RATIONAL QUARTIC RECIPROCITY

FRANZ LEMMERMEYER

Abstract

We provide a simple proof of the general rational quartic reciprocity law due to Williams, Hardy and Friesen.

In 1985, K. S. Williams, K. Hardy and C. Friesen [11] published a reciprocity formula that comprised all known rational quartic reciprocity laws. Their proof consisted in a long and complicated manipulation of Jacobi symbols and was subsequently simplified (and generalized) by R. Evans 3. In this note we will give a proof of their reciprocity law which is not only considerably shorter but which also sheds some light on the raison d'être of rational quartic reciprocity laws. For a survey on rational reciprocity laws, see E. Lehmer [7].

We want to prove the following
Theorem 1. Let $m \equiv 1 \bmod 4$ be a prime, and let A, B, C be integers such that

$$
\begin{aligned}
A^{2}=m\left(B^{2}+C^{2}\right), & 2 \mid B \\
(A, B)=(B, C)=(C, A)=1, & A+B \equiv 1 \bmod 4
\end{aligned}
$$

Then, for every odd prime $p>0$ such that $(m / p)=+1$,

$$
\begin{equation*}
\left(\frac{A+B \sqrt{m}}{p}\right)=\left(\frac{p}{m}\right)_{4} . \tag{1}
\end{equation*}
$$

Proof. Let $k=\mathbb{Q}(\sqrt{m})$; then $K=\mathbb{Q}(\sqrt{m}, \sqrt{A+B \sqrt{m}})$ is a quartic cyclic extension of \mathbb{Q} containing k, as can be verified quickly by noting that

$$
A^{2}-m B^{2}=m C^{2}=(\sqrt{m} C)^{2} \quad \text { and } \quad \sqrt{m} C \in k \backslash \mathbb{Q} .
$$

We claim that K is the quartic subfield of $\mathbb{Q}\left(\zeta_{m}\right)$, the field of m th roots of unity. This will follow from the theorem of Kronecker and Weber once we have seen that no prime $\neq m$ is ramified in K / \mathbb{Q}. But the identity

$$
\begin{equation*}
2(A+B \sqrt{m})(A+C \sqrt{m})=(A+B \sqrt{m}+C \sqrt{m})^{2} \tag{2}
\end{equation*}
$$

shows that $K=k(\sqrt{2(A+C \sqrt{m})})$, and so the only odd primes that are possibly ramified in K / k are common divisors of $A^{2}-m B^{2}=m C^{2}$ and $A^{2}-m C^{2}=m B^{2}$. Since B and C are assumed to be prime to each other, only 2 and m can ramify. Now $\sqrt{m} \equiv 1 \bmod 2($ since $m \equiv 1 \bmod 4)$ implies $B \sqrt{m} \equiv B \bmod 4$, and we see $A+B \sqrt{m} \equiv A+B \equiv 1 \bmod 4$, which shows that 2 is unramified in K / k (and therefore also in $K / \mathbb{Q})$.

The reciprocity formula will follow by comparing the decomposition laws in K / \mathbb{Q} and $\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}$: if $(m / p)=+1$, then p splits in k / \mathbb{Q}; if $f>0$ is the smallest natural number such that $p^{f} \equiv 1 \bmod m$ (here we have to assume that $p>0$), then p splits
into exactly $g=(m-1) / f$ prime ideals in $\mathbb{Q}\left(\zeta_{m}\right)$, and we see

$$
\begin{aligned}
\left(\frac{p}{m}\right)_{4}=1 & \Longleftrightarrow p^{(m-1) / 4} \equiv 1 \bmod m \\
& \Longleftrightarrow f \text { divides } \frac{1}{4}(m-1)=\frac{1}{4} f g \\
& \Longleftrightarrow g \equiv 0 \bmod 4 \\
& \Longleftrightarrow \text { the degree of the decomposition field } Z \text { of } p \text { is divisible by } 4 \\
& \left.\Longleftrightarrow Z \text { contains } K \text { (because } G a l\left(\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\right) \text { is cyclic }\right) \\
& \Longleftrightarrow p \text { splits completely in } K / \mathbb{Q} \\
& \Longleftrightarrow p \text { splits completely in } K / k(\text { since } p \text { splits completely in } k / \mathbb{Q}) \\
& \Longleftrightarrow\left(\frac{A+B \sqrt{m}}{p}\right)=1
\end{aligned}
$$

