GAUSS BOUNDS OF QUADRATIC EXTENSIONS

FRANZ LEMMERMEYER

Abstract

We give a simple proof of results of Lubelski and Lakein on Gauss bounds for quadratic extensions of imaginary quadratic Euclidean number fields.

1. Preliminaries

Let k be a number field with class number 1 ; in the following, N will denote the absolute value of the norm, i.e. $N \alpha=\left|N_{k / \mathbb{Q}} \alpha\right|$. We define the Euclidean minimum $M(k)$ by $M(k)=\inf \left\{\delta>0: \forall \xi \in k \exists \eta \in \mathbb{Z}_{k}\right.$ such that $\left.N(\xi-\eta)<1.\right\}$ An ideal I in the maximal order \mathbb{Z}_{K} of a quadratic extension K / k is called primitive if it is not divisible by any non-unit $a \in \mathbb{Z}_{k}$. Since $h(k)=1$, there exists a relative integral basis $\{1, \omega\}$ of \mathbb{Z}_{K}.

The following lemma and its proof are well known for $k=\mathbb{Q}([2], 14.12)$:
Lemma 1. Let k be a number field with class number 1, and suppose that K / k is a quadratic extension. Then every primitive ideal I has the form $I=(a+\omega) \mathbb{Z}_{k}+c \mathbb{Z}_{k}$ for algebraic integers $a, c \in \mathbb{Z}_{k}$, where c is a generator of the ideal $c \mathbb{Z}_{k}=N_{K / k} I$.

Proof. Choose $\alpha=a+b \omega$ such that $I=(\alpha, c)$ (cf. [2], 6.19). Writing $c \omega \in I$ as a linear combination of $a+b \omega$ and c shows easily that $b \mid a$ and $b \mid c$. Since I is primitive, b must be a unit, and we may assume without loss of generality that $b=1$.

2. Quadratic Number Fields

The following theorem is well known (see e.g. Holzer [3); we will give a very simple proof which we will generalize in the next section.

Theorem 2. Let $K=\mathbb{Q}(\sqrt{m})$ be a quadratic number field with ring of integers $\mathbb{Z}_{K}=\mathbb{Z}[\omega]$ and discriminant Δ, where

$$
\omega=\left\{\begin{array}{cl}
\sqrt{m}, & \text { if } m \equiv 2,3 \bmod 4, \\
\frac{1+\sqrt{m}}{2}, & \text { if } m \equiv 1 \bmod 4 .
\end{array} \quad \text { and } \Delta=\left\{\begin{array}{cl}
4 m, & \text { if } m \equiv 2,3 \bmod 4, \\
m, & \text { if } m \equiv 1 \bmod 4 .
\end{array}\right.\right.
$$

Let μ_{K} be defined by $\mu_{K}=\left\{\begin{array}{cl}1, & \text { if } \Delta=5 \\ \sqrt{\Delta / 8}, & \text { if } \Delta \geq 8 \\ \sqrt{-\Delta / 3}, & \text { if } \Delta<0 .\end{array}\right.$
Then each ideal class of K contains an integral ideal of norm $\leq \mu_{K}$.

1991 Mathematics Subject Classification. 11 R 11, 11 R 16, 11 R 29.
Key words and phrases. Quadratic Fields, Ideal Classes, Discriminants.

Proof. Let $[I]$ be an ideal class generated by an integral ideal I which we may assume to be primitive. Then $I=(\gamma, c)$ with $(c)=N_{K / \mathbb{Q}} I$ and $\gamma=a+\omega=s+\frac{1}{2} \sqrt{\Delta}$, where $2 s \in \mathbb{Z}$. Applying the Euclidean algorithm to the pair (s, c) we see that there exists a $\gamma=r+\frac{1}{2} \sqrt{\Delta} \in I$ such that

$$
\begin{array}{lll}
& |r| \leq \frac{c}{2} & \text { if } \Delta<0 \\
\frac{c}{2} \leq|r| \leq c & \text { if } c^{2}>\frac{\Delta}{5} \\
c \leq \frac{3}{2} c & \text { if } \frac{\Delta}{8}<c^{2}<\frac{\Delta}{5}
\end{array}
$$

We claim that $|N \gamma| \leq \frac{1}{4}\left(c^{2}-\Delta\right)<c^{2}$ provided that $c^{2}>\mu_{K}$; this shows that $I_{1}=\gamma^{\prime} c^{-1} I \sim I$ (where γ^{\prime} denotes the algebraic conjugate of γ) is an integral ideal such that $\left[I_{1}\right]=[I]$ and $N I_{1}<N I$. Repeating this procedure if necessary we eventually arrive at an integral ideal $I_{n} \sim I$ with norm $\leq \mu_{K}$.

The claimed inequality is proved by going through all the cases:
(1) $\Delta<0$: here $|N \gamma|=\left|r^{2}-\frac{\Delta}{4}\right| \leq \frac{c^{2}+|\Delta|}{4}<1$ since $c^{2}>\mu_{K}=\frac{|\Delta|}{3}$.
(2) $c^{2}>\frac{\Delta}{5}$: here $-c^{2}=\frac{c^{2}-5 c^{2}}{4}<r^{2}-\frac{\Delta}{4}<c^{2}$.
(3) $\frac{\Delta}{8}<c^{2}<\frac{\Delta}{5}$: then $-c^{2}=c^{2}-\frac{8 c^{2}}{4}<r^{2}-\frac{\Delta}{4}<\frac{9 c^{2}-5 c^{2}}{4}=c^{2}$.

