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1. Introduction

Let k be a real quadratic number field. Golod and Shafarevic (cf. [7] and [15])
have shown that k has an infinite 2-class field tower if the 2-rank of Cl2(k) is
≥ 6. Martinet ([15]) and Schoof ([19]) have given examples of quadratic fields with
infinite 2-class field tower whose 2-class groups have smaller rank, but the following
problem remains unsolved:

Problem 1. Determine the smallest integer t such that the 2-class field tower of
every real quadratic number field whose class group has 2-rank ≥ t is infinite.

Since it is easy to give examples of fields with finite 2-class field tower and
rank Cl2(k) = 3, we conclude that 4 ≤ t ≤ 6.

The smallest known example of a real quadratic field with infinite 2-class field
tower is due to Martinet, who showed that Q(

√
3 · 5 · 13 · 29 · 61 ) has infinite 2-

class field tower. The Odlyzko bounds (under the assumption of the Generalized
Riemann Hypothesis) show that any real quadratic number field with infinite 2-
class field tower must have discriminant > 46356. This means that the following
problem could be solved by a finite amount of computation if we only knew how to
decide whether a given number field has finite or infinite 2-class field tower:

Problem 2. Determine the smallest discriminant d > 0 of a quadratic number
field such that Q(

√
d ) has infinite 2-class field tower.

In this paper we determine all real quadratic number fields with abelian 2-class
field towers, thus sorting out those fields which are “uninteresting” with regard
to Problem 2. The classification makes use of quite a few results in algebraic
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number theory, for example the class number formula for V4-extensions, results
on unramified 2-extensions of quadratic number fields, the behavior of units in
multiquadratic extensions, and Schur multipliers.

2. Notation and Preliminaries

Let k be an algebraic number field with ideal class group in the wide sense,
respectively narrow sense, denoted by Cl(k) and Cl+(k). We denote the 2-class
groups, i.e. the Sylow 2-subgroup of these groups, by Cl2(k) and Cl+2 (k). Let h(k)
and h2(k) denote the class number and 2-class number of k, respectively. Also let
Ek denote the unit group of Ok, the ring of integers of k. We denote by k(1) the
Hilbert 2-class field of k, i.e. the maximal abelian unramified (including all infinite
primes) extension K/k of degree a power of 2. Likewise, the second Hilbert 2-class
field of k, denoted k(2), is the field (k(1))(1).

If k is a real quadratic number field with discriminant d = disc k, the maximal
subfield kgen of k(1) which is abelian over Q is called the genus field of k. If the
discriminant d = d1 · · · dt is a product of prime discriminants dj , then we have
kgen = Q(

√
d1, · · · ,

√
dt) ∩ R.

We shall also need to consider the maximal abelian 2-extension of k which is
unramified at the finite primes. This field is called the extended Hilbert 2-class
field and is denoted by k+(1). Similar remarks apply to k+(2) and k+

gen. We then
have k+

gen = Q(
√

d1, · · · ,
√

dt).
We shall need a few results of Scholz, Rédei and Reichardt on the 2-class group of

real quadratic number fields; for proofs, we refer to [16], [17], and [18]. D4 denotes
the dihedral group of order 8. Moreover, (d/p) is the Kronecker symbol, which
is defined in the usual way to describe the decomposition of the prime p in the
quadratic field with discriminant d, and extended by multiplicativity to all integers
in the denominator using (d/ − 1) = 1. Also ( · / · )4 is the rational biquadratic
residue symbol, and (d/8)4 is defined to be +1 for discriminants d ≡ 1 mod 16 and
−1 for d ≡ 9 mod 16. A G-extension K/k is a normal extension with Galois group
G = Gal(K/k). The next two propositions provide criteria for the existence of
unramified G-extensions of quadratic number fields for the cyclic group C4 of order
4 and the quaternion group H8 of order 8:

Proposition 1. Let k be a quadratic number field with discriminant d. There
exists a C4-extension L/k which is unramified at all finite primes if and only if
there is a factorization d = d1d2 into two relatively prime discriminants such that
(d1/p2) = (d2/p1) = 1 for all primes pi | di. In this case, L is normal over Q with
Gal(L/Q) ' D4.

