
SIMPLE COUNTEREXAMPLES TO THE LOCAL-GLOBAL
PRINCIPLE

W. AITKEN, F. LEMMERMEYER

Abstract. After Hasse had found the first example of a Local-Global principle

in the 1920s by showing that a quadratic form in n variables represented 0 in

rational numbers if and only if it did so in every completion of the rationals,
mathematicians investigated whether this principle held in other situations.

Among the first counterexamples to the Hasse principle were curves of genus 1

constructed by Lind and Reichardt: these were curves without rational points
but with points in every completion of Q. In this article we will show that the

technique of rational parametrization of conics is powerful enough to derive
Reichardt’s result.

1. Introduction

The solvability of the diophantine equation

aX2 + bY 2 + cZ2 = 0 (1)

was investigated by all the great number theorists from Euler to Gauss: Euler found
a necessary condition for solvability in nonzero integers (or, which is the same, in
nonzero rational numbers): −ab ≡ r2 mod c; −bc ≡ s2 mod a; and −ca ≡ t2 mod b.
Lagrange studied the special case a = 1; Legendre finally proved that (1) has
solutions if and only if Euler’s conditions are satisfied, and Gauss gave a second
proof based on his theory of ternary quadratic forms. There was a large interest
in generalizing this result to quadratic forms in arbitrary many variables. Hasse
realized that the general result could be formulated in a very elegant way.

In fact, Hasse used the language of p-adic numbers invented by Hensel; in this
language, an equation such as (1) has a nontrivial solution in Qp if and only if the
congruence aX2 + bY 2 + cZ2 ≡ 0 mod pk has a nontrivial solution for every k ≥ 1.
In addition to the usual primes p we also introduce the symbolic prime p = ∞ and
put Q∞ = R. Hasse then found that the known criteria for the solvability of (1)
could be expressed by the following Local-Global Principle:

(1) is solvable globally (that is, has a nontrivial solution in the
field Q of rational numbers) if and only if it is everywhere locally
solvable (that is, in every completion Qp of Q).

Hasse also proved that this result even holds for quadratic forms of an arbitrary
number of variables.

Geometrically, equation (1) describes a conic in the projective plane, and Hasse’s
Local-Global Principle guarantees that this conic has a rational point (a point whose
coordinates are rational numbers) if and only if it has Qp-rational points for every
p. In this form, the Local-Global Principle does not generalize to curves of higher
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degree: Selmer found [5] that the cubic curve

3X3 + 4Y 3 + 5Z3 = 0 (2)

has Qp-rational points for every p (this is an easy exercise) but does not have a
rational point (this is not trivial: known proofs use the arithmetic of the cubic
number field Q( 3

√
60 )). This work of Selmer led to the notion of Selmer groups and

Tate-Shafarevich groups in the theory of elliptic curves, and Selmer’s example can
nowadays be interpreted as an element of order 3 in the Tate-Shafarevich group of
the elliptic curve X3 + Y 3 + 60Z3 = 0.

Counterexamples to the Hasse principle simpler than Selmer’s had been con-
structed before by Lind [2] and Reichardt [4]: they found that the quartic

2Z2 = X4 − 17Y 4 (3)

has nontrivial local solutions everywhere but has no nontrivial rational point. In
this case it is quite easy to see that there is no rational solution: the standard proof
involves quadratic reciprocity, and there are proofs (see e.g. [1]) that require even
less. The hard part here is to show that (3) has local solutions everywhere; the
simplest approach uses quartic Gauss and Jacobi sums. Applied to general quartics
like

T : N2 = b1M
4 + aM2e2 + b2e

4, (4)

this method only shows the solvability for sufficiently large values of p. In this
article we will show that a precise criterium for the local solvability of (4) can be
derived using the well known technique of parametrizing conics.

2. Parametrizing Conics

A conic is a curve of degree 2 in the affine plane; we will only have to deal with
conics of the form y2 = b1x

2 + ax2 + b2, where the coefficients a, b1, b2 lie in some
field K (in our case Fp). Such a quadratic equation will in general describe ellipses,
parabolas or hyperbolas; conics such as y2 = x2, however, are just a pair of lines.
Note that the lines may be defined over a quadratic extension of K: the conic
y2 = 2 is defined over Q, and consists of two lines y =

√
2 and y = −

√
2 defined

over Q(
√

2 ). Such conics are called degenerate, and we claim

Lemma 1. The conic y2 = f(x), where f(x) = b1x
2 + ax2 + b2 ∈ K[x] and K is

a field of characteristic 6= 2, is degenerate if and only if a2 − 4b1b2 = 0.

