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1. Introduction

Let m = p1 · · · pr be a product of primes pi ≡ 1 mod 4 and assume that there are
integers A,B,C ∈ Z such that A2 = m(B2 + C2) and A − 1 ≡ B ≡ 0 mod 2, A + B ≡
1 mod 4. Then

(1)
(A + B

√
m

p

)
=

( p

m

)
4

for every prime p ≡ 1 mod 4 such that (p/pj) = +1 for all 1 ≤ j ≤ r. This is ’the
extension to composite values of m’ that was referred to in [3], to which this paper is an
addition. Here I will fill in the details of a proof, on the one hand because I was requested
to do so, and on the other hand because this general law can be used to derive general
versions of Burde’s and Scholz’s reciprocity laws.

Below I will sketch an elementary proof of (1) using induction built on the results of
[3], and then use the description of abelian fields by characters to give a direct proof.

2. Proof by Induction

Using induction over the number of prime factors of m we may assume that (1) is true
if m has r different prime factors.

Now assume that m = p1 ·m′; we choose integers A,B,A1, B1 such that B and B1 are
even and A + B ≡ A1 + B1 ≡ 1 mod 4, satisfying

A2 = m(B2 + C2), A2
1 = p1(B2

1 + C2
1 ), and put

α = A + B
√

m, α1 = A1 + B1
√

p1.

Then K = Q(
√

α ) and K1 = Q(
√

α1 ) are cyclic quartic extensions of conductors m and
p1, respectively.

Consider the compositum K1K; it is an abelian extension of type (4, 4) over Q, and
it clearly contains F = Q(

√
m′,

√
p1 ). Moreover, F has three quadratic extensions in

K1K, namely F (
√

α ), F (
√

α1 ), and L = F (
√

αα1 ). It is not hard to see that L is the
compositum of a cyclic quartic extension Q(

√
α′ ) of conductor m′ and Q(

√
p1 ). Since

αα1 and α′ differ at most by a square in F , we find(α′

p

)
=

(α

p

)(α1

p

)
.

On the other hand, by the induction hypothesis we have (α′/p) = (p/m′)4, hence we find(α

p

)
=

(α′

p

)(α1

p

)
=

( p

m′

)
4

( p

p1

)
4

=
( p

m

)
4
.

This is what we wanted to prove.
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3. Proof via Characters

Let K be a cyclotomic field with conductor f . Then it is well known (see [6] for the
necessary background) that the subfields of Q(ζf ) correspond biuniquely to a subgroup
of the character group of (Z/fZ)×.

Let m = p1 . . . pr be a product of primes p ≡ 1 mod 4, and let φj denote the quadratic
character modulo pj . There exist two quartic characters modulo pj , namely ωj (say) and
ω−1

j = φjωj ; for primes p such that χj(p) = (p/pj) = +1 we have ωj(p) = (p/pj)4.
The quadratic subfield Q(

√
m ) of L = Q(ζm) corresponds to the subgroup 〈φ〉, where

φ = φ1 · · ·φr; similarly, there is a cyclic quartic extension K contained in L which
corresponds to 〈ω〉, where ω is a character of order 4 and conductor m. Moreover, K
contains Q(

√
m ), hence we must have ω2 = φ. This implies at once that ω = ω1 · · ·ωr ·φ′,

where φ′ is a suitably chosen quadratic character. By the decomposition law in abelian
extensions a prime p splitting in Q(

√
m ) will split completely in K if and only if ω(p) =

+1, i.e. if and only if (p/m)4 = +1 (the quadratic character φ′ does not influence the
splitting of p since φ′(p) = 1).

By comparing this with the decomposition law in Kummer extensions we see immedi-
ately that Eq. (1) holds.
Remark. If we define (p/2)4 = (−1)(p−1)/8 for all primes p ≡ 1 mod 8, then the above
proofs show that (1) is also valid for even m; one simply has to replace the cyclic quartic
extension of conductor p by the totally real cyclic quartic extension of conductor 8, i.e.
the real quartic subfield of Q(ζ16).