If d is a sum of two squares, then L is real if and only if

(1) (d1/d2)4 = (d2/d1)4.

Corollary 1. Let k be a real quadratic number field. If F 6= k is a real quadratic
extension of Q contained in kgen, and if Cl(F ) has a cyclic subgroup of order 4,
then k(2) 6= k(1).

Proof. Let F ⊆ kgen be a real quadratic number field such that Cl(F ) has a cyclic
subgroup of order 4. Then there exists an unramified cyclic quartic extension L/F ;
hence Gal(L/Q) ' D4 by Proposition 1. But then kL/k is an unramified extension
with Galois group isomorphic to D4 by the translation theorem of Galois theory.
Thus the corollary. �
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These results have a counterpart for unramified quaternion extensions of qua-
dratic number fields [14]:

Proposition 2. Let k be a quadratic number field with discriminant d. There
exists an H8-extension L/k which is unramified at all finite primes and normal
over Q if and only if there is a factorization d = d1d2d3 into three relatively prime
discriminants such that (d1d2/p3) = (d2d3/p1) = (d3d1/p2) = 1 for all primes
pi | di.

If d is a sum of two squares, then L is real if and only if(
d1d2

d3

)
4

(
d2d3

d1

)
4

(
d1d3

d2

)
4

=
(

d1

d2

)(
d2

d3

)(
d3

d1

)
.(2)

We also need the following proposition, which collects results about units (cf.
[1], [12]); the genus characters used below are defined as follows: let d = d1 · · · dt be
the factorization of d = disc k into prime discriminants, and let a > 0 be the norm
of a prime ideal. Then χi(a) = (di/a) if (di, a) = 1, and χi(a) = (d′i/a) otherwise,
where d′i = d/di; now extend χi multiplicatively to all ideal norms a.

Proposition 3. Let k = Q(
√

m ) be a real quadratic number field, and assume that
m is square-free. Suppose moreover that the fundamental unit ε of Ok has norm
+1. Then there exists a principal ideal a = (α) which is different from (1) and
(
√

m ) and which is the product of pairwise distinct ramified prime ideals.
Moreover, k(

√
ε ) = k(

√
δ ), where δ = δ(ε) = Nk/Qα. Finally, we have χi(δ) =

+1 for all genus characters χi in k.

Remark. If a is such an ideal, then so is 2(
√

m )a−1 or (
√

m )a−1 (depending on
whether d ≡ 4 mod 8 and 2 | Na or not). Similarly, there are two choices for δ,
corresponding to the square-free kernels of N(ε + 1) and N(ε− 1) (see [12]). Note,
however, that the extension k(

√
δ ) is well-defined; moreover, the image of δ in

Q×/Q× ∩ k×2 is uniquely determined.

Proof. Since Nε = +1, Hilbert’s theorem 90 shows that ε = α1−σ for some α ∈ Ok.
(Here σ is the nontrivial automorphism on k.) Then (α) is an ambiguous ideal,
and by making α primitive (i.e. by cancelling all rational integer factors) we may
assume that a = (α) is the product of pairwise different ramified prime ideals.
Moreover, we clearly have (α) 6= (1), (

√
m ).

Now from ε = α1−σ we get that εδ = α1−σα1+σ = α2 is a square in k, so
√

ε and√
δ generate the same quadratic extension. Next, since ε = (ε+1)1−σ, we can take

δ to be the square-free kernel of N(ε + 1). Finally, since α has positive norm, the
ideal (α) is principal in the strict sense, and in particular, it lies in the principal
genus. This implies our last claim (cf. [21]). �

Since our goal is to determine all real quadratic number fields with abelian 2-class
field tower, the following result will simplify our work considerably.

Proposition 4. Let k be a number field, and let r denote the p-rank of Ek/Ep
k . If

the p-class field tower of k is abelian, then rank Clp(k) ≤ 1+
√

1+8r
2 .

