ON THE 2-CLASS FIELD TOWER OF A QUADRATIC NUMBER FIELD

HELMUT KOCH

1. Introduction

Let $k=k^{(0,2)}$ be a quadratic number field with discriminant Δ. For $n \geq$ 0 , we define fields $k^{(n, 2)}$ inductively by taking $k^{(n+1,2)}$ as the compositum of all unramified ${ }^{1}$ quadratic extensions of $k^{(n, 2)}$ that are central over k. Then $k^{(\infty)}=$ $\bigcup_{n=0}^{\infty} k^{(n, 2)}$ is the 2-class field tower of k. In the following, we call $k^{(n, 2)}$ the $n^{t h}$ central 2-step.

The structure of the Galois group $\operatorname{Gal}\left(k^{(1,2)} / k\right)$ of the first central 2-step is determined by the principal genus theorem. We want to show (Theorem 1 and 3), that $\operatorname{Gal}\left(k^{(2,2)} / k\right)$ is determined completely by the values of the Legendre symbols $\left(\frac{a}{p}\right)$, where $a \mid \Delta$ and $p \mid \Delta$. Known results in this direction are the theorem of L. Rédei and H. Reichardt [4] on the invariants of the class group of k divisible by 4, as well as a sufficient condition by A. Fröhlich [2] for the class field tower of k to be non-abelian.

Moreover we investigate in which cases the 2-class field tower terminates after the first and second central 2-step, i.e., when $k^{(\infty)}=k^{(1,2)}$ and $k^{(\infty)}=k^{(2,2)}$, respectively. According to A. Fröhlich [2], we have $k^{(\infty)} \neq k^{(1,2)}$ if Δ has more than three prime divisors. In the case where Δ has two prime divisors, the theorem of Rédei and Reichardt gives rise to a necessary and sufficient condition for $k^{(\infty)} \neq$ $k^{(1,2)}$. In this paper, we give a necessary and sufficient condition for $k^{(\infty)} \neq k^{(1,2)}$ in the remaining case where Δ has three prime divisors (Theorem 4) and show that the 2-class field tower terminates after the second central 2-step if $\operatorname{Gal}\left(k^{(2,2)} / k\right)$ is the quaternion group (Theorem 5).

In part II of this paper we shall prove that $k^{(\infty)} \neq k^{(2,2)}$ if Δ has more than four prime divisors. If Δ has exactly four primes divisors, then the 2 -class field tower stops for some groups $\operatorname{Gal}\left(k^{(2,2)} / k\right)$ of order 32 after the second central 2-step. In all other cases we have $k^{(\infty)} \neq k^{(2,2)}$.

I would like to thank Professor H. Reichardt for some very valuable suggestions.

2. Notation

A prime discriminant p^{*} is an integer of the form

$$
(-1)^{\frac{p-1}{2}} p,-4, \pm 8
$$

where p is an odd prime. Every discriminant of a quadratic number field can be written uniquely as a product of prime discriminants. The prime $\left|p^{*}\right|$ will be denoted by p.

[^0]Let \mathbb{Q} be the field of rational numbers. We define a symbol $[\Delta, p]$ for discriminants Δ of quadratic number fields and primes p : write $\Delta=\Delta^{\prime} p^{* \nu}$, where $\left(\Delta^{\prime}, p\right)=1$ and $\nu \in\{0,1\}$. Then we put $[\Delta, p]=1$ or $=0$ according as p is inert or split in $\mathbb{Q}\left(\sqrt{\Delta^{\prime}}\right) / \mathbb{Q}$; we also put $\left[p^{*}, p\right]=0$. If p is unramified in $\mathbb{Q}(\sqrt{\Delta}) / \mathbb{Q}$, then we have the relation

$$
\left(\frac{\Delta}{p}\right)=(-1)^{[\Delta, p]}
$$

between $[\Delta, p]$ and the Legendre symbol $\left(\frac{\Delta}{p}\right)$.
Let $k=k_{S}^{(0)}=k_{S}^{(0,2)}$ be a number field and S a set of finite primes of k. We then define the fields $k_{S}^{(n)}\left(k_{S}^{(n, 2)}\right)$ for $n \geq 0$ recursively. Let $k_{S}^{(n+1)}\left(k_{S}^{(n+1,2)}\right)$ be the compositum of all cyclic extensions of $k_{S}^{(n)}\left(k_{S}^{(n, 2)}\right)$ of degree a power of 2 (of degree 2) that are unramified outside S and central over k. Then

$$
\bigcup_{n=0}^{\infty} k_{S}^{(n)}=\bigcup_{n=0}^{\infty} k_{S}^{(n, 2)}=k_{S}^{(\infty)}
$$