4. Some Rational Quartic Reciprocity Laws

Burde’s Reciprocity Law. Let m and n be coprime integers, and assume that m =∏
pi and n =

∏
qj are products of primes ≡ 1 mod 4. Assume moreover that (m/qj) =

(n/pi) = +1 for all pi and qj . Write m = a2 + b2, n = c2 + d2 with ac odd; then we can
prove as in [3] that (m

n

)
4

( n

m

)
4

=
(ac− bd

m

)
=

(ac− bd

n

)
.

Remark. It is easy to deduce Gauss’ criterion for the biquadratic character of 2 from
Burde’s law. In fact, assume that p = a2 + 16b2 ≡ 1 mod 8 is prime, and choose the sign
of a in such a way that a ≡ 1 mod 4; then(2

p

)
4

(p

2

)
4

=
(a− 4b

2

)
=

( 2
a− 4b

)
.

Since (p/2) = (−1)(p−1)/8 and p − 1 = a2 − 1 + 16b2 ≡ (a − 1)(a + 1) mod 16 we
find p−1

8 = a−1
4

a+1
2 ≡ a−1

4 mod 2, and this gives (−1)(p−1)/8 = (2/a). Thus (2/p)4 =
(2/a)(2/a + 4b) = (2/a2 + 4b) = (2/1 + 4b) = (−1)b.

Scholz’s Reciprocity Law. Let εm = t + u
√

m be a unit in Q(
√

m ) with norm −1.
Putting εm

√
m = A + B

√
m we find immediately

(2)
(εm

p

)
=

(m

p

)
4

( p

m

)
4

for all primes p ≡ 1 mod 4 such that (pj/p) = 1 for all pj | m. If n is a product of such
primes p, this implies (εm

n

)
=

(m

n

)
4

( n

m

)
4
.
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Moreover, if the fundamental unit of Q(
√

n ) has negative norm, we conclude that(εm

n

)
=

(m

n

)
4

( n

m

)
4

=
(εn

m

)
.

The general version of Scholz’s reciprocity law has a few nice corollaries:

Corollary 1. Let m and n satisfy the conditions above, and suppose that m = rs; assume
moreover that the fundamental units εr and εs of Q(

√
r ) and Q(

√
s ) have negative norm.

Then (εm

n

)
=

(εr

n

)(εs

n

)
.

Proof. This is a simple computation:(εm

n

)
=

(m

n

)
4

( n

m

)
4

=
( r

n

)
4

(n

r

)
4

( s

n

)
4

(n

s

)
4

=
(εr

n

)(εs

n

)
,

where we have twice applied (2). �

Corollary 2. Let m = p1 · · · pt and n satisfy the conditions above; then(εm

n

)
=

(ε1

n

)
· · ·

(εt

n

)
,

where εj denotes the fundamental unit in Q(√pj ).

This is a result due to Furuta [1]; its proof is clear.

5. Some Remarks on the 4-rank of class groups

The reciprocity laws given above are connected with the 4-rank of class groups: let k
be a real quadratic number field of discrimniant d, and assume that d can be written as a
sum of two squares. It is well known ([5]) that the quadratic unramified extensions of k
correspond to factorizations d = d1d2 of d into two relatively prime discriminants d1, d2

with at least one of the di positive, and that cyclic quartic extensions which are unramified
outside ∞ correspond to C4-extensions d = d1 · d2, where (d1/p2) = (d2/p1) = +1 for all
primes pj | dj .

Let K = k(
√

α ) be such an extension, corresponding to d = d1 · d2. Then any quartic
cyclic extension of k which contains Q(

√
d1,

√
d2 ) and which is unramified outside ∞ has

the form K ′ = k(
√

d′α), where d′ is a product of prime discriminants occuring in the
factorization of d as a product of prime discriminants. Since these prime discriminants
are all positive, either all of these extensions K ′/k are totally real, or all of them are
totally complex. Scholz [5] has sketched a proof for the fact that the K ′ are totally real
if and only if (d1/d2)4 = (d2/d1)4; an elementary proof was given in [4].

In addition to the references given in [3] we should remark that Kaplan [2] has also
proved the general version of Burde’s reciprocity law and noticed the connection with the
structure of the 2-class groups of real quadratic number fields.
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