Proof. Assume that the p-class field tower terminates at K = k(1). Then by [8] the
Schur Multiplier of Gal(K/k), M(Gal(K/k)) ' Ek/NK/kEK . This implies that
M has p-rank at most r. On the other hand, the p-rank of M is just

(
s
2

)
, where s

denotes the p-rank of Clp(k) (This is a result of Schur (cf. [10], Corollary 2.2.12)).
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Now s(s− 1)/2 ≤ r ⇐⇒ (2s− 1)2 ≤ 1 + 8r, and taking the square root yields our
claim. �

This result is originally due to Bond (see [3], where a different proof is given).
In the special case of real quadratic fields and p = 2 it implies

Corollary 2. Suppose k is a real quadratic field such that k(1) = k(2). Then the
2-rank of Cl(k) is ≤ 2.

The following class number formula (see [12]) will be applied repeatedly in our
proof:

Proposition 5. Let K be a real bicyclic biquadratic extension of Q with qua-
dratic subfields k1, k2 and k3. Let EK , E1, E2, E3 denote their unit groups.
Then q(K) = (EK : E1E2E3) is an integer dividing 4, and we have h(K) =
1
4q(K)h(k1)h(k2)h(k3).

Our last ingredient is an elementary remark on central class fields:

Proposition 6. Let K/k be a finite p-extension of number fields. If h(K) is di-
visible by p, then Kcen 6= K. Here, Kcen denotes the maximal finite unramified
p-extension L/K such that L/k is normal and Gal(L/K) ⊆ Z(Gal(L/k)), the cen-
ter of Gal(L/k)).

Proof. This follows from the well-known fact ([13]) that finite p-groups have non-
trivial center; see [5], [6] or [20] for more on central class field extensions. �

3. The Classification

If k has trivial or cyclic 2-class group, then the 2-class field tower terminates
at k(1). Since the classification of these fields is well-known, we only consider the
remaining case where

Cl2(k) ' (2m, 2n)
for m,n positive integers. (Here (a1, · · · , at) means the direct product of cyclic
groups of orders a1, · · · , at.)

In light of Corollary 2 above, we consider real quadratic number fields k with
2-class group of type (2m, 2n) for m,n > 0. By genus theory we know that if
Cl2(k) is of this type, then the discriminant of k is a product of three positive
prime discriminants or a product of four prime discriminants, not all of which are
positive. We shall split the work into two cases according as the discriminant of
k is a sum of two squares or not. (Recall that the discriminant is a sum of two
squares if and only if it is a product of positive prime discriminants.) But before
we consider these cases, we state and prove the following general proposition.

Proposition 7. Let k be a number field with Cl2(k) ' (2m, 2n) and m,n > 0. If
there is an unramified quadratic extension of k with 2-class number 2m+n−1, then
all three unramified quadratic extensions of k have 2-class number 2m+n−1, and the
2-class field tower of k terminates at k(1). Conversely, if the 2-class field tower of k
terminates at k(1), then all three unramified quadratic extensions of k have 2-class
number 2m+n−1.

Proof. Suppose that K = k(1) has even class number. Then the central class field
Kcen of K/k is not trivial by Proposition 6. Let L ⊆ Kcen be a quadratic extension
of K. Now L/k is normal, so let Γ = Gal(L/k) denote its Galois group. Then Γ is
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a 2-group of order 2m+n+1 such that Γ′ ' Z/2Z and Γ/Γ′ ' (2m, 2n). This implies
that Γ is generated by two elements σ, τ such that Γ′ = 〈[σ, τ ]〉. Notice that Γ
contains three subgroups Γi of index 2. They are Γ1 = 〈σ2, τ, Γ′〉, Γ2 = 〈σ, τ2,Γ′〉,
and Γ3 = 〈σ2, στ, τ2,Γ′〉. Their commutator subgroups can easily be computed: it
turns out that Γ′i = 1 for i = 1, 2, 3 (observe, for example, that [σ, τ2] = [σ, τ ]2 = 1
since Γ′ is contained in the center of Γ): therefore Γ′i = 1, i.e. all subgroups of
index 2 are abelian.

But now each Γi fixes a quadratic extension Ki of k, and L/Ki is an unramified
abelian extension. This implies that the class numbers of the Ki are divisible by
2m+n, contradicting our assumptions.

Therefore k(1) has odd class number, and the ideal class groups of the Ki corre-
spond to the three subgroups of index 2 in (2m, 2n). Our claim follows.