Let $G=G^{(0)}=G^{(0,2)}$ be an arbitrary group. We define recursively two central series $G^{(n)}$ and $G^{(n, 2)}$ by

$$
G^{(n+1)}=\left[G, G^{(n)}\right], \quad G^{(n+1,2)}=\left\langle\left(G^{(n, 2)}\right)^{2},\left[G, G^{(n, 2)}\right]\right\rangle
$$

where $\left[G, G^{(n)}\right]$ denotes the commutator group of G and $G^{(n)}$, and where $\left(G^{(n, 2)}\right)^{2}$ is the group generated by the squares of $G^{(n, 2)}$.

Let K / k be a finite normal extension unramified outside S. Then $\operatorname{Gal}(K / k)$ and $k_{S}^{(n)}$ are connected by the relation

$$
\begin{equation*}
\operatorname{Gal}(K / k)^{(n)}=\operatorname{Gal}\left(K / K \cap k_{S}^{(n)}\right) \tag{1}
\end{equation*}
$$

Accordingly, we have

$$
\begin{equation*}
\operatorname{Gal}(K / k)^{(2,2)}=\operatorname{Gal}\left(K / K \cap k_{S}^{(n, 2)}\right) \tag{2}
\end{equation*}
$$

3. Group Theoretical Preliminaries

We first prove two group-theoretical lemmas:
Lemma 1. Let G be an arbitrary group with generators s_{1}, \ldots, s_{n}, and let H be the normal subgroup of G generated by $(G)^{2}$ and $s_{1} s_{2}, s_{1} s_{3}, \ldots, s_{1} s_{n}$. Moreover, let L denote the normal subgroup of G generated by $s_{1}^{2}, \ldots, s_{n}^{2}$. Then

$$
L G^{(2)}=L G^{(2,2)}=L H^{(2,2)}
$$

Proof. We first prove that $L G^{(2)}=L G^{(2,2)}$. The inclusion $L G^{(2)} \subseteq L G^{(2,2)}$ holds trivially. Thus it suffices to prove that $G^{(2,2)} \subseteq L G^{(2)}$. The elements $s \in G^{(1,2)}$ can be written in the form

$$
s=t \prod_{\nu=1}^{n} s_{\nu}^{2 a_{\nu}}, \quad t \in G^{(1)}
$$

Then $s^{2} \equiv t^{2} \bmod L G^{(2)}$, and t is congruent modulo $G^{(2)}$ to a product of commutators of the form $\left[s_{\nu}, s_{\mu}\right]=s_{\nu} s_{\mu} s_{\nu}^{-1} s_{\mu}^{-1}$. For the proof of $G^{(2,2)} \subseteq L G^{(2)}$ it is therefore sufficient to show that

$$
\left[s_{\nu}, s_{\mu}\right]^{2} \equiv 1 \bmod L G^{(2)}
$$

In fact, we have

$$
\left[s_{\nu}, s_{\mu}\right]^{2} \equiv s_{\nu}\left[s_{\nu}, s_{\mu}\right] s_{\mu} s_{\nu}^{-1} s_{\mu}^{-1} \equiv 1 \bmod L G^{(2)}
$$

Next we prove that $L G^{(2,2)}=L H^{(2,2)}$. It is sufficient to prove the claim for free groups G. Trivially, we have $L H^{(2,2)} \subseteq L G^{(2,2)}$. Moreover, H / L is a group with $n-1$ generators $s_{1} s_{2} L, \ldots, s_{1} s_{n} L$. According to [3], the group

$$
(H / L)^{(1,2)} /(H / L)^{(2,2)} \simeq L H^{(1,2)} / L H^{(2,2)}
$$

has order at most $2^{n(n-1) / 2}$. Again according to [3], we have $\left(G^{(1,2)}: G^{(2,2)}\right)=$ $2^{n(n+1) / 2}$.

