GAUSS BOUNDS OF QUADRATIC EXTENSIONS

FRANZ LEMMERMEYER

ABSTRACT. We give a simple proof of results of Lubelski and Lakein on Gauss bounds for quadratic extensions of imaginary quadratic Euclidean number fields.

1. Preliminaries

Let k be a number field with class number 1; in the following, N will denote the absolute value of the norm, i.e. $N\alpha = |N_{k/\mathbb{Q}}\alpha|$. We define the Euclidean minimum M(k) by $M(k) = \inf \{\delta > 0 : \forall \xi \in k \exists \eta \in \mathbb{Z}_k \text{ such that } N(\xi - \eta) < 1.\}$ An ideal I in the maximal order \mathbb{Z}_K of a quadratic extension K/k is called primitive if it is not divisible by any non-unit $a \in \mathbb{Z}_k$. Since h(k) = 1, there exists a relative integral basis $\{1, \omega\}$ of \mathbb{Z}_K .

The following lemma and its proof are well known for $k = \mathbb{Q}$ ([2], 14.12):

Lemma 1. Let k be a number field with class number 1, and suppose that K/k is a quadratic extension. Then every primitive ideal I has the form $I = (a + \omega)\mathbb{Z}_k + c\mathbb{Z}_k$ for algebraic integers $a, c \in \mathbb{Z}_k$, where c is a generator of the ideal $c\mathbb{Z}_k = N_{K/k}I$.

Proof. Choose $\alpha = a + b\omega$ such that $I = (\alpha, c)$ (cf. [2], 6.19). Writing $c\omega \in I$ as a linear combination of $a + b\omega$ and c shows easily that $b \mid a$ and $b \mid c$. Since I is primitive, b must be a unit, and we may assume without loss of generality that b = 1.

2. Quadratic Number Fields

The following theorem is well known (see e.g. Holzer [3]); we will give a very simple proof which we will generalize in the next section.

Theorem 2. Let $K = \mathbb{Q}(\sqrt{m})$ be a quadratic number field with ring of integers $\mathbb{Z}_K = \mathbb{Z}[\omega]$ and discriminant Δ , where

 $\omega = \begin{cases} \sqrt{m}, & \text{if } m \equiv 2,3 \mod 4, \\ \frac{1+\sqrt{m}}{2}, & \text{if } m \equiv 1 \mod 4. \end{cases} \quad and \ \Delta = \begin{cases} 4m, & \text{if } m \equiv 2,3 \mod 4, \\ m, & \text{if } m \equiv 1 \mod 4. \end{cases}$ Let μ_K be defined by $\mu_K = \begin{cases} 1, & \text{if } \Delta = 5 \\ \sqrt{\Delta/8}, & \text{if } \Delta \geq 8 \\ \sqrt{-\Delta/3}, & \text{if } \Delta < 0. \end{cases}$

Then each ideal class of K contains an integral ideal of norm $\leq \mu_K$.

¹⁹⁹¹ Mathematics Subject Classification. 11 R 11, 11 R 16, 11 R 29.

Key words and phrases. Quadratic Fields, Ideal Classes, Discriminants.

Proof. Let [I] be an ideal class generated by an integral ideal I which we may assume to be primitive. Then $I = (\gamma, c)$ with $(c) = N_{K/\mathbb{Q}}I$ and $\gamma = a + \omega = s + \frac{1}{2}\sqrt{\Delta}$, where $2s \in \mathbb{Z}$. Applying the Euclidean algorithm to the pair (s, c) we see that there exists a $\gamma = r + \frac{1}{2}\sqrt{\Delta} \in I$ such that

We claim that $|N\gamma| \leq \frac{1}{4}(c^2 - \Delta) < c^2$ provided that $c^2 > \mu_K$; this shows that $I_1 = \gamma' c^{-1}I \sim I$ (where γ' denotes the algebraic conjugate of γ) is an integral ideal such that $[I_1] = [I]$ and $NI_1 < NI$. Repeating this procedure if necessary we eventually arrive at an integral ideal $I_n \sim I$ with norm $\leq \mu_K$.

The claimed inequality is proved by going through all the cases:

(1)
$$\Delta < 0$$
: here $|N\gamma| = \left|r^2 - \frac{\Delta}{4}\right| \le \frac{c^2 + |\Delta|}{4} < 1$ since $c^2 > \mu_K = \frac{|\Delta|}{3}$.
(2) $c^2 > \frac{\Delta}{5}$: here $-c^2 = \frac{c^2 - 5c^2}{4} < r^2 - \frac{\Delta}{4} < c^2$.
(3) $\frac{\Delta}{8} < c^2 < \frac{\Delta}{5}$: then $-c^2 = c^2 - \frac{8c^2}{4} < r^2 - \frac{\Delta}{4} < \frac{9c^2 - 5c^2}{4} = c^2$.