The converse is almost trivial: if k(1) has odd class number, it is the Hilbert
2-class field of every intermediate field N/k of k(1)/k; class field theory then shows
that N has 2-class number (k(1) : N). Now apply this to the three quadratic
unramified extensions of k. �

Case 1: d is a Sum of Two Squares.

Proposition 8. Let d = dk = d1d2d3, where the dj are prime discriminants, be a
sum of two squares, and suppose that the fundamental unit ε of k has norm +1.
Then k(1) 6= k(2).

Proof. By Proposition 3, the fundamental unit ε becomes a square in one of the
extensions k(

√
di ) (without loss of generality since k(

√
di ) = k(

√
d/di )); call it M .

Then this shows that q(M) ≥ 2. Applying the class number formula (Proposition
5) to M/Q gives h2(M) = 1

4q(M)h2(k)h2(Q(
√

d/di )); since both q(M) and the
class number of Q(

√
d/di ) are even, we find that M has 2-class number divisible

by h2(k). Since M/k is an unramified quadratic extension with h2(k) dividing
h2(M), Proposition 7 (the converse direction) implies k(1) 6= k(2). �

We are now ready to state and prove our first theorem.

Theorem 1. Let k be a real quadratic number field with dk = d = d1d2d3, where dj

are prime discriminants divisible by the primes pj and such that dj > 0. Then the
2-class field tower terminates at k(1) if and only if the dj have one of the following
properties:

(1)
(

d1
d2

)
=

(
d2
d3

)
=

(
d3
d1

)
= −1,

(
d1d2
d3

)
4

(
d2d3
d1

)
4

(
d3d1
d2

)
4

= +1;
(2)

(
d1
d2

)
= +1,

(
d2
d3

)
=

(
d3
d1

)
= −1,

(
d1
d2

)
4

(
d2
d1

)
4

= −1;
(3)

(
d1
d2

)
=

(
d2
d3

)
= +1,

(
d3
d1

)
= −1,

(
d1
d2

)
4

(
d2
d1

)
4

=
(

d2
d3

)
4

(
d3
d2

)
4

= −1 and Nε =
−1;

(4)
(

d1
d2

)
=

(
d2
d3

)
=

(
d3
d1

)
= +1,

(
d1
d2

)
4

(
d2
d1

)
4

=
(

d2
d3

)
4

(
d3
d2

)
4

=
(

d1
d3

)
4

(
d3
d1

)
4

= −1,
and Nε = −1.

Proof. First assume that k(2) = k(1); Proposition 8 shows that k has a fundamental
unit ε with norm −1. Moreover, if (di/dj) = +1 for some i, j, then the quadratic
subfield kij = Q(

√
didj) of kgen must have class number ≡ 2 mod 4 (Corollary 1),

and we deduce from Proposition 1 that (di/dj)4(dj/di)4 = −1. This shows that
the conditions in parts 2. – 4. are necessary.

To prove their sufficiency, we apply the class number formula of Proposition 5
to K = Q(

√
d3,
√

d1d2). We find h2(K) = 1
4q(K)h2(k3)h2(k12)h2(k) = 1

2q(K)h2(k)
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where k3 = Q(
√

d3). Since ε3 (the fundamental unit of k3) and ε have norm −1,
the only unit which could possibly become a square in K is ε12 (because such units
must be totally positive); but by Proposition 3, δ(ε12) = p1 (the prime dividing d1;
in fact, (p1,

√
d1d2 ) and (p2,

√
d1d2 ) are the only primitive ramified ideals different

from (1) and (
√

p1
√

p2 )), i.e. k(
√

ε ) = k(
√

d1 ) 6= K. Therefore we have q(K) = 1,
which implies that h2(K) = 1

2h2(k); in particular, the class field tower terminates
at k(1) by Proposition 7. This establishes parts 2, 3, 4 of the theorem.