Proof. If the conic is a pair of lines, then y2 − f(x) = (y − rx − s)(y − tx − u).
Comparing coefficients implies that r + t = s + u = 0, hence y2 − f(x) = (y− rx−
s)(y + rs + x), and then a2 − 4b1b2 = 0.

Conversely, assume that a2 − 4b1b2 = 0. If b1 = 0, then a = 0 as well, hence
the conic has equation y2 = b2, hence is a pair of lines (defined over K(

√
b2 )). If

b1 6= 0, then 4b1f(x) = (2b1x + a)2, hence the conic can be written in the form
4b1y

2 = (2b1x + a)2, and again this is a pair of lines, where the equations of the
lines have coefficients in K(

√
b1 ). �

For nonsingular conics defined over some field K it is easy to determine all points
(x, y) on the conic with coordinates in K from one known such point:
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Lemma 2. Consider the conic C : Y 2 = f(X) for f(X) = b1X
2+aX +b2 ∈ K[X].

Assume that y2
0 = f(x0) for x0, y0 ∈ K. Then every point (x, y) ∈ K × K with

x 6= x0 is given by

x =
t2x0 − 2ty0 + b1x0 + a

t2 − b1
, y =

−t2y0 + t(2b1x0 + a)− b1y0

t2 − b1
(5)

for some t ∈ K \ {±
√

b1}.

Proof. Starting with the K-rational point P = (x0, y0) we can parametrize the conic
C: consider all lines Lt through P with ‘slope’ t ∈ K; then Lt : y = t(x− x0) + y0

intersects the conic in P and in a second point with coordinates (x, y). Plugging
the equation of Lt into that of C we find (t(x− x0) + y0)2 = b1x

2 + ax + b2. Since
x = x0 is a root of this quadratic equation in x0, we can factor out (x−x0). In fact

t2(x− x0)2 + 2ty0(x− x0) + b1x
2
0 + ax0 + b2 = b1x

2 + ax + b2

shows that
(x− x0)(t2(x− x0) + 2ty0 − b1(x + x0)− a).

The root x = x0 of the first factor corresponds to (x0, y0); the second factor vanishes
if and only if (t2− b1)x = t2x0− 2ty0 + b1x0 +a, and this leads to the formulas (5).

Clearly every value t ∈ K with t2 6= b1 provides a K-rational point on the conic.
Conversely, if (x, y) is a point on the conic with coordinates in K and x 6= x0, then
it comes from t = y−y0

x−x0
. �

3. Quartics over Fp

Consider the quartic T , with b1 a squarefree integer, over the field Fp. Our aim
is to prove the following

Theorem 1. The quartic (4) has an Fp-rational point for every prime p such that
p - 2(a2 − 4b1b2).

Remark. This is a special case of a general theorem due to F.K. Schmidt (also
proved by Châtelet) according to which any smooth curve of genus 1 has a point
over any finite field. Schmidt’s proof used zeta functions of function fields and the
theorem of Riemann-Roch.

Proof of Theorem 1. If equation (4) has a solution (N,M, e) in Fp with e = 0,
then N2 ≡ b1M

4 mod p, and this implies that b1 is a square modulo p (possibly
0). Conversely, if b1 is a square modulo p, then there exists an Fp-rational point
(N,M, e) ∈ Fp × Fp × Fp with e = 0 (and M 6= 0).

Thus Theorem 1 is proved if b1 is a square modulo p, so from now on we will
assume that (b1/p) = −1. In this case we can’t have solutions with e = 0, so we
might as well divide through by e4, put y = N/e2 and X = M/e, and get

y2 = b1X
4 + aX2 + b2. (6)

Now the substitution X2 = x transforms (6) into the conic

C : y2 = b1x
2 + ax + b2. (7)

The condition p - 2(a2− 4b1b2) ensures that C is nonsingular, and that we can find
all Fp-rational points on C once we know one. Our aim is to find an Fp-rational
point (x, y) on C such that x = X2 is a square.

The proof proceeds in several steps:
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(1) The conic C has an Fp-rational point. Assume not; then the right hand
side of (7) is a nonsquare for every x ∈ Fp. Thus, by Euler’s criterion,
f(X) = (b1X

2 + aX + b2)(p−1)/2 + 1 is a polynomial of degree p − 1 with
f(x) = 0 for all x ∈ Fp: this is a contradiction because polynomials f over
fields have at most deg f roots.

