RATIONAL QUARTIC RECIPROCITY II

FRANZ LEMMERMEYER

1. Introduction

Let $m=p_{1} \cdots p_{r}$ be a product of primes $p_{i} \equiv 1 \bmod 4$ and assume that there are integers $A, B, C \in \mathbb{Z}$ such that $A^{2}=m\left(B^{2}+C^{2}\right)$ and $A-1 \equiv B \equiv 0 \bmod 2, A+B \equiv$ $1 \bmod 4$. Then

$$
\begin{equation*}
\left(\frac{A+B \sqrt{m}}{p}\right)=\left(\frac{p}{m}\right)_{4} \tag{1}
\end{equation*}
$$

for every prime $p \equiv 1 \bmod 4$ such that $\left(p / p_{j}\right)=+1$ for all $1 \leq j \leq r$. This is 'the extension to composite values of m ' that was referred to in [3], to which this paper is an addition. Here I will fill in the details of a proof, on the one hand because I was requested to do so, and on the other hand because this general law can be used to derive general versions of Burde's and Scholz's reciprocity laws.

Below I will sketch an elementary proof of (1) using induction built on the results of [3], and then use the description of abelian fields by characters to give a direct proof.

2. Proof by Induction

Using induction over the number of prime factors of m we may assume that (1) is true if m has r different prime factors.

Now assume that $m=p_{1} \cdot m^{\prime}$; we choose integers A, B, A_{1}, B_{1} such that B and B_{1} are even and $A+B \equiv A_{1}+B_{1} \equiv 1 \bmod 4$, satisfying

$$
\begin{array}{rlrlr}
A^{2} & =m\left(B^{2}+C^{2}\right), & A_{1}^{2} & =p_{1}\left(B_{1}^{2}+C_{1}^{2}\right), & \text { and put } \\
\alpha & =A+B \sqrt{m}, & \alpha_{1} & =A_{1}+B_{1} \sqrt{p_{1}} . &
\end{array}
$$

Then $K=\mathbb{Q}(\sqrt{\alpha})$ and $K_{1}=\mathbb{Q}\left(\sqrt{\alpha_{1}}\right)$ are cyclic quartic extensions of conductors m and p_{1}, respectively.

Consider the compositum $K_{1} K$; it is an abelian extension of type $(4,4)$ over \mathbb{Q}, and it clearly contains $F=\mathbb{Q}\left(\sqrt{m^{\prime}}, \sqrt{p_{1}}\right)$. Moreover, F has three quadratic extensions in $K_{1} K$, namely $F(\sqrt{\alpha}), F\left(\sqrt{\alpha_{1}}\right)$, and $L=F\left(\sqrt{\alpha \alpha_{1}}\right)$. It is not hard to see that L is the compositum of a cyclic quartic extension $\mathbb{Q}\left(\sqrt{\alpha^{\prime}}\right)$ of conductor m^{\prime} and $\mathbb{Q}\left(\sqrt{p_{1}}\right)$. Since $\alpha \alpha_{1}$ and α^{\prime} differ at most by a square in F, we find

$$
\left(\frac{\alpha^{\prime}}{p}\right)=\left(\frac{\alpha}{p}\right)\left(\frac{\alpha_{1}}{p}\right)
$$

On the other hand, by the induction hypothesis we have $\left(\alpha^{\prime} / p\right)=\left(p / m^{\prime}\right)_{4}$, hence we find

$$
\left(\frac{\alpha}{p}\right)=\left(\frac{\alpha^{\prime}}{p}\right)\left(\frac{\alpha_{1}}{p}\right)=\left(\frac{p}{m^{\prime}}\right)_{4}\left(\frac{p}{p_{1}}\right)_{4}=\left(\frac{p}{m}\right)_{4}
$$

This is what we wanted to prove.

[^0]
3. Proof via Characters

Let K be a cyclotomic field with conductor f. Then it is well known (see [6] for the necessary background) that the subfields of $\mathbb{Q}\left(\zeta_{f}\right)$ correspond biuniquely to a subgroup of the character group of $(\mathbb{Z} / f \mathbb{Z})^{\times}$.

Let $m=p_{1} \ldots p_{r}$ be a product of primes $p \equiv 1 \bmod 4$, and let ϕ_{j} denote the quadratic character modulo p_{j}. There exist two quartic characters modulo p_{j}, namely ω_{j} (say) and $\omega_{j}^{-1}=\phi_{j} \omega_{j}$; for primes p such that $\chi_{j}(p)=\left(p / p_{j}\right)=+1$ we have $\omega_{j}(p)=\left(p / p_{j}\right)_{4}$.