We now consider the case (d1/d2) = (d2/d3) = (d3/d1) = −1. Then Proposition
2 shows that k admits a quaternion extension L/k which is unramified outside ∞;
clearly k(2) = k(1) implies that L is not real. Let εij denote the fundamental unit of
Q(

√
didj ). Our assumptions imply that Nεij = −1. Since L is real if and only if

(2) is satisfied, the conditions given in part 1 are necessary. In order to prove that
they are sufficient, we first observe that Cl2(k) ' (2, 2). Therefore k(2) 6= k(1) would
imply the existence of an unramified normal extension L/k with Gal(L/k) ' D4

or Gal(L/k) ' H8 (cf. [11]). But by Propositions 1 and 2, such extensions do not
exist in this case. �

Case 2: d is not a Sum of Two Squares. Again we may assume that k is a real
quadratic number field such that Cl2(k) has rank 2, i.e. that d = disc k = d1d2d3d4

is the product of four prime discriminants, not all of them positive. Let pj be the
prime dividing dj , for j = 1, 2, 3, 4.

Theorem 2. Let k be a real quadratic number field whose discriminant d = d1d2d3d4

is the product of four prime discriminants, not all of which are positive. Let δ be
the square-free kernel of Nk/Q(ε+1) where ε is the fundamental unit of k. Then the
2-class field tower of k terminates at k(1) if and only if, after a suitable permutation
of the indices, the di have the following properties:

(1) all the di are negative; or
(2) d1, d2 > 0, and

(a) (d1/d2) = (d1/p3) = (d2/p4) = −1, (d1/p4) = +1; or
(b) d3d4 6≡ 4 mod 8, (d1/pi) = (d2/pj) = −1 (i = 2, 3, 4, j = 1, 3, 4), and

δ 6= p1p2; or
(c) d4 = −4, (d1/d2) = −1, d1 ≡ d2 ≡ 5 mod 8, (d1/d3) = (d2/d3) = +1,

and δ 6= p1p2.

The proof of this theorem will be carried out in a number of stages below. First of
all, suppose that all the di are negative; put K = k(

√
d1d2 ). We have to show that

h2(K) = 1
2h2(k). By the class number formula, we find h2(K) = 1

4q(K)h2(k), since
the subfields Q(

√
d1d2 ) and Q(

√
d3d4 ) have odd class number by genus theory.

Let εij denote the positive fundamental unit of Q(
√

didj ); if we had 4 | q(K),
then at least one of the units ε12, ε34 or ε12ε34 must become a square in K. But
since δ(ε12) = p1 and δ(ε34) = p3 or perhaps 2p3 (without loss of generality),
Proposition 3 shows that

√
ε12,

√
ε34 and

√
ε12ε34 are not in K. This shows that

q(K) | 2; since 1
2h2(k) | h2(K), the class number formula now shows that q(K) = 2

and h2(K) = 1
2h2(k) as claimed.

Now assume that exactly two of the di, say d3 and d4, are negative. We first
show
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Proposition 9. Let the assumptions of Theorem 2 be satisfied, and suppose in
addition that d1, d2 > 0 and d3, d4 < 0. Put F = Q(

√
d1d2 ) and K = kF . Then k

has abelian 2-class field tower if and only if (d1/d2) = −1 and q(K) = 1.

Proof. Assume first that (d1/d2) = −1 and q(K) = 1. The class number formula
for K shows that

(3) h2(K) =
1
4
q(K)h2(F )h2(k);

if (d1/d2) = −1 then h2(F ) = 2, and q(K) = 1 now gives h2(K) = 1
2h2(k). Thus

by Proposition 7 we conclude that k has abelian 2-class field tower in this case.
For the proof of the converse, assume that the 2-class field tower of k is abelian.

If we had (d1/d2) = +1, then F would possess a cyclic quartic extension L =
F (
√

d1,
√

α ) (for some α ∈ Q(
√

d1 )) which is unramified at the finite primes and
has dihedral Galois group over Q. In particular, L is either totally real or totally
complex. In the first case, k(

√
d3d4,

√
α )/k is a dihedral extension of k which is

unramified everywhere, in the second case k(
√

d3d4,
√

d3α )/k is such an extension.
Thus we must have (d1/d2) = −1 as claimed. Now q(K) = 1 follows from (3) and
the converse of Proposition 7. �

Let us continue with the proof of Theorem 2. We assume that k has abelian
2-class field tower. The preceding proposition shows that (d1/d2) = −1.

Lemma If (d1/p3) = (d1/p4) = +1, then k(1) 6= k(2).