The elements $s \in L$ have the form

$$
s \equiv \prod_{\nu=1}^{n} s_{\nu}^{2 a_{\nu}} \bmod G^{(2,2)}
$$

Therefore, $\left(L G^{(2,2)}: G^{(2,2)}\right)=2^{n}$, hence

$$
\left(G^{(1,2)}: L G^{(2,2)}\right)=2^{n(n-1) / 2}
$$

Moreover, $(G: H)=2,\left(G: G^{(1,2)}\right)=2^{n},\left(H: L H^{(1,2)}\right)=2^{n-1}$ and $\left(H: G^{(1,2)}\right)=$ 2^{n-1}. This implies that

$$
\left(H: L H^{(2,2)}\right) \leq\left(H: L G^{(2,2)}\right)
$$

Since $L H^{(2,2)} \subseteq L G^{(2,2)}$, the claim follows.
Lemma 2. Let G be a group whose quotient group $\bmod G^{(2,2)}$ is isomorphic to the quaternion group Q. Then $G=Q$.

Proof. The group Q has two generators t_{1}, t_{2} and relations

$$
t_{1}^{2} t_{2}^{2}=1, t_{1}^{2}\left[t_{1}, t_{2}\right]=1, Q^{(2,2)}=\{1\}
$$

Therefore, G is a group with two generators s_{1} and s_{2}, and we have the relations

$$
\begin{align*}
s_{1}^{2} s_{2}^{2} & \equiv 1 \bmod G^{(2,2)} \tag{3}\\
s_{1}^{2}\left[s_{1}, s_{2}\right] & \equiv 1 \bmod G^{(2,2)} \tag{4}
\end{align*}
$$

From (3) we deduce

$$
\begin{aligned}
\left(s_{1}^{2} s_{2}^{2}\right)^{2} \equiv s_{1}^{4} s_{2}^{4} & \equiv 1 \bmod G^{(3,2)} \\
{\left[s_{1}^{2} s_{2}^{2}, s_{1}\right] \equiv\left[s_{2}^{2}, s_{1}\right] \equiv\left[s_{1}, s_{2}\right]^{2}\left[\left[s_{1}, s_{2}\right], s_{2}\right] } & \equiv 1 \bmod G^{(3,2)} \\
{\left[s_{1}^{2} s_{2}^{2}, s_{2}\right] \equiv\left[s_{1}^{2}, s_{2}\right] \equiv\left[s_{1}, s_{2}\right]^{2}\left[\left[s_{1}, s_{2}\right], s_{1}\right] } & \equiv 1 \bmod G^{(3,2)}
\end{aligned}
$$

From (4) we get

$$
\begin{aligned}
\left(s_{1}^{2}\left[s_{1}, s_{2}\right]\right)^{2} \equiv s_{1}^{4}\left[s_{1}, s_{2}\right]^{2} & \equiv 1 \bmod G^{(3,2)} \\
{\left[s_{1}^{2}\left[s_{1}, s_{2}\right], s_{1}\right] \equiv\left[\left[s_{1}, s_{2}\right], s_{1}\right] } & \equiv 1 \bmod G^{(3,2)}
\end{aligned}
$$

This implies that the elements $s_{1}^{4}, s_{2}^{4},\left[s_{1}, s_{2}\right]^{2},\left[\left[s_{1}, s_{2}\right], s_{1}\right],\left[\left[s_{1}, s_{2}\right], s_{2}\right]$ are in $G^{(3,2)}$. On the other hand, according to [3] these elements generate $G^{(2,2)} \bmod G^{(3,2)}$. Thus $G^{(2,2)}=G^{(3,2)}$. This implies by induction that $G^{(2,2)}=G^{(n, 2)}$ for all $n \geq 2$. Since $\bigcap_{n=2}^{\infty} G^{(n, 2)}=\{1\}$, we see that $G^{(2,2)}=1$, which is what we wanted to prove.

