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Abstract. We give a simple proof of results of Lubelski and Lakein on Gauss

bounds for quadratic extensions of imaginary quadratic Euclidean number

fields.

1. Preliminaries

Let k be a number field with class number 1; in the following, N will denote the
absolute value of the norm, i.e. Nα = |Nk/Qα|. We define the Euclidean minimum
M(k) by M(k) = inf {δ > 0 : ∀ ξ ∈ k ∃ η ∈ Zk such that N(ξ − η) < 1.} An ideal
I in the maximal order ZK of a quadratic extension K/k is called primitive if it is
not divisible by any non-unit a ∈ Zk. Since h(k) = 1, there exists a relative integral
basis {1, ω} of ZK .

The following lemma and its proof are well known for k = Q ([2], 14.12):

Lemma 1. Let k be a number field with class number 1, and suppose that K/k is a
quadratic extension. Then every primitive ideal I has the form I = (a+ω)Zk +cZk

for algebraic integers a, c ∈ Zk, where c is a generator of the ideal cZk = NK/kI.

Proof. Choose α = a + bω such that I = (α, c) (cf. [2], 6.19). Writing cω ∈ I as
a linear combination of a + bω and c shows easily that b | a and b | c. Since I
is primitive, b must be a unit, and we may assume without loss of generality that
b = 1. �

2. Quadratic Number Fields

The following theorem is well known (see e.g. Holzer [3]); we will give a very
simple proof which we will generalize in the next section.

Theorem 2. Let K = Q(
√

m ) be a quadratic number field with ring of integers
ZK = Z[ω] and discriminant ∆, where

ω =
{ √

m, if m ≡ 2, 3 mod 4,
1+

√
m

2 , if m ≡ 1 mod 4.
and ∆ =

{
4m, if m ≡ 2, 3 mod 4,
m, if m ≡ 1 mod 4.

Let µK be defined by µK =


1, if ∆ = 5√
∆/8, if ∆ ≥ 8√
−∆/3, if ∆ < 0.

Then each ideal class of K contains an integral ideal of norm ≤ µK .
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Proof. Let [I] be an ideal class generated by an integral ideal I which we may assume
to be primitive. Then I = (γ, c) with (c) = NK/QI and γ = a + ω = s + 1

2

√
∆,

where 2s ∈ Z. Applying the Euclidean algorithm to the pair (s, c) we see that there
exists a γ = r + 1

2

√
∆ ∈ I such that

|r| ≤ c
2 if ∆ < 0,

c
2 ≤ |r| ≤ c if c2 > ∆

5 ,
c ≤ |r| ≤ 3

2c if ∆
8 < c2 < ∆

5

We claim that |Nγ| ≤ 1
4 (c2 − ∆) < c2 provided that c2 > µK ; this shows that

I1 = γ′c−1I ∼ I (where γ′ denotes the algebraic conjugate of γ) is an integral
ideal such that [I1] = [I] and NI1 < NI. Repeating this procedure if necessary we
eventually arrive at an integral ideal In ∼ I with norm ≤ µK .

The claimed inequality is proved by going through all the cases:

(1) ∆ < 0: here |Nγ| =
∣∣∣r2 − ∆

4

∣∣∣ ≤ c2 + |∆|
4

< 1 since c2 > µK = |∆|
3 .

(2) c2 > ∆
5 : here −c2 =

c2 − 5c2

4
< r2 − ∆

4
< c2.

(3) ∆
8 < c2 < ∆

5 : then −c2 = c2 − 8c2

4
< r2 − ∆

4
<

9c2 − 5c2

4
= c2.

The only possibility not covered by the proof is c2 = ∆/5; since the odd part of ∆
is squarefree, this will happen if and only if ∆ = 5 and c = ±1. This completes the
proof of the theorem. �

3. 2. Quadratic Extensions of imaginary Quadratic Fields

Let k = Q(
√
−n), where n ∈ {−1,−2,−3,−7,−11}. These are the Euclidean

among the imaginary quadratic fields, and it is known (cf. [5]) that for all ξ ∈ k
there exist integers η ∈ Zk such that N(ξ−η) ≤ M , where the Euclidean minimum
M = M(k) is given by

M =

{
|n|+1

4 , if ∆ ≡ 0 mod 4,
(|n|+1)2

16|n| , if ∆ ≡ 1 mod 4.

Fix an embedding of k into C; then Nξ = |ξ|2 for all ξ ∈ k, and the above result
translates into

Lemma 3. Let k = Q(
√
−n) be Euclidean; then for all ξ ∈ k there exist η ∈ Zk

such that |ξ − η|2 ≤ M .

Now we redo our computations in the proof of Theorem 1, assuming a, c,m, etc.
to be integers (resp. half-integers) in k; the discriminant ∆ is now replaced by
the relative discriminant d = discK/k(1, ω), and we have ∆ = disc(K/Q) = d2

0Nd,
where d0 = disc(k/Q). Now

|r2 − d/4|
|c|2

≤ 4|r2|+ |d|
4|c|2

≤ 4M |c|2 + |d|
4|c|2

,

and this expression is < 1 if and only if

(1) |c|2 >
|d|

4(1−M)
=

√
∆

4|d0|(1−M)
.
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For k = Q(
√
−1) we have M(k) = 1

2 and d0 = −4, hence µK =
√

∆/8. Evaluating
(1) for the other fields gives

Theorem 4. Let k = Q(
√
−n) be Euclidean, and let K/k be a quadratic extension

with absolute discriminant ∆. Then every ideal class of K contains an integral
ideal of norm ≤ µK , where

µK =
√

∆
4|d0|(1−M)

=
{ √

∆/8, if n ∈ {−1,−2,−3,−11};√
∆/12, if n = −7.

These are exactly the bounds given by Lakein [4]; another proof is due to Mordell
[7]. The result in the special case k = Q(

√
−1) was already known to S. Kuroda

and J. A. Nyman (cf. [4]). After the completion of this article I discovered that
S. Lubelsky (in his posthumously published paper [6]) had already found the for-
mula connecting the bounds given in Theorem 2 with the Euclidean minima of
imaginary quadratic number fields; his results remained unnoticed, probably be-
cause he used the language of quadratic forms.

In [1], Robin Chapman has generalized Theorem 2 to quadratic extensions of
imaginary quadratic fields with class number 1.
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