The quadratic subfield $\mathbb{Q}(\sqrt{m})$ of $L=\mathbb{Q}\left(\zeta_{m}\right)$ corresponds to the subgroup $\langle\phi\rangle$, where $\phi=\phi_{1} \cdots \phi_{r}$; similarly, there is a cyclic quartic extension K contained in L which corresponds to $\langle\omega\rangle$, where ω is a character of order 4 and conductor m. Moreover, K contains $\mathbb{Q}(\sqrt{m})$, hence we must have $\omega^{2}=\phi$. This implies at once that $\omega=\omega_{1} \cdots \omega_{r} \cdot \phi^{\prime}$, where ϕ^{\prime} is a suitably chosen quadratic character. By the decomposition law in abelian extensions a prime p splitting in $\mathbb{Q}(\sqrt{m})$ will split completely in K if and only if $\omega(p)=$ +1 , i.e. if and only if $(p / m)_{4}=+1$ (the quadratic character ϕ^{\prime} does not influence the splitting of p since $\left.\phi^{\prime}(p)=1\right)$.

By comparing this with the decomposition law in Kummer extensions we see immediately that Eq. (1) holds.
Remark. If we define $(p / 2)_{4}=(-1)^{(p-1) / 8}$ for all primes $p \equiv 1 \bmod 8$, then the above proofs show that 11 is also valid for even m; one simply has to replace the cyclic quartic extension of conductor p by the totally real cyclic quartic extension of conductor 8 , i.e. the real quartic subfield of $\mathbb{Q}\left(\zeta_{16}\right)$.

4. Some Rational Quartic Reciprocity Laws

Burde's Reciprocity Law. Let m and n be coprime integers, and assume that $m=$ $\prod p_{i}$ and $n=\prod q_{j}$ are products of primes $\equiv 1 \bmod 4$. Assume moreover that $\left(m / q_{j}\right)=$ $\left(n / p_{i}\right)=+1$ for all p_{i} and q_{j}. Write $m=a^{2}+b^{2}, n=c^{2}+d^{2}$ with $a c$ odd; then we can prove as in [3] that

$$
\left(\frac{m}{n}\right)_{4}\left(\frac{n}{m}\right)_{4}=\left(\frac{a c-b d}{m}\right)=\left(\frac{a c-b d}{n}\right) .
$$

Remark. It is easy to deduce Gauss' criterion for the biquadratic character of 2 from Burde's law. In fact, assume that $p=a^{2}+16 b^{2} \equiv 1 \bmod 8$ is prime, and choose the sign of a in such a way that $a \equiv 1 \bmod 4$; then

$$
\left(\frac{2}{p}\right)_{4}\left(\frac{p}{2}\right)_{4}=\left(\frac{a-4 b}{2}\right)=\left(\frac{2}{a-4 b}\right) .
$$

Since $(p / 2)=(-1)^{(p-1) / 8}$ and $p-1=a^{2}-1+16 b^{2} \equiv(a-1)(a+1) \bmod 16$ we find $\frac{p-1}{8}=\frac{a-1}{4} \frac{a+1}{2} \equiv \frac{a-1}{4} \bmod 2$, and this gives $(-1)^{(p-1) / 8}=(2 / a)$. Thus $(2 / p)_{4}=$ $(2 / a)(2 / a+4 b)=\left(2 / a^{2}+4 b\right)=(2 / 1+4 b)=(-1)^{b}$.

Scholz's Reciprocity Law. Let $\varepsilon_{m}=t+u \sqrt{m}$ be a unit in $\mathbb{Q}(\sqrt{m})$ with norm -1 . Putting $\varepsilon_{m} \sqrt{m}=A+B \sqrt{m}$ we find immediately

$$
\begin{equation*}
\left(\frac{\varepsilon_{m}}{p}\right)=\left(\frac{m}{p}\right)_{4}\left(\frac{p}{m}\right)_{4} \tag{2}
\end{equation*}
$$

for all primes $p \equiv 1 \bmod 4$ such that $\left(p_{j} / p\right)=1$ for all $p_{j} \mid m$. If n is a product of such primes p, this implies

$$
\left(\frac{\varepsilon_{m}}{n}\right)=\left(\frac{m}{n}\right)_{4}\left(\frac{n}{m}\right)_{4}
$$