4. The Main Result

Now we can prove the main result of this note.
Theorem 1. Let k be a quadratic number field with discriminant $\Delta=p_{1}^{*} \cdots p_{n}^{*}$. Then the Galois group $G=\operatorname{Gal}\left(k^{(2,2)} / k\right)$ has $n-1$ generators s_{1}, \ldots, s_{n-1} satisfying the relations

$$
\begin{align*}
G^{(2,2)} & =1 \\
\prod_{\nu=1}^{n-1}\left(s_{\nu}^{2}\left[s_{\nu}, s_{\mu}\right]\right)^{\left[p_{\nu}^{*}, p_{\mu}\right]} & =s_{\mu}^{2\left[\Delta, p_{\mu}\right]}, \quad \mu=1, \ldots, n-1 \tag{5}\\
\prod_{\nu=1}^{n-1} s_{\nu}^{2\left[p_{\nu}^{*}, p_{n}\right]} & =1 .
\end{align*}
$$

Proof. Set $S=\left\{p_{1}, \ldots, p_{n}\right\}$. According to Fröhlich [1], $\operatorname{Gal}\left(k^{(\infty)} \cap \mathbb{Q}_{S}^{(2)} / \mathbb{Q}\right)$ is a finite group with n generators t_{1}, \ldots, t_{n} and relations

$$
\begin{align*}
\operatorname{Gal}\left(k^{(\infty)} \cap \mathbb{Q}_{S}^{(2)} / \mathbb{Q}\right)^{(2)} & =\{1\} \\
t_{\mu}^{2} & =1, \quad \mu=1, \ldots, n \tag{6}\\
\prod_{\nu=1}^{n}\left[t_{\nu}, t_{\mu}\right]^{\left[p_{\nu}^{*}, p_{\mu}\right]} & =1, \quad \mu=1, \ldots, n .
\end{align*}
$$

Here t_{μ} is a generator of the inertia subgroup of a prime divisor \mathfrak{p}_{μ} of p_{μ} in $k^{(\infty)} \cap$ $\mathbb{Q}_{S}^{(2)} / \mathbb{Q}$.

Put $K=\left(k^{(\infty)} \cap \mathbb{Q}_{S}^{(2)}\right) k^{(2,2)}$. We show next that $k^{(\infty)} \cap \mathbb{Q}_{S}^{(2)}=k^{(2,2)}=K$. By the principal genus theorem we have $k^{(1,2)} \subseteq \mathbb{Q}_{S}^{(2)}$. Therefore, the group $G=\operatorname{Gal}(K / \mathbb{Q})$ is generated by lifts $\bar{t}_{1}, \ldots, \bar{t}_{n}$ of the automorphisms t_{1}, \ldots, t_{n} to K. We choose the \bar{t}_{μ} as generators of the inertia groups of a prime divisor of \mathfrak{p}_{μ} in $K / \mathbb{Q}, \mu=1, \ldots, n$. We also put $H=\operatorname{Gal}(K / k)$ and $L=\operatorname{Gal}\left(K / K \cap k^{(\infty)}\right)$. By Hilbert's theory of ramification, L is the normal closure in G of the group generated by the elements $\bar{t}_{1}^{2}, \ldots, \bar{t}_{n}^{2}$, and H is generated as a normal subgroup of G by $(G)^{2}$ and $\bar{t}_{1} \bar{t}_{2}, \ldots$, $\bar{t}_{1} \bar{t}_{n}$.

Since only primes in S ramify in K / \mathbb{Q}, we have $G^{(2)}=\operatorname{Gal}\left(K / \mathbb{Q}_{S}^{(2)} \cap K\right)$, hence

$$
\begin{equation*}
G^{(2)} L=\operatorname{Gal}\left(K / k^{(\infty)} \cap \mathbb{Q}_{S}^{(2)}\right) \tag{7}
\end{equation*}
$$

Now (2) implies $H^{(2,2)}=\operatorname{Gal}\left(K / k^{(2,2)}\right)$, and $k^{(2,2)} \subseteq K \cap k^{(\infty)}$ implies $L \subseteq H^{(2,2)}$. Thus

$$
\begin{equation*}
H^{(2,2)} L=\operatorname{Gal}(K / k)^{(2,2)} \tag{8}
\end{equation*}
$$

Now we apply Lemma 1 to G. It follows from (7) and (8) that $k^{(2,2)}=\mathbb{Q}_{S}^{(2)} \cap k^{(\infty)}=$ K.