This is easy to see: in this case, F = Q(
√

d1d3d4 ) has a cyclic quartic exten-
sion L = F (

√
d1,
√

α ) for some α ∈ Q(
√

d1 ) which is unramified outside ∞ and
normal over Q with Gal(L/Q) ' D4 (see [17]). But then either k(

√
d2,
√

α ) or
k(
√

d2,
√

d3α ) is a D4-extension of k which is unramified everywhere.
Thus we may assume that at least one of (d1/p3) or (d1/p4) is negative; exchang-

ing d3 and d4 if necessary we may assume that (d1/p3) = −1. Now we distinguish
two cases:
A) (d1/p4) = +1.
Suppose, first of all, that d 6≡ 4 mod 8. Then we claim that (d2/p4) = −1. For, if
(d2/p4) = +1, then either (d2/p3) = +1 (and the preceding Lemma with d1 replaced
by d2 shows that k has an unramified dihedral extension), or (d2/p3) = −1; in this
case, (d1d2/p3) = (d1d2/p4) = (d2d3d4/p1) = (d1d3d4/p2) = +1 by quadratic
reciprocity. But then (apply Proposition 2 to the factorization d1 · d2 · d3d4) there
exists a quaternion extension of k which is unramified outside∞ and normal over Q;
by twisting the extension with

√
d3 if necessary (that is, replacing k(

√
d1,
√

d2,
√

α )
by k(

√
d1,
√

d2,
√

d3α )) we can make it unramified everywhere: a contradiction.
This establishes 2.(a) of Theorem 2.

On the other hand, suppose d ≡ 4 mod 8. If d4 = −4, then the previous argument
again establishes 2.(a). Now suppose d3 = −4 and that (d2/p4) = +1. Then
δ 6= p1p2 (otherwise

√
ε ∈ K = k(

√
d1d2), which would imply that 2 | q(K),

contradicting the assumption that k(1) = k(2) by Proposition 9). This establishes
2.(c) of the theorem.
B) (d1/p4) = −1.
As in case A, (d2/p3) = −1 or (d2/p4) = −1. If (d2/p3)(d2/p4) = −1, then 2.(a)
of the theorem follows. So assume that (d2/p3) = (d2/p4) = −1. If d 6≡ 4 mod 8,
then δ 6= p1p2 by Proposition 3; this establishes 2.(b) in this case. If, on the other
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hand, d ≡ 4 mod 8, say d4 = −4, then d = d1 · d2 · d3d4 satisfies the conditions of
Proposition 2; thus there exists an unramified H8-extension (we may have to twist
it with

√
d3 in order to make it unramified at ∞), and we see that k(1) 6= k(2).

Hence this last assumption is vacuous.
All of this establishes that in 2. of Theorem 2, if k(1) = k(2), then one of the

statements (a), (b), or (c) holds.

Now we consider the converse to the previous statement. Let k satisfy the
assumptions of Theorem 2. We consider three cases.
(a) (d1/d2) = (d1/p3) = (d2/p4) = −1, (d1/p4) = +1:
Then Propositions 1 and 2 of [2] show that Cl2(k) ' (2, 2). But then k(1) = k(2),
by Theorem 2 of [2].
(b) d3d4 6≡ 4 mod 8, (d1/di) = (d2/dj) = −1 (i = 2, 3, 4, j = 1, 3, 4), and δ 6= p1p2:
By Proposition 9, we need to show that q(K) = 1. To this end, first notice that
q(K) = (EK : EkEk12Ek34) = (EK : 〈−1, ε, ε12, ε34〉). Since Nε12 = −1, the
only possible products of the fundamental units which could become squares in K
are ε, ε34, and εε34 (since these are – modulo squares – the only totally positive
units in K). We now show that none of these units is a square in K. Let δ34 =
δ(ε34). By Proposition 3, we have (because of our assumptions in this case) that
δ ∈ {p1p3, p1p4} and δ34 = p3. Notice then that δ, δ34, and δδ34 are not squares in
K. Hence Proposition 3 shows that

√
ε,
√

ε34,
√

εε34 are not in K. Thus q(K) = 1.
By Proposition 9, we conclude that k(1) = k(2).
(c) d4 = −4, (d1/d2) = −1, d1 ≡ d2 ≡ 5 mod 8, (d1/d3) = (d2/d3) = +1, and
δ 6= p1p2:
The proof is the same as the previous case except that δ = 2p1p3 and δ34 ∈ {2, 2p3},
which again implies that q(K) = 1. Thus k(1) = k(2).

