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1. Introduction

Let k = k(0,2) be a quadratic number field with discriminant ∆. For n ≥
0, we define fields k(n,2) inductively by taking k(n+1,2) as the compositum of all
unramified1 quadratic extensions of k(n,2) that are central over k. Then k(∞) =⋃∞

n=0 k(n,2) is the 2-class field tower of k. In the following, we call k(n,2) the nth

central 2-step.
The structure of the Galois group Gal (k(1,2)/k) of the first central 2-step is

determined by the principal genus theorem. We want to show (Theorem 1 and 3),
that Gal (k(2,2)/k) is determined completely by the values of the Legendre symbols
(a

p ), where a | ∆ and p | ∆. Known results in this direction are the theorem of
L. Rédei and H. Reichardt [4] on the invariants of the class group of k divisible by
4, as well as a sufficient condition by A. Fröhlich [2] for the class field tower of k to
be non-abelian.

Moreover we investigate in which cases the 2-class field tower terminates after
the first and second central 2-step, i.e., when k(∞) = k(1,2) and k(∞) = k(2,2),
respectively. According to A. Fröhlich [2], we have k(∞) 6= k(1,2) if ∆ has more
than three prime divisors. In the case where ∆ has two prime divisors, the theorem
of Rédei and Reichardt gives rise to a necessary and sufficient condition for k(∞) 6=
k(1,2). In this paper, we give a necessary and sufficient condition for k(∞) 6= k(1,2)

in the remaining case where ∆ has three prime divisors (Theorem 4) and show that
the 2-class field tower terminates after the second central 2-step if Gal (k(2,2)/k) is
the quaternion group (Theorem 5).

In part II of this paper we shall prove that k(∞) 6= k(2,2) if ∆ has more than four
prime divisors. If ∆ has exactly four primes divisors, then the 2-class field tower
stops for some groups Gal (k(2,2)/k) of order 32 after the second central 2-step. In
all other cases we have k(∞) 6= k(2,2).

I would like to thank Professor H. Reichardt for some very valuable suggestions.

2. Notation

A prime discriminant p∗ is an integer of the form

(−1)
p−1
2 p, −4, ±8,

where p is an odd prime. Every discriminant of a quadratic number field can
be written uniquely as a product of prime discriminants. The prime |p∗| will be
denoted by p.

1In this note, we only consider ramification at finite primes.
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Let Q be the field of rational numbers. We define a symbol [∆, p] for dis-
criminants ∆ of quadratic number fields and primes p: write ∆ = ∆′p∗ ν , where
(∆′, p) = 1 and ν ∈ {0, 1}. Then we put [∆, p] = 1 or = 0 according as p is inert or
split in Q(

√
∆′ )/Q; we also put [p∗, p] = 0. If p is unramified in Q(

√
∆ )/Q, then

we have the relation (
∆
p

)
= (−1)[∆,p]

between [∆, p] and the Legendre symbol (∆
p ).

Let k = k
(0)
S = k

(0,2)
S be a number field and S a set of finite primes of k. We

then define the fields k
(n)
S (k(n,2)

S ) for n ≥ 0 recursively. Let k
(n+1)
S (k(n+1,2)

S ) be
the compositum of all cyclic extensions of k

(n)
S (k(n,2)

S ) of degree a power of 2 (of
degree 2) that are unramified outside S and central over k. Then

∞⋃
n=0

k
(n)
S =

∞⋃
n=0

k
(n,2)
S = k

(∞)
S .

Let G = G(0) = G(0,2) be an arbitrary group. We define recursively two central
series G(n) and G(n,2) by

G(n+1) = [G, G(n)], G(n+1,2) = 〈(G(n,2))2, [G, G(n,2)]〉,

where [G, G(n)] denotes the commutator group of G and G(n), and where (G(n,2))2

is the group generated by the squares of G(n,2).
Let K/k be a finite normal extension unramified outside S. Then Gal (K/k) and

k
(n)
S are connected by the relation

(1) Gal (K/k)(n) = Gal (K/K ∩ k
(n)
S ).

Accordingly, we have

(2) Gal (K/k)(2,2) = Gal (K/K ∩ k
(n,2)
S ).

3. Group Theoretical Preliminaries

We first prove two group-theoretical lemmas:

Lemma 1. Let G be an arbitrary group with generators s1, . . . , sn, and let H be
the normal subgroup of G generated by (G)2 and s1s2, s1s3, . . . , s1sn. Moreover,
let L denote the normal subgroup of G generated by s2

1, . . . , s2
n. Then

LG(2) = LG(2,2) = LH(2,2).