(2) Parametrize the conic C. Applying Lemma 2 we find that all Fp-rational
points on C with x 6= x0 are given by (5). Since we assumed that b1 is
a nonsquare modulo p, every t ∈ Fp gives rise to a point on C over Fp.
If x0 = 0, then x0 is a square and we are done. If x0 6= 0, then we can
multiply the numerator and denominator in (5) by x0 and get

x =
(x0t− y0)2 − b2

x0(t2 − b1)
. (8)

(3) There is a point (x, y) on C with x = X2. Assume that there is no point
(x, y) ∈ Fp × Fp on C with x ∈ F2

p; then we must have (x/p) = −1 for all

x, in particular (x0/p) = −1 and therefore
( (x0t−y0)

2−b2
p

)
=

(
t2−b1

p

)
for all

t ∈ Fp.
By Corollary 1 below we have y0 = 0 and b2 = x2

0b1. This gives 0 =
y2
0 = b1x

2
0 + ax0 + b2 = b1x

2
0 + ax0 + b1x

2
0, hence a = −2b1x0. But then

a2 − 4b1b2 = 0 contradicting the assumption.
The proof of Theorem 1 is now complete. �

It remains to prove Corollary 1 below. We start with

Lemma 3. Let f, g ∈ Fp[X] be quadratic polynomials over Fp. If f(t)n = g(t)n for
all t ∈ Fp and some integer n ≤ p−1

2 , then there exists a constant c ∈ Fp such that
f = c · g.

Proof. Clearly deg fn = n deg f ≤ p− 1, hence the polynomial fn − gn has degree
≤ p − 1 and at least p roots 0, 1, . . . , p − 1. Since Fp is a field, polynomials of
degree m have at most m roots; hence we conclude that fn = gn.

Now factor f and g into linear factors over some finite extension of Fp; then
every root α with multiplicity m is a root of multiplicity mn of fn, thus of gn,
hence a root of multiplicity m of g. Thus f and g have the same roots (with
multiplicity) over some extension of Fp, hence they are equal up to some constant
c (which necessarily is an element of the base field Fp since the coefficients of f and
g are). �

Proposition 1. Assume that f, g ∈ Fp[X] are quadratic polynomials over Fp such
that ( f(t)

p ) = ( g(t)
p ) for all t ∈ Fp. Then there exists a constant c ∈ Fp such that

f = c · g.

Proof. By Euler’s criterion we know that ( f(t)
p ) ≡ f(t)n (mod p) with n = p−1

2 ;
thus the assumptions imply that f(t)n ≡ g(t)n (mod p) for all t ∈ Fp, so the claim
follows from Lemma 3. �

Corollary 1. If
( (x0t−y0)

2−b2
p

)
=

(
t2−b1

p

)
for t = 0, 1, . . . , p − 1, then y0 = 0 and

b2 = b1x
2
0.

Proof. The converse of the claim is trivially true. On the other hand, applying Prop.
1 to the assumption shows that f(X) = (x0X−y0)2−b2 and g(X) = X2−b1 differ
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by a constant factor c; comparing the coefficients of the leading term shows that
c = x2

0 whereas comparing linear terms gives y0 = 0. Finally, comparing constant
terms shows that b2 = b1x

2
0. �

4. The Hensel Lift

In the preceding section we have studied the existence of Fp-rational points on
curves Y 2 = f(X) for a quartic polynomial f . Here we will investigate whether
these points can be lifted to solutions in the p-adic numbers.

To this end, consider the equation Y 2−f(X) = 0, where f ∈ Z[X] is a polynomial
with integral coefficients. Assume that we can find integers x, y ∈ Z with y2−f(x) ≡
0 mod p; we would like to lift this to a solution modulo higher powers of p.

This will be done by induction, so let us assume that we are given a solution
modulo pk, that is, integers xk, yk with y2

k − f(xk) ≡ 0 mod pk. Then we will
have y2

k − f(xk) = apk for some integer a, and if p | a we are done. If p - a, we
can try to modify xk and yk modulo pk, that is, we put xk+1 = xk + rpk and
yk+1 = yk + spk; our goal is to determine r and s in such a way that we get
y2

k+1 − f(xk+1) ≡ 0 mod pk+1. Now

y2
k+1 − f(xk+1) ≡ y2

k + 2sykpk − f(xk)− rf ′(xk)pk

≡ (a + 2syk − rf ′(xk))pk mod pk+1.

Thus we can make the right hand side vanish unless p | yk and p | f ′(xk). Since
p | (yk − f(xk)) by assumption, this means that xk mod p is a root of both f and
f ′ in Fp, which in turn implies that p | disc f . We have shown:

Lemma 4 (Hensel’s Lemma). Let f ∈ Z[X] be a polynomial; if p is a prime with
p - 2 disc f , then every solution of Y 2 − f(X) ≡ 0 mod p can be lifted to a solution
modulo pk for any k ≥ 1.