Theorem 2 is now established.

4. Some Remarks on Units

The following byproducts of our proofs complement Dirichlet’s results [4] on the
norms of units in quadratic number fields:

Corollary 3. Let d1, d2, d3 be prime discriminants such that
(

d1
d2

)
=

(
d2
d3

)
= 1 and(

d3
d1

)
= −1, and let ε denote the fundamental unit of Q(

√
d1d2d3 ). Then

Nε = −1 =⇒
(d1

d2

)
4

(d2

d1

)
4

=
(d2

d3

)
4

(d3

d2

)
4
.

Proof. Suppose that Nε = −1 (note that this implies dj > 0) and
(

d1
d2

)
4

(
d2
d1

)
4

= −1.
In the proof of Theorem 1 we have shown that this implies that h2(K) = 1

2h2(k)
where K = Q(

√
d3,
√

d1d2).
Therefore, the 2-class field tower of k terminates at k(1), hence the subfield

L = Q(
√

d1,
√

d2d3 ) must also have 2-class number h2(L) = 1
2h2(k). This in turn

implies that
(

d2
d3

)
4

(
d3
d2

)
4

= −1.
Similarly,

(
d1
d2

)
4

(
d2
d1

)
4

= +1 implies that
(

d2
d3

)
4

(
d3
d2

)
4

= +1. �

Corollary 4. Let d1, d2, d3 be prime discriminants such that
(

d1
d2

)
=

(
d2
d3

)
=

(
d3
d1

)
=

+1, and let ε denote the fundamental unit of Q(
√

d1d2d3 ). Then

Nε = −1 =⇒
(d1

d2

)
4

(d2

d1

)
4

=
(d2

d3

)
4

(d3

d2

)
4

=
(d1

d3

)
4

(d3

d1

)
4
.
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Proof. This is proved similarly. �

We were not able to replace the conditions on δ in Theorem 2 by conditions on
power residue symbols. Observe, however, the following result:

Proposition 10. Assume the notation of Theorem 2.2.(b); then δ = p1p2 implies

(4)
(d3d4

d1

)
4

=
(d3d4

d2

)
4
.

Proof. We only treat the case d ≡ 1 mod 4, the other cases being similar. From
Proposition 3 we know that δ = p1p2 if and only if there is a principal ideal of
norm p1p2. This implies that ±4p1p2 = A2 − mB2 has solutions, where m is
squarefree such that k = Q(

√
m ). Raising this equation to the third power we

get ±(p1p2)3 = X2 −my2. Clearly X = p1p2x1; this gives ±1 = p1p2x
2 − p3p4y

2.
Reducing the equation modulo p3 and observing that (p1p2/p3) = +1 by assumption
we find that the plus sign must hold:

(5) p1p2x
2 − p3p4y

2 = 1.

Reducing this equation modulo p1 and p2, we get (−p3p4/p1)4(y/p1) = 1 and
(−p3p4/p2)4(y/p2) = 1, respectively. Write y = 2ju with u ≡ 1 mod 2; then
(p1p2/u) = +1, hence (y/p1p2) = (2/p1p2)j(p1p2/u). Now (2/p1p2)j = (2/p1p2)
gives

1 =
(−p3p4

p1p2

)( y

p1p2

)
=

(−p3p4

p1p2

)( 2
p1p2

)
.

But (−1/p1p2)4 = (2/p1p2), and our claim follows. �

The very same result holds in case 2.2.(c); but here things simplify, because
d1 ≡ d2 ≡ 5 mod 8 implies that (−4/dj) = (−1/dj)4(2/dj) = +1 for j = 1, 2. The
proof of the following proposition is left to the reader:

Proposition 11. Assume the notation of Theorem 2.2.(c); then δ = p1p2 implies(d3

d1

)
4

=
(d3

d2

)
4
.
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