Proof. We first prove that LG(2) = LG(2,2). The inclusion LG(2) ⊆ LG(2,2) holds
trivially. Thus it suffices to prove that G(2,2) ⊆ LG(2). The elements s ∈ G(1,2) can
be written in the form

s = t
n∏

ν=1

s2aν
ν , t ∈ G(1).

Then s2 ≡ t2 mod LG(2), and t is congruent modulo G(2) to a product of com-
mutators of the form [sν , sµ] = sνsµs−1

ν s−1
µ . For the proof of G(2,2) ⊆ LG(2) it is

therefore sufficient to show that

[sν , sµ]2 ≡ 1 mod LG(2).
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In fact, we have

[sν , sµ]2 ≡ sν [sν , sµ]sµs−1
ν s−1

µ ≡ 1 mod LG(2).

Next we prove that LG(2,2) = LH(2,2). It is sufficient to prove the claim for free
groups G. Trivially, we have LH(2,2) ⊆ LG(2,2). Moreover, H/L is a group with
n− 1 generators s1s2L, . . . , s1snL. According to [3], the group

(H/L)(1,2)/(H/L)(2,2) ' LH(1,2)/LH(2,2)

has order at most 2n(n−1)/2. Again according to [3], we have (G(1,2) : G(2,2)) =
2n(n+1)/2.

The elements s ∈ L have the form

s ≡
n∏

ν=1

s2aν
ν mod G(2,2).

Therefore, (LG(2,2) : G(2,2)) = 2n, hence

(G(1,2) : LG(2,2)) = 2n(n−1)/2.

Moreover, (G : H) = 2, (G : G(1,2)) = 2n, (H : LH(1,2)) = 2n−1 and (H : G(1,2)) =
2n−1. This implies that

(H : LH(2,2)) ≤ (H : LG(2,2)).

Since LH(2,2) ⊆ LG(2,2), the claim follows. �

Lemma 2. Let G be a group whose quotient group mod G(2,2) is isomorphic to the
quaternion group Q. Then G = Q.

Proof. The group Q has two generators t1, t2 and relations

t21t
2
2 = 1, t21[t1, t2] = 1, Q(2,2) = {1}.

Therefore, G is a group with two generators s1 and s2, and we have the relations

s2
1s

2
2 ≡ 1 mod G(2,2),(3)

s2
1[s1, s2] ≡ 1 mod G(2,2).(4)

From (3) we deduce

(s2
1s

2
2)

2 ≡ s4
1s

4
2 ≡ 1 mod G(3,2),

[s2
1s

2
2, s1] ≡ [s2

2, s1] ≡ [s1, s2]2[[s1, s2], s2] ≡ 1 mod G(3,2),

[s2
1s

2
2, s2] ≡ [s2

1, s2] ≡ [s1, s2]2[[s1, s2], s1] ≡ 1 mod G(3,2).

From (4) we get

(s2
1[s1, s2])2 ≡ s4

1[s1, s2]2 ≡ 1 mod G(3,2)

[s2
1[s1, s2], s1] ≡ [[s1, s2], s1] ≡ 1 mod G(3,2).

This implies that the elements s4
1, s4

2, [s1, s2]2,
[
[s1, s2], s1

]
,
[
[s1, s2], s2

]
are in G(3,2).

On the other hand, according to [3] these elements generate G(2,2) mod G(3,2). Thus
G(2,2) = G(3,2). This implies by induction that G(2,2) = G(n,2) for all n ≥ 2. Since⋂∞

n=2 G(n,2) = {1}, we see that G(2,2) = 1, which is what we wanted to prove. �
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4. The Main Result

Now we can prove the main result of this note.

Theorem 1. Let k be a quadratic number field with discriminant ∆ = p∗1 · · · p∗n.
Then the Galois group G = Gal (k(2,2)/k) has n − 1 generators s1, . . . , sn−1 satis-
fying the relations

G(2,2) = 1
n−1∏
ν=1

(s2
ν [sν , sµ])[p

∗
ν ,pµ] = s2[∆,pµ]

µ , µ = 1, . . . , n− 1(5)

n−1∏
ν=1

s
2[p∗ν ,pn]
ν = 1.