The only possibility not covered by the proof is $c^2 = \Delta/5$; since the odd part of Δ is squarefree, this will happen if and only if $\Delta = 5$ and $c = \pm 1$. This completes the proof of the theorem.

3. 2. QUADRATIC EXTENSIONS OF IMAGINARY QUADRATIC FIELDS

Let $k = \mathbb{Q}(\sqrt{-n})$, where $n \in \{-1, -2, -3, -7, -11\}$. These are the Euclidean among the imaginary quadratic fields, and it is known (cf. [5]) that for all $\xi \in k$ there exist integers $\eta \in \mathbb{Z}_k$ such that $N(\xi - \eta) \leq M$, where the Euclidean minimum M = M(k) is given by

$$M = \begin{cases} \frac{|n|+1}{4}, & \text{if } \Delta \equiv 0 \mod 4, \\ \frac{(|n|+1)^2}{16|n|}, & \text{if } \Delta \equiv 1 \mod 4. \end{cases}$$

Fix an embedding of k into \mathbb{C} ; then $N\xi = |\xi|^2$ for all $\xi \in k$, and the above result translates into

Lemma 3. Let $k = \mathbb{Q}(\sqrt{-n})$ be Euclidean; then for all $\xi \in k$ there exist $\eta \in \mathbb{Z}_k$ such that $|\xi - \eta|^2 \leq M$.

Now we redo our computations in the proof of Theorem 1, assuming a, c, m, etc. to be integers (resp. half-integers) in k; the discriminant Δ is now replaced by the relative discriminant $d = \operatorname{disc}_{K/k}(1, \omega)$, and we have $\Delta = \operatorname{disc}(K/\mathbb{Q}) = d_0^2 N d$, where $d_0 = \operatorname{disc}(k/\mathbb{Q})$. Now

$$\frac{|r^2 - d/4|}{|c|^2} \le \frac{4|r^2| + |d|}{4|c|^2} \le \frac{4M|c|^2 + |d|}{4|c|^2},$$

and this expression is < 1 if and only if

(1)
$$|c|^2 > \frac{|d|}{4(1-M)} = \frac{\sqrt{\Delta}}{4|d_0|(1-M)}$$

For $k = \mathbb{Q}(\sqrt{-1})$ we have $M(k) = \frac{1}{2}$ and $d_0 = -4$, hence $\mu_K = \sqrt{\Delta}/8$. Evaluating (1) for the other fields gives

Theorem 4. Let $k = \mathbb{Q}(\sqrt{-n})$ be Euclidean, and let K/k be a quadratic extension with absolute discriminant Δ . Then every ideal class of K contains an integral ideal of norm $\leq \mu_K$, where

$$\mu_K = \frac{\sqrt{\Delta}}{4|d_0|(1-M)} = \begin{cases} \sqrt{\Delta}/8, & \text{if } n \in \{-1, -2, -3, -11\};\\ \sqrt{\Delta}/12, & \text{if } n = -7. \end{cases}$$

These are exactly the bounds given by Lakein [4]; another proof is due to Mordell [7]. The result in the special case $k = \mathbb{Q}(\sqrt{-1})$ was already known to S. Kuroda and J. A. Nyman (cf. [4]). After the completion of this article I discovered that S. Lubelsky (in his posthumously published paper [6]) had already found the formula connecting the bounds given in Theorem 2 with the Euclidean minima of imaginary quadratic number fields; his results remained unnoticed, probably because he used the language of quadratic forms.

In [1], Robin Chapman has generalized Theorem 2 to quadratic extensions of imaginary quadratic fields with class number 1.

Acknowledgement

I would like to thank Sachar Paulus, Felicity George, and Chris Smyth for some helpful discussions on Euclidean-like algorithms in quadratic number fields from which this note originated, and Robin Chapman for considerably simplifying the proofs. I also thank the referee for his careful reading of the manuscript.

References

- R. J. Chapman, Ideals in Quadratic Extensions of Imaginary Quadratic Fields of Class Number 1, to appear 3
- [2] H. Cohn, A Classical Introduction to Algebraic Numbers and Class Fields, Springer Verlag 1978, 2nd printing 1988 1
- [3] L. Holzer, Zahlentheorie II, Teubner Verlag, Leipzig 1959 1
- [4] R. Lakein, A Gauss bound for a class of biquadratic number fields J. Number Theory 1 (1969), 108-112
- [5] F. Lemmermeyer, The Euclidean algorithm in algebraic number fields, Expo. Math. 13 (1995), 385-416
- [6] S. Lubelsky, Unpublished Results on Number Theory I, Quadratic forms in a Euclidean ring, Acta Arith. 6 (1961), 217–224
- [7] L. J. Mordell, A norm ideal bound for a class of biquadratic number fields, Norske Vid. Selsk. Forh. (Trondheim) 42 (1969), 53–55 3

BILKENT UNIVERSITY, DEPARTMENT OF MATHEMATICS, 06800 BILKENT, ANKARA, TURKEY *E-mail address*: franz@fen.bilkent.edu.tr