Moreover, if the fundamental unit of $\mathbb{Q}(\sqrt{n})$ has negative norm, we conclude that

$$
\left(\frac{\varepsilon_{m}}{n}\right)=\left(\frac{m}{n}\right)_{4}\left(\frac{n}{m}\right)_{4}=\left(\frac{\varepsilon_{n}}{m}\right) .
$$

The general version of Scholz's reciprocity law has a few nice corollaries:
Corollary 1. Let m and n satisfy the conditions above, and suppose that $m=r s$; assume moreover that the fundamental units ε_{r} and ε_{s} of $\mathbb{Q}(\sqrt{r})$ and $\mathbb{Q}(\sqrt{s})$ have negative norm. Then

$$
\left(\frac{\varepsilon_{m}}{n}\right)=\left(\frac{\varepsilon_{r}}{n}\right)\left(\frac{\varepsilon_{s}}{n}\right)
$$

Proof. This is a simple computation:

$$
\left(\frac{\varepsilon_{m}}{n}\right)=\left(\frac{m}{n}\right)_{4}\left(\frac{n}{m}\right)_{4}=\left(\frac{r}{n}\right)_{4}\left(\frac{n}{r}\right)_{4}\left(\frac{s}{n}\right)_{4}\left(\frac{n}{s}\right)_{4}=\left(\frac{\varepsilon_{r}}{n}\right)\left(\frac{\varepsilon_{s}}{n}\right)
$$

where we have twice applied (2).
Corollary 2. Let $m=p_{1} \cdots p_{t}$ and n satisfy the conditions above; then

$$
\left(\frac{\varepsilon_{m}}{n}\right)=\left(\frac{\varepsilon_{1}}{n}\right) \cdots\left(\frac{\varepsilon_{t}}{n}\right)
$$

where ε_{j} denotes the fundamental unit in $\mathbb{Q}\left(\sqrt{p_{j}}\right)$.
This is a result due to Furuta [1]; its proof is clear.

5. Some Remarks on the 4-Rank of class groups

The reciprocity laws given above are connected with the 4-rank of class groups: let k be a real quadratic number field of discrimniant d, and assume that d can be written as a sum of two squares. It is well known ([5]) that the quadratic unramified extensions of k correspond to factorizations $d=d_{1} d_{2}$ of d into two relatively prime discriminants d_{1}, d_{2} with at least one of the d_{i} positive, and that cyclic quartic extensions which are unramified outside ∞ correspond to C_{4}-extensions $d=d_{1} \cdot d_{2}$, where $\left(d_{1} / p_{2}\right)=\left(d_{2} / p_{1}\right)=+1$ for all primes $p_{j} \mid d_{j}$.

Let $K=k(\sqrt{\alpha})$ be such an extension, corresponding to $d=d_{1} \cdot d_{2}$. Then any quartic cyclic extension of k which contains $\mathbb{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right)$ and which is unramified outside ∞ has the form $K^{\prime}=k\left(\sqrt{d^{\prime} \alpha}\right)$, where d^{\prime} is a product of prime discriminants occuring in the factorization of d as a product of prime discriminants. Since these prime discriminants are all positive, either all of these extensions K^{\prime} / k are totally real, or all of them are totally complex. Scholz [5] has sketched a proof for the fact that the K^{\prime} are totally real if and only if $\left(d_{1} / d_{2}\right)_{4}=\left(d_{2} / d_{1}\right)_{4}$; an elementary proof was given in [4].

In addition to the references given in [3] we should remark that Kaplan [2] has also proved the general version of Burde's reciprocity law and noticed the connection with the structure of the 2-class groups of real quadratic number fields.

References

[1] Y. Furuta, Norms of units of quadratic fields, J. Math. Soc. Japan 11 (1959), 139-145 3
[2] P. Kaplan, Sur le 2-groupe des classes d'idéaux des corps quadratiques, J. Reine Angew. Math. 283/284 (1974), 313-363 3
[3] F. Lemmermeyer, Rational quartic reciprocity, Acta Arithmetica 67 (1994), 387-390 1, 2 , 3
[4] F. Lemmermeyer, The 4-class group of real quadratic number fields, submitted 3
[5] A. Scholz, Über die Lösbarkeit der Gleichung $t^{2}-D u^{2}=-4$, Math. Z. 39 (1934), 95-111. 3
[6] L. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics 83, Springer Verlag 1982 2

Bilkent University, Department of Mathematics, 06800 Bilkent, Ankara, Turkey
E-mail address: franz@fen.bilkent.edu.tr

[^0]: 1991 Mathematics Subject Classification. 11 R 16, 11 A 15.