Now put $s_{\nu}=t_{\nu} t_{n}$ for $\nu=1, \ldots, n-1$. Then a simple calculation transforms the relations (6) into (5). According to (2), we have $\operatorname{Gal}\left(k^{(2,2)} / k\right)^{(2,2)}=1$; this implies that $\operatorname{Gal}\left(k^{(2,2)} / k\right)^{(2)}=\{1\}$, and the proof of Theorem 1 is complete.

According to Theorem 1, all invariants of the 2-class group of k in the strict sense are divisible by 4 if and only if $\left[p_{\nu}^{*}, p_{\mu}\right]=0$ for all $\nu, \mu=1, \ldots, n$. In this case, all relations (5) vanish, and we have proved the following

Corollary 1. Let k be a quadratic number field with discriminant $\Delta=p_{1}^{*} \cdots p_{n}^{*}$. Assume that the invariants of the 2 -class group of k in the strict sense are all divisible by 4. Then the Galois group of $k^{(2,2)} / k$ is relative free, i.e., $\operatorname{Gal}\left(k^{(2,2)} / k\right)$ is isomorphic to $F / F^{(2,2)}$, where F is a free group with $n-1$ generators.

Theorem 1 describes the structure of $\operatorname{Gal}\left(k^{(2,2)} / k\right)$ completely. It is, however, interesting to find a more visible relation between the group structure of $\operatorname{Gal}\left(k^{(2,2)} / k\right)$ and the values of $[\Delta, p]$. In this direction, L. Rédei and H. Reichardt have proved the following

Theorem 2. Let Δ be the discriminant of a quadratic number field and $\Delta_{1} \Delta_{2}=\Delta$, $\left(\Delta_{1}, \Delta_{2}\right)=1$ a factorization of Δ into discriminants. Then $\mathbb{Q}\left(\sqrt{\Delta_{1}}, \sqrt{\Delta_{2}}\right) / \mathbb{Q}(\sqrt{\Delta})$ can be embedded into a cyclic unramified extension of degree 4 over $\mathbb{Q}(\sqrt{\Delta})$ if

$$
\left(\frac{\Delta_{2}}{p_{1}}\right)=\left(\frac{\Delta_{1}}{p_{2}}\right)=1
$$

for all primes $p_{1} \mid \Delta_{1}$ and $p_{2} \mid \Delta_{2}$.
Since $k^{(2,2)} / k$ is the compositum of fields whose Galois groups have two generators, an analogue of the theorem of Rédei and Reichardt will be based on a factorization of Δ into three discriminants which, however, need not be coprime. We then have to investigate in which cases the extension $\mathbb{Q}\left(\sqrt{\Delta_{1}}, \sqrt{\Delta_{2}}, \sqrt{\Delta_{3}}\right) / \mathbb{Q}(\sqrt{\Delta})$ with Klein's four group as Galois group can be embedded into an unramified extension with given Galois group G, where G has two generators and satisfies $G^{(2,2)}=\{1\}$. In this way, we get

Theorem 3. Let k be a quadratic number field with discriminant Δ and let $\Delta_{1} \Delta_{2} \Delta_{3}=$ $\Delta \Delta^{\prime 2}$ be a factorization of Δ into three discriminants with $\Delta_{\nu}=\Delta_{\nu}^{\prime} \Delta^{\prime},\left(\Delta_{\nu}^{\prime}, \Delta_{\mu}^{\prime}\right)=$ 1 for $\nu \neq \mu$. Moreover, let t_{ν} denote an automorphism of $k^{(2,2)} / \mathbb{Q}$ mapping $\sqrt{\Delta_{\nu}} \longmapsto-\sqrt{\Delta_{\nu}}$ and fixing $\sqrt{\Delta_{\mu}}$ for $\mu \neq \nu, \mu, \nu=1,2,3$.

