/E∗1E
∗
2E

∗
3 ' H0/E

2
k.

Proof. Map e1e2e3 ∈ E∗ to the coset N1e1E
2
k = N2e2E

2
k = N3e3E

2
k. �

It is therefore sufficient to compute the index (E1E2E3 : E∗/E∗1E
∗
2E

∗
3 ); to this

end we introduce the natural homomorphism

ξ : E1/E
∗
1 × E2/E

∗
2 × E3/E

∗
3 −→ E1E2E3/E

∗
1E

∗
2E

∗
3 ,

which, of course, is onto. Letting e1 denote the coset eiE
∗
i we find

ker ξ = {(e1, e2, e3) : e1e2e3 = u1u2u3 for some ui ∈ E∗i }.
We need to characterize ker ξ. Assume that (e1, e2, e3) ∈ ker ξ; then e1e2e3 =
u1u2u3 for some ui ∈ E∗i . Replacing the ei = eiE

∗
i by eiu

−1
i E∗i if necessary we

may assume that e1e2e3 = 1. Applying 1 + σ to this equation (where σ fixes k1)
yields e21N2e2N3e3 = 1, and this implies e22 ∈ Ek; in a similar way we find e22 ∈ Ek

and e23 ∈ Ek. If N2e2 were a square in Ek, so were N3e3, and e1 would have to lie
in Ek: but then ei ∈ E∗i for i = 1, 2, 3, and (e1, e2, e3) is trivial. So if ker ξ 6= 1,
we must have ei ∈ Ei \ Ek for i = 2, 3; but we have seen e2i =: εi ∈ Ek, so we get
ki = k(

√
εi ) for i = 2, 3 and, therefore, k1 = k(

√
ε2ε3 ). Moreover,

ker ξ = {1, (
√
ε1 · E∗1 ,

√
ε2 · E∗2 ,

√
ε3 · E∗3 )}

in this case.
Thus we have shown that ker ξ 6= 1 implies u = 2 and # ker ξ = 2, where the

index 2u = (E(2) : Ek) was introduced above. If, on the other hand, u = 2, then
ki = k(

√
εi ) for units εi ∈ Ek, and (

√
ε1 · E∗1 ,

√
ε2 · E∗2 ,

√
ε3 · E∗3 ) is a nontrivial

element of ker ξ. Therefore # ker ξ = 2v with v = 2u − u− 1, and

(14) (E1E2E3 : E∗1E
∗
2E

∗
3 ) = 2−v

∏
(Ei : E∗i ).
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To determine (Ei : E∗i ), we make use of a well known group theoretical lemma:

Lemma 5. Let G be a group and assume that H is a subgroup of finite index in
G. If f is a homomorphism from G to another group, then

(G : H) = (Gf : Hf )(GfH : H),

where Gf = im f , Gf = ker f , and Hf is the image of the restriction of f to H.

We apply this lemma to G = Ei, H = E∗i , and f = Ni. Then Gf = {ε ∈
Ei |Niε = 1} ⊆ E∗i = H, Gf = EN

i = {Niε | ε ∈ Ei}, and Hf = E2
k; now Lemma 5

gives
(Ei : E∗i ) = (G : H) = (Gf : Hf ) = (EN

i : E2
k).

Putting (12)–(14) together, we find

(R : Rπ) = 2t+κ−λ−2q(K)hk(E1E2E3 : E∗)

= 2t+κ−λ−2q(K)hk
(E1E2E3 : E∗1E

∗
2E

∗
3 )

(E∗ : E∗1E
∗
2E

∗
3 )

= 2t+κ−λ−2−vq(K)hk

∏ (EN
i : E2

k)
(H0 : E2

k)
,

which is (8).
The only claim left to prove is (10). If p is a place in k which ramifies in K/k,

then e(p) = 2 if p ramifies in two of the three intermediate fields, and e(p) = 4 if p
is ramified in ki/k for i = 1, 2, 3 (this can only happen for p | 2). This observation
yields the first and the second equation in (10).

Npw n = (k : Q) = rk + 2sk and 4n = (K : Q) = rK + 2sK , where r∗ (resp. s∗)
denotes the number of real (resp. complex) infinite places in a field. Suppose that
exactly d infinite places of k ramify in K/k; then rK = 4(rk − d), sK = 4sk + 2d,
and Dirichlet’s unit theorem gives κ = rk + sk − 1 and

λ = rK + sK − 1 = 4(rk − d) + 4sk + 2d− 1 = 4κ− 2d+ 3.

3. Walter’s Formula

Assume that K/k is a normal extension, Gal(K/k) = (Z/lZ)m (l prime), and
suppose moreover that there is no ramification at the infinite primes of k. The
formula given by Kuroda [18] is

H

h
= l−A(E : EΩ) ·

∏ hi

h
.

here
• h is the class number of k,
• H is the class number of K,
• hi is the class number of the intermediate field ki; there are exactly l = lm−1

l−1

such fields ki;
• E is the unit group of OK ,
• EΩ =

∏
Ei is the group generated by the units of the subfields ki,

• A = lu−1
l−1 − u+ κ+1

2

(
(m− 1)(lm − 1) + lm−1

l−1 −m
)
− κ

(
lm−1
l−1 −m

)
;

• u is the number of independent extensions of type k( l
√
ε ), where ε is a unit

in Ok.
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Using these notations, the formula given by Walter [32] reads as follows:

H

h
= l−A(E : WEΩ) ·

∏ hi

h
,

where W is the group of roots of unity in K and

A =
lu − 1
l − 1

− u+
1
2
(m− 1)(λ− 1)− κ− 1

2

( lm − 1
l − 1

− 1
)
− w.