Proof. Set S = {p1, . . . , pn}. According to Fröhlich [1], Gal (k(∞) ∩ Q(2)
S /Q) is a

finite group with n generators t1, . . . , tn and relations

Gal (k(∞) ∩Q(2)
S /Q)(2) = {1},

t2µ = 1, µ = 1, . . . , n,(6)
n∏

ν=1

[tν , tµ][p
∗
ν ,pµ] = 1, µ = 1, . . . , n.

Here tµ is a generator of the inertia subgroup of a prime divisor pµ of pµ in k(∞) ∩
Q(2)

S /Q.
Put K = (k(∞)∩Q(2)

S )k(2,2). We show next that k(∞)∩Q(2)
S = k(2,2) = K. By the

principal genus theorem we have k(1,2) ⊆ Q(2)
S . Therefore, the group G = Gal (K/Q)

is generated by lifts t1, . . . , tn of the automorphisms t1, . . . , tn to K. We choose the
tµ as generators of the inertia groups of a prime divisor of pµ in K/Q, µ = 1, . . . , n.
We also put H = Gal (K/k) and L = Gal (K/K ∩ k(∞)). By Hilbert’s theory of
ramification, L is the normal closure in G of the group generated by the elements
t
2
1, . . . , t

2
n, and H is generated as a normal subgroup of G by (G)2 and t1t2, . . . ,

t1tn.
Since only primes in S ramify in K/Q, we have G(2) = Gal (K/Q(2)

S ∩K), hence

(7) G(2)L = Gal (K/k(∞) ∩Q(2)
S ).

Now (2) implies H(2,2) = Gal (K/k(2,2)), and k(2,2) ⊆ K ∩ k(∞) implies L ⊆ H(2,2).
Thus

(8) H(2,2)L = Gal (K/k)(2,2).

Now we apply Lemma 1 to G. It follows from (7) and (8)) that k(2,2) = Q(2)
S ∩k(∞) =

K.
Now put sν = tνtn for ν = 1, . . . , n − 1. Then a simple calculation transforms

the relations (6) into (5). According to (2), we have Gal (k(2,2)/k)(2,2) = 1; this
implies that Gal (k(2,2)/k)(2) = {1}, and the proof of Theorem 1 is complete. �

According to Theorem 1, all invariants of the 2-class group of k in the strict
sense are divisible by 4 if and only if [p∗ν , pµ] = 0 for all ν, µ = 1, . . . , n. In this case,
all relations (5) vanish, and we have proved the following
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Corollary 1. Let k be a quadratic number field with discriminant ∆ = p∗1 · · · p∗n.
Assume that the invariants of the 2-class group of k in the strict sense are all
divisible by 4. Then the Galois group of k(2,2)/k is relative free, i.e., Gal (k(2,2)/k)
is isomorphic to F/F (2,2), where F is a free group with n− 1 generators.

Theorem 1 describes the structure of Gal (k(2,2)/k) completely. It is, however, in-
teresting to find a more visible relation between the group structure of Gal (k(2,2)/k)
and the values of [∆, p]. In this direction, L. Rédei and H. Reichardt have proved
the following

Theorem 2. Let ∆ be the discriminant of a quadratic number field and ∆1∆2 = ∆,
(∆1,∆2) = 1 a factorization of ∆ into discriminants. Then Q(

√
∆1,

√
∆2 )/Q(

√
∆ )

can be embedded into a cyclic unramified extension of degree 4 over Q(
√

∆ ) if(∆2

p1

)
=

(∆1

p2

)
= 1

for all primes p1 | ∆1 and p2 | ∆2.

Since k(2,2)/k is the compositum of fields whose Galois groups have two genera-
tors, an analogue of the theorem of Rédei and Reichardt will be based on a factor-
ization of ∆ into three discriminants which, however, need not be coprime. We then
have to investigate in which cases the extension Q(

√
∆1,

√
∆2,

√
∆3 )/Q(

√
∆ ) with

Klein’s four group as Galois group can be embedded into an unramified extension
with given Galois group G, where G has two generators and satisfies G(2,2) = {1}.
In this way, we get

Theorem 3. Let k be a quadratic number field with discriminant ∆ and let ∆1∆2∆3 =
∆∆′2 be a factorization of ∆ into three discriminants with ∆ν = ∆′

ν∆′, (∆′
ν ,∆′

µ) =
1 for ν 6= µ. Moreover, let tν denote an automorphism of k(2,2)/Q mapping√

∆ν 7−→ −
√

∆ν and fixing
√

∆µ for µ 6= ν, µ, ν = 1, 2, 3.
Then Q(

√
∆1,

√
∆2 )/k can be embedded into a field K with Galois group G =

Gal (K/k) if and only if the following conditions A are satisfied:

G A
1. G ' (4, 2) commutative [∆3, p1] = [∆3, p2] = 0,
(t1t2)2 = 1 [∆1∆2, p3] = 0, [∆1∆2, p

′] = 0
2. G ' H8 quaternion [∆2∆3, p1] = [∆1∆3, p2] = [∆1∆2, p3] = 0
3. G dihedral [∆3, p2] = [∆2, p3] = 0

(t1t2)2 = 1, (t1t3)2 = 1 [∆2∆3, p
′] = 0

4. G group of order 16 [∆3, p1] = [∆3, p2] = 0,
(t1t2)2 = 1 [∆1, p3] = [∆2, p3] = 0,

[∆1∆3, p
′] = [∆2∆3, p

′] = 0
5. G group of order 16 [∆1, p2] = [∆1, p3] = 0,

(t1t2)2 = 1 [∆3, p2] = [∆2, p3] = 0,
[∆2∆3, p1] = [∆2∆3, p

′] = 0
6. G ' (4, 4) commutative [∆i, pj ] = 0, i, j = 1, 2, 3
7. G group of order 32, rel. free [∆1∆2, p

′] = [∆1∆3, p
′] = 0

Here pν runs through all primes dividing ∆nu′, ν = 1, 2, 3, and p′ runs through the
primes dividing ∆′.
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Proof. Let ∆′
ν =

∏
tν∈Jν

p∗νiν
and ∆′ =

∏
i∈J p′

∗
i the factorizations into prime

discriminants of ∆′
ν and ∆′, respectively. Let tνiν be an automorphism of k(2,2)/Q

mapping
√

p∗νiν
7−→ −

√
p∗νiν

and leaving
√

p∗ fixed for all other prime divisors p∗

of ∆. Define t′i correspondingly. Then the restrictions of tνiν and tν (t′i and t1t2t3)
to Q(

√
∆1,

√
∆2,

√
∆3 ) coincide. By (6), the group Gal (K/Q) is therefore a group

with generators t1, t2, t3 and relations

Gal (K/Q)(2,2) = 1, t2ν = 1, ν = 1, 2, 3,

[t2, t1][∆2,p1i1 ][t3, t1][∆3,p1i1 ] = 1, i1 ∈ J1,

[t1, t2][∆1,p2i2 ][t3, t2][∆3,p2i2 ] = 1, i2 ∈ J2,

[t1, t3][∆1,p3i3 ][t2, t3][∆2,p3i3 ] = 1, i3 ∈ J3,

[t1, t2][∆1∆2,p′i [t1, t3][∆1∆3,p′i][t2, t3][∆2∆3,p′i] = 1, i ∈ J.

Theorem 3 now follows by direct verification. �

Remark. The cases 1–7 exhaust all possibilities for G and A up to permutations
of ∆1, ∆2, ∆3.

5. Applications

Theorem 4. The Galois group of the 2-class field tower of Q(
√

p∗1p
∗
2p
∗
3 ) is Klein’s

four group if and only if

(9)
(

p∗i
pj

)
= 1,

(
p∗j
pi

)
=

(
p∗i
pl

)
=

(
p∗l
pj

)
= −1

for some permutation i j l of the numbers 1 2 3.

Proof. Put k = Q(
√

p∗1p
∗
2p
∗
3 ). According to Theorem 3, Gal (k(2,2)/k) is Klein’s

four group if and only if (9) holds. From k2,2) = k(1,2) we deduce by induction that
k(1,2) = k(n,2) = k(∞). �

Theorem 5. The Galois group of the 2-class field tower of Q(
√

p∗1p
∗
2p
∗
3 ) is the

quaternion group of order 8 if and only if

(10)
(

pi

pj

)
= −1

for all i, j = 1, 2, 3 with i 6= j.

Proof. Let k = Q(
√

p∗1p
∗
2p
∗
3 ) and G = Gal (k(2,2)/k). According to Theorem 3, G is

the quaternion group of order 8 if and only if (10) holds. Moreover, Gal (k(2,2)/k) =
G/G(2,2). Lemma 2 then implies G = Gal (k(2,2)/k), that is, k(2,2) = k(3,2) =
k(∞). �



ON THE 2-CLASS FIELD TOWER OF A QUADRATIC NUMBER FIELD 7

References
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