The only possibility not covered by the proof is $c^{2}=\Delta / 5$; since the odd part of Δ is squarefree, this will happen if and only if $\Delta=5$ and $c= \pm 1$. This completes the proof of the theorem.

3. 2. Quadratic Extensions of imaginary Quadratic Fields

Let $k=\mathbb{Q}(\sqrt{-n})$, where $n \in\{-1,-2,-3,-7,-11\}$. These are the Euclidean among the imaginary quadratic fields, and it is known (cf. [5]) that for all $\xi \in k$ there exist integers $\eta \in \mathbb{Z}_{k}$ such that $N(\xi-\eta) \leq M$, where the Euclidean minimum $M=M(k)$ is given by

$$
M=\left\{\begin{array}{cl}
\frac{|n|+1}{4}, & \text { if } \Delta \equiv 0 \bmod 4 \\
\frac{(|n|+1)^{2}}{16|n|}, & \text { if } \Delta \equiv 1 \bmod 4
\end{array}\right.
$$

Fix an embedding of k into \mathbb{C}; then $N \xi=|\xi|^{2}$ for all $\xi \in k$, and the above result translates into

Lemma 3. Let $k=\mathbb{Q}(\sqrt{-n})$ be Euclidean; then for all $\xi \in k$ there exist $\eta \in \mathbb{Z}_{k}$ such that $|\xi-\eta|^{2} \leq M$.

Now we redo our computations in the proof of Theorem 1, assuming a, c, m, etc. to be integers (resp. half-integers) in k; the discriminant Δ is now replaced by the relative discriminant $d=\operatorname{disc}_{K / k}(1, \omega)$, and we have $\Delta=\operatorname{disc}(K / \mathbb{Q})=d_{0}^{2} N d$, where $d_{0}=\operatorname{disc}(k / \mathbb{Q})$. Now

$$
\frac{\left|r^{2}-d / 4\right|}{|c|^{2}} \leq \frac{4\left|r^{2}\right|+|d|}{4|c|^{2}} \leq \frac{4 M|c|^{2}+|d|}{4|c|^{2}}
$$

and this expression is <1 if and only if

$$
\begin{equation*}
|c|^{2}>\frac{|d|}{4(1-M)}=\frac{\sqrt{\Delta}}{4\left|d_{0}\right|(1-M)} \tag{1}
\end{equation*}
$$

For $k=\mathbb{Q}(\sqrt{-1})$ we have $M(k)=\frac{1}{2}$ and $d_{0}=-4$, hence $\mu_{K}=\sqrt{\Delta} / 8$. Evaluating (1) for the other fields gives

Theorem 4. Let $k=\mathbb{Q}(\sqrt{-n})$ be Euclidean, and let K / k be a quadratic extension with absolute discriminant Δ. Then every ideal class of K contains an integral ideal of norm $\leq \mu_{K}$, where

$$
\mu_{K}=\frac{\sqrt{\Delta}}{4\left|d_{0}\right|(1-M)}=\left\{\begin{aligned}
\sqrt{\Delta} / 8, & \text { if } n \in\{-1,-2,-3,-11\} \\
\sqrt{\Delta} / 12, & \text { if } n=-7 .
\end{aligned}\right.
$$

These are exactly the bounds given by Lakein 4]; another proof is due to Mordell [7]. The result in the special case $k=\mathbb{Q}(\sqrt{-1})$ was already known to S. Kuroda and J. A. Nyman (cf. [4]). After the completion of this article I discovered that S. Lubelsky (in his posthumously published paper [6]) had already found the formula connecting the bounds given in Theorem 2 with the Euclidean minima of imaginary quadratic number fields; his results remained unnoticed, probably because he used the language of quadratic forms.

In 1], Robin Chapman has generalized Theorem 2 to quadratic extensions of imaginary quadratic fields with class number 1.

Acknowledgement

I would like to thank Sachar Paulus, Felicity George, and Chris Smyth for some helpful discussions on Euclidean-like algorithms in quadratic number fields from which this note originated, and Robin Chapman for considerably simplifying the proofs. I also thank the referee for his careful reading of the manuscript.

References

[1] R. J. Chapman, Ideals in Quadratic Extensions of Imaginary Quadratic Fields of Class Number 1, to appear 3
[2] H. Cohn, A Classical Introduction to Algebraic Numbers and Class Fields, Springer Verlag 1978, 2nd printing 1988
[3] L. Holzer, Zahlentheorie II, Teubner Verlag, Leipzig 195911
[4] R. Lakein, A Gauss bound for a class of biquadratic number fields J. Number Theory 1 (1969), 108-112 3
[5] F. Lemmermeyer, The Euclidean algorithm in algebraic number fields, Expo. Math. 13 (1995), 385-416 2
[6] S. Lubelsky, Unpublished Results on Number Theory I, Quadratic forms in a Euclidean ring, Acta Arith. 6 (1961), 217-224 3
[7] L. J. Mordell, A norm ideal bound for a class of biquadratic number fields, Norske Vid. Selsk. Forh. (Trondheim) 42 (1969), 53-55 3

Bilkent University, Department of Mathematics, 06800 Bilkent, Ankara, Turkey
E-mail address: franz@fen.bilkent.edu.tr