In order to define w, we have to distinguish two cases:

(A) None of the ki has the form ki = k(
√
−1 ): then w = 0;

(B) l = 2 and k1 = k(
√
−1 ), say; then 2w = (W (2) : W (2)

1 ), where W (2) (resp.
W

(2)
1 ) is the 2-Sylow subgroup of W (resp. W1), and W1 is the group of roots of

unity in k1.

It is easily seen that 2w = (W :
∏
Wi) (just remember that the field of pn-

th roots of unity has cyclic Galois group over Q for p > 2). If we recall the
fact that Kuroda’s formula applies only if no infinite places ramify (which implies
that λ + 1 = lm(κ + 1)), the two formulas give the same result if and only if
γ := (E : EΩ)/2w(E : WEΩ) = 1. Obviously γ = 1 if l > 2; for l = 2 we obtain

(E : EΩ) = (E : WEΩ)(WEΩ : EΩ) = (E : WEΩ)(W : EΩ ∩W ).

Now
∏
Wi ⊂ EΩ ∩W , therefore

(W : EΩ ∩W ) =
(W :

∏
Wi)

(EΩ ∩W :
∏
Wi)

and

γ =
(E : EΩ)

2w(E : WEΩ)
= (EΩ ∩W :

∏
Wi).

As can be seen, γ = 1 if and only if W ∩
∏
Ei =

∏
Wi, i.e., if and only if every root

of unity that can be written as a product of units from the subfields is actually a
product of roots of unity lying in the subfields. If K does not contain the 8th roots
of unity, this is certainly true; the following example shows that it does not hold in
general.

Take k = Q(
√

3 ), K = Q(i,
√

2,
√

3 ) = Q(ζ24); Walter’s formula yields h(K) =
2; but Z[ζ24] is known to be Euclidean with respect to the norm, and therefore has
class number 1.

Put k1 = k(i), k2 = k(
√

2 ), k3 = k(
√
−2 ), and set

ε2 = 1 +
√

2, ε3 = 2 +
√

3, ε6 = 5 + 2
√

6,

√
ε3 =

1 +
√

3√
2

,
√
ε6 =

√
2 +
√

3,

√
−ε3 =

1 +
√

3
i
√

2
,
√
iε3 =

1 +
√

3
1− i

,√
ζ8ε2
√
ε3ε6 =

1
4
(4 + 3

√
2 + 2

√
3 +
√

6 + 2i+
√
−2 +

√
−6 ).

Then κ = 1, λ = 3, t1 = 2, t2 = 3, d = 2, u = 2 since k1 = k(
√
−1 ) and

k2 = k(
√
ε3 ), w = 1 since W = 〈ζ24〉 and W1 = 〈ζ12〉, and q(K) = 2 (in this
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example, the unit indices (E : EΩ) and (E : WEΩ) coincide, and in Wada [31] it is
shown that (E : EΩ) = 2). Walter’s formula gives

h(K) = 1
2q(K)

∏
hi = 1

2 · 2 · 2 = 2.

I have also computed the groups that occur in the proof of Kuroda’s formula:
• Ek = 〈−1, ε3〉;
• E1 = 〈ζ12,

√
iε3 〉, E∗1 = 〈ζ12, ε3〉, EN

1 = 〈ε3〉;
• E2 = 〈−1, ε2,

√
ε3,
√
ε6 〉, E∗2 = 〈−1, ε22, ε3,

√
ε6 〉, EN

2 = 〈−1, ε3 〉;
• E3 = 〈−1,

√
−ε3 〉, E∗3 = −1, ε3 〉, EN

3 − 〈ε3 〉;
•

∏
(Ei : E∗i ) = 2 · 4 · 2 = 16;

• H0 = 〈ε3〉; H = H0 since −1 is not a norm residue at ∞;
• E = 〈ζ24, ε2,

√
ε3,

√
ζ8ε2
√
ε3ε6 〉 (see Wada [31]);

• E1E2E3 = 〈ζ24, ε2,
√
ε3,
√
ε6 〉 (ζ8 =

√
iε3/
√
ε3 ), q(K) = 2;

• E∗ = 〈ζ12, ε22,
√
iε3,
√
ε6 〉, E : E∗) = 8, (E1E2E3 : E∗) = 4;

• E∗1E∗2E∗3 = 〈ζ12, ε22, ε3,
√
ε6 〉, (E∗ : E∗1E

∗
2E

∗
3 ) = 2;

• E(2) = 〈i,√ε3〉;
• kerψ = {(1, 1, 1), (iE∗1 ,

√
ε3E

∗
2 ,
√
−ε3E∗3 )}, because i

√
ε3
√
−ε3 = ε3 can be

written in the form ε3 = ε3 · 1 · 1 ∈ E∗1E∗2E∗3 , while
√
ε3 /∈ E∗2 .

The prime ideal 2 in k3 above 2 generates an ideal class of order 2 in Cl(k3): 2 is
not principal, because its relative norm to Q(

√
−6 ) is not, and its order divides 2

because f2 = (1 +
√

3 ). This implies

#A1 = #A2 = 1, A3 = 〈[2]〉, ker j = ker j∗ = 1× 1×A3 ' A3.
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[18] S. Kuroda, Über die Klassenzahlen algebraischer Zahlkörper, Nagoya Math. J. 1 (1950), 1–10

1, 2, 11
[19] D. B. Leep, A. R. Wadsworth, The transfer ideal of quadratic forms and a Hasse norm
theorem mod squares, Trans. Amer. Math. Soc. 315 (1989), 415–431 5

[20] D. B. Leep, A. R. Wadsworth, The Hasse norm theorem mod squares, J. Number Theory 42

(1992), 337–348 5
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