Then $\mathbb{Q}\left(\sqrt{\Delta_{1}}, \sqrt{\Delta_{2}}\right) / k$ can be embedded into a field K with Galois group $G=$ $\operatorname{Gal}(K / k)$ if and only if the following conditions A are satisfied:

G	A
1. $G \simeq(4,2)$ commutative	$\left[\Delta_{3}, p_{1}\right]=\left[\Delta_{3}, p_{2}\right]=0$,
$\left(t_{1} t_{2}\right)^{2}=1$	$\left[\Delta_{1} \Delta_{2}, p_{3}\right]=0,\left[\Delta_{1} \Delta_{2}, p^{\prime}\right]=0$
2. $G \simeq H_{8}$ quaternion	$\left[\Delta_{2} \Delta_{3}, p_{1}\right]=\left[\Delta_{1} \Delta_{3}, p_{2}\right]=\left[\Delta_{1} \Delta_{2}, p_{3}\right]=0$
3. G dihedral	
$\left(t_{1} t_{2}\right)^{2}=1,\left(t_{1} t_{3}\right)^{2}=1$	$\left[\Delta_{3}, p_{2}\right]=\left[\Delta_{2}, p_{3}\right]=0$
$\left[\Delta_{2} \Delta_{3}, p^{\prime}\right]=0$	
4. G group of order 16	$\left[\Delta_{3}, p_{1}\right]=\left[\Delta_{3}, p_{2}\right]=0$,
$\quad\left(t_{1} t_{2}\right)^{2}=1$	$\left[\Delta_{1}, p_{3}\right]=\left[\Delta_{2}, p_{3}\right]=0$,
	$\left[\Delta_{1} \Delta_{3}, p^{\prime}\right]=\left[\Delta_{2} \Delta_{3}, p^{\prime}\right]=0$
5. G group of order 16	
$\quad\left(t_{1} t_{2}\right)^{2}=1$	$\left[\Delta_{1}, p_{2}\right]=\left[\Delta_{1}, p_{3}\right]=0$,
	$\left[\Delta_{3}, p_{2}\right]=\left[\Delta_{2}, p_{3}\right]=0$,
	$\left[\Delta_{2} \Delta_{3}, p_{1}\right]=\left[\Delta_{2} \Delta_{3}, p^{\prime}\right]=0$
6. $G \simeq(4,4)$ commutative	$\left[\Delta_{i}, p_{j}\right]=0, i, j=1,2,3$
7. G group of order 32 , rel. free	$\left[\Delta_{1} \Delta_{2}, p^{\prime}\right]=\left[\Delta_{1} \Delta_{3}, p^{\prime}\right]=0$

Here p_{ν} runs through all primes dividing $\Delta_{n} u^{\prime}, \nu=1,2,3$, and p^{\prime} runs through the primes dividing Δ^{\prime}.

Proof. Let $\Delta_{\nu}^{\prime}=\prod_{t_{\nu} \in J_{\nu}} p_{\nu i_{\nu}}^{*}$ and $\Delta^{\prime}=\prod_{i \in J} p_{i}^{\prime *}$ the factorizations into prime discriminants of Δ_{ν}^{\prime} and Δ^{\prime}, respectively. Let $t_{\nu i_{\nu}}$ be an automorphism of $k^{(2,2)} / \mathbb{Q}$ mapping $\sqrt{p_{\nu i_{\nu}}^{*}} \longmapsto-\sqrt{p_{\nu i_{\nu}}^{*}}$ and leaving $\sqrt{p^{*}}$ fixed for all other prime divisors p^{*} of Δ. Define t_{i}^{\prime} correspondingly. Then the restrictions of $t_{\nu i_{\nu}}$ and $t_{\nu}\left(t_{i}^{\prime}\right.$ and $\left.t_{1} t_{2} t_{3}\right)$ to $\mathbb{Q}\left(\sqrt{\Delta_{1}}, \sqrt{\Delta_{2}}, \sqrt{\Delta_{3}}\right)$ coincide. By (6), the $\operatorname{group} \operatorname{Gal}(K / \mathbb{Q})$ is therefore a group with generators t_{1}, t_{2}, t_{3} and relations