The polynomial f(X) = b1X
4 + aX2 + b2 has discriminant disc f = 16b(a2 −

4b1b2)2 = 16b1b2(disc g)2, where g(X) = b1X
2 + aX + b2. Although p - 2 disc g

suffices to guarantee solvability modulo p, for applying Hensel’s Lemma we need to
assume that p - disc f . Thus we find

Theorem 2. The quartic T has a solution in Qp for every prime p - 2b(a2−4b1b2).

The condition in Thm. 2 coincides with that given in [6, Chap. X, Prop. 4.9].

5. Reichardt’s Counterexample to the Hasse Principle

Now let us see why Reichardt’s quartic (3) violates the Hasse principle. Our
arguments work for the more general quartic

2n2 = X4 − qY 4 (9)

for primes q ≡ 1 mod 8.

Local Solutions. Multiplying through by 2 and putting N = 2n we get N2 =
2X4 − 2qY 4. By Theorem 1 there are solutions to this congruence modulo every
odd prime p 6= q, and Hensel’s Lemma guarantees that we can lift these solutions
to prime powers pk.

For p = q, we find a p-adic solution of (3) by letting n = X =
√

2 ∈ Zq (this
is Hensel’s lemma at work again: from p ≡ 1 mod 8 we find that 2 is a square
modulo q, and Hensel’s Lemma then guarantees that 2 is a square in Zq) and
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Y = 0. For p = 2, we can find an x ∈ Z2 such that x4 = q (solve the congruence
x4 ≡ q ≡ 1 mod 8 and lift to solutions modulo 2k) and then put n = 0, X = x, and
Y = 1.

Thus (9) has Qp-rational points for every p, and clearly has solutions in R = Q∞,
hence has local solutions everywhere.

Global Solutions. Let a, b, c ∈ Z be pairwise relatively prime and square free.
Consider the diophantine equation aX4 + bY 4 = cZ2. This equation has the trivial
solution X = Y = Z = 0; we are interested in non-trivial solutions. We call an
integral solution (X, Y, Z) primitive if aX, bY and cZ are pairwise relatively prime.

Lemma 5. Let a, b, c be squarefree integers. If aX4 + bY 4 = cZ2 has a non-trivial
rational solution, then it has a primitive solution.

Proof. Suppose that X, Y, Z ∈ Q is a non-trivial rational solution. Then so is
nX, nY, n2Z where n ∈ Z is non-zero. So we can obtain a non-trivial solution in Z.

Now let X, Y, Z ∈ Z be a non-trivial integral solution. If a prime p divides two of
aX, bY, cZ then it must divide the third. Since a, b, c are pairwise relatively prime,
p must divide at least two of the X, Y , and Z. This implies p2 divides aX4, bY 4,
and cZ2. Since a and b are squarefree, p divides X and Y . Thus p4 divides cZ2.
Since c is squarefree, p2 must divide Z. With X/p, Y/p, and Z/p2, we get a smaller
solution. Continue this process until a primitive solution is obtained. �

Now we specialize to cZ2 = X4 − qY 4 where q ≡ 1 mod 8 is a prime. Let p be
an odd prime dividing Z where X, Y, Z is a primitive solution. Since the solution
is primitive, X and Y are non-zero modulo p, so ( q

p ) = 1. By quadratic reciprocity,
(p

q ) = 1 for all such p. Now q ≡ 1 mod 8, so −1 and 2 are quadratic residues
modulo q. Thus z is the product of quadratic residues:

Lemma 6. Suppose X, Y, Z is a primitive solution to the equation cZ2 = X4−qY 4

where q ≡ 1 mod 8 is a prime, c ∈ Z is square free, and q 6 |c. Then (Z
q ) = 1.

If X, Y, Z are as in the above lemma, then X and Z are non-zero modulo q since
the solution is primitive. The above lemma, and the fact that c ≡ Z−2X4 mod q,
gives us that c is a fourth power modulo q. To summarize:

Theorem 3. Let c ∈ Z be square free. Let q ≡ 1 mod 8 be a prime not dividing c.
If cZ2 = X4 − qY 4 has a nontrivial solution with X, Y, Z ∈ Q, then c is a fourth
power modulo q.

Corollary 2. Let q ≡ 1 mod 8 be a prime such that 2 is not a fourth power mod-
ulo q. Then 2Z2 = X4 − qY 4 violates the Hasse principle.

Note that q = 17 is such a prime since 2 is not a biquadratic residue modulo 17.
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