$$
\begin{array}{rlrl}
\operatorname{Gal}(K / \mathbb{Q})^{(2,2)}=1, t_{\nu}^{2} & =1, & \nu=1,2,3, \\
{\left[t_{2}, t_{1}\right]^{\left[\Delta_{2}, p_{1 i_{1}}\right]}\left[t_{3}, t_{1}\right]^{\left[\Delta_{3}, p_{1 i_{1}}\right]}} & =1, & & i_{1} \in J_{1}, \\
{\left[t_{1}, t_{2}\right]^{\left[\Delta_{1}, p_{2 i_{2}}\right]}\left[t_{3}, t_{2}\right]^{\left[\Delta_{3}, p_{2 i_{2}}\right]}} & =1, & i_{2} \in J_{2}, \\
\left.\left[t_{1}, t_{3}\right]^{\left[\Delta_{1}, p_{3 i_{3}}\right]}\right]\left[t_{2}, t_{3}\right]^{\left[\Delta_{2}, p_{3 i_{3}}\right]} & =1, & i_{3} \in J_{3}, \\
{\left[t_{1}, t_{2}\right]^{\left[\Delta_{1} \Delta_{2}, p_{i}^{\prime}\right.}\left[t_{1}, t_{3}\right]^{\left[\Delta_{1} \Delta_{3}, p_{i}^{\prime}\right]}\left[t_{2}, t_{3}\right]^{\left[\Delta_{2} \Delta_{3}, p_{i}^{\prime}\right]}} & =1, & & i \in J .
\end{array}
$$

Theorem 3 now follows by direct verification.

Remark. The cases 1-7 exhaust all possibilities for G and A up to permutations of $\Delta_{1}, \Delta_{2}, \Delta_{3}$.

5. Applications

Theorem 4. The Galois group of the 2-class field tower of $\mathbb{Q}\left(\sqrt{p_{1}^{*} p_{2}^{*} p_{3}^{*}}\right)$ is Klein's four group if and only if

$$
\begin{equation*}
\left(\frac{p_{i}^{*}}{p_{j}}\right)=1, \quad\left(\frac{p_{j}^{*}}{p_{i}}\right)=\left(\frac{p_{i}^{*}}{p_{l}}\right)=\left(\frac{p_{l}^{*}}{p_{j}}\right)=-1 \tag{9}
\end{equation*}
$$

for some permutation $i j l$ of the numbers 123 .
Proof. Put $k=\mathbb{Q}\left(\sqrt{p_{1}^{*} p_{2}^{*} p_{3}^{*}}\right)$. According to Theorem 3. $\operatorname{Gal}\left(k^{(2,2)} / k\right)$ is Klein's four group if and only if (9) holds. From $k^{2,2)}=k^{(1,2)}$ we deduce by induction that $k^{(1,2)}=k^{(n, 2)}=k^{(\infty)}$.

Theorem 5. The Galois group of the 2 -class field tower of $\mathbb{Q}\left(\sqrt{p_{1}^{*} p_{2}^{*} p_{3}^{*}}\right)$ is the quaternion group of order 8 if and only if

$$
\begin{equation*}
\left(\frac{p_{i}}{p_{j}}\right)=-1 \tag{10}
\end{equation*}
$$

for all $i, j=1,2,3$ with $i \neq j$.
Proof. Let $k=\mathbb{Q}\left(\sqrt{p_{1}^{*} p_{2}^{*} p_{3}^{*}}\right)$ and $G=\operatorname{Gal}\left(k^{(2,2)} / k\right)$. According to Theorem 3, G is the quaternion group of order 8 if and only if 10 holds. Moreover, $\operatorname{Gal}\left(k^{(2,2)} / k\right)=$ $G / G^{(2,2)}$. Lemma 2 then implies $G=\operatorname{Gal}\left(k^{(2,2)} / k\right)$, that is, $k^{(2,2)}=k^{(3,2)}=$ $k^{(\infty)}$.

References

[1] A. Fröhlich, On the absolute class group of Abelian fields, J. London Math. Soc. 29 (1954), 211-217
[2] A. Fröhlich, A note on the class field tower, Quart. J. Math. Oxford (2) 5 (1954), 141-144 1
[3] H. Koch, Über die Faktorengruppe einer absteigenden Zentralreihe, Math. Nachr. 22 (1954), 141-144 3
[4] L. Rédei, H. Reichardt, Die durch vier teilbaren Invarianten der Klassengruppe eines quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1933), 69-74 1

Translation by Franz Lemmermeyer

[^0]: ${ }^{1}$ In this note, we only consider ramification at finite primes.