This completes the proof of the theorem.
Letting $m=2$ and replacing the quartic subfield of $\mathbb{Q}\left(\zeta_{m}\right)$ used above by the cyclic extension $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ contained in $\mathbb{Q}\left(\zeta_{16}\right)$ yields the equivalence

$$
\begin{equation*}
\left(\frac{A+B \sqrt{2}}{p}\right)=1 \Longleftrightarrow p \text { splits in } \mathbb{Q}(\sqrt{2+\sqrt{2}}) \Longleftrightarrow p \equiv \pm 1 \bmod 16 \tag{3}
\end{equation*}
$$

stated in a slightly different way in [11].
Formula (1) differs from the one given in [11], which reads

$$
\begin{equation*}
\left(\frac{A+B \sqrt{m}}{p}\right)=(-1)^{(p-1)(m-1) / 8}\left(\frac{2}{p}\right)\left(\frac{p}{m}\right)_{4} \tag{4}
\end{equation*}
$$

where $A, B, C>0, B$ is odd, and C is even. Formula (2) shows that

$$
\left(\frac{A+B \sqrt{m}}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{A+C \sqrt{m}}{p}\right)
$$

and so, for B even and C odd, (4) is equivalent to

$$
\begin{equation*}
\left(\frac{A+B \sqrt{m}}{p}\right)=(-1)^{(p-1)(m-1) / 8}\left(\frac{p}{m}\right)_{4} \tag{5}
\end{equation*}
$$

Now $A \equiv 1 \bmod 4$ since $A^{2}=m\left(B^{2}+C^{2}\right)$ is the product of $m \equiv 1 \bmod 4$ and of a sum of two relatively prime squares, and we have $A+B \equiv 1 \bmod 4 \Longleftrightarrow$ $4 \mid B \Longleftrightarrow m \equiv 1 \bmod 8$. The sign of B is irrelevant, therefore

$$
\left(\frac{-1}{p}\right)^{B / 2}=(-1)^{(p-1)(m-1) / 8}
$$

This finally shows that (1) is in fact equivalent to (4).
Another version of (1) which follows directly from (5) is

$$
\begin{equation*}
\left(\frac{A+B \sqrt{m}}{p}\right)=\left(\frac{p^{*}}{m}\right)_{4} \tag{6}
\end{equation*}
$$

where $A, B>0$ and $p^{*}=(-1)^{p-1) / 2} p$.
Formula (1) can be extended to composite values of m (where the prime factors of m satisfy certain conditions given in [11) in very much the same way as Jacobi extended the quadratic reciprocity law of Gauss; this extension, however, is not needed for deriving the known rational reciprocity laws of K. Burde [1], E. Lehmer [6, 7] and A. Scholz (9]. These follow from (1) by assigning special values to A and B, in other words: they all stem from the observation that the quartic subfield K of $\mathbb{Q}\left(\zeta_{m}\right)$ can be generated by different square roots over $k=\mathbb{Q}(\sqrt{m})$.

The fact that (1) is valid for primes $p \mid A B C$ (which has not been proved in [11]) shows that we no longer have to exclude the primes $q \mid a b$ in Lehmer's criterion (as was necessary in [11]), and it allows us to derive Burde's reciprocity law in a more direct way: let p and q be primes $\equiv 1 \bmod 4$ such that $p=a^{2}+b^{2}, q=c^{2}+d^{2}$, $2|b, 2| d,(p / q)=+1$, and define

$$
A=p q, \quad B=b\left(c^{2}-d^{2}\right)+2 a c d, \quad C=a\left(c^{2}-d^{2}\right)-2 b c d, \quad m=q
$$

Then $2 \mid B, B \equiv 2 d(a c+b d) \bmod q\left(\right.$ since $\left.c^{2} \equiv-d^{2} \bmod q\right)$, the sign of A does not matter $($ since $q \equiv 1 \bmod 4)$, and so formula (1) yields

$$
\left(\frac{q}{p}\right)_{4}=\left(\frac{A+B \sqrt{p}}{q}\right)=\left(\frac{B}{q}\right)\left(\frac{p}{q}\right)_{4} .
$$

Now the well known $\left(\frac{2 d}{q}\right)=+1$ implies Burde's law

$$
\begin{equation*}
\left(\frac{p}{q}\right)_{4}\left(\frac{q}{p}\right)_{4}=\left(\frac{a c-b d}{q}\right) \tag{7}
\end{equation*}
$$

A rational reciprocity law equivalent to Burde's has already been found by T . Gosset [5], who showed that, for primes p and q as above,

$$
\begin{equation*}
\left(\frac{q}{p}\right)_{4} \equiv\left(\frac{a / b-c / d}{a / b+c / d}\right)^{(q-1) / 4} \bmod q \tag{8}
\end{equation*}
$$

Multiplying the numerator and denominator of the term on the right side of (8) by $a / b+c / d$ and observing that $c^{2} / d^{2} \equiv-1 \bmod q$ yields

$$
\begin{aligned}
\left(\frac{q}{p}\right)_{4} & \equiv\left(\frac{a^{2} / b^{2}+1}{q}\right)_{4}\left(\frac{a / b+c / d}{q}\right)=\left(\frac{p}{q}\right)_{4}\left(\frac{b}{q}\right)\left(\frac{a / b+c / d}{q}\right) \\
& =\left(\frac{p}{q}\right)_{4}\left(\frac{a+b c / d}{q}\right)=\left(\frac{p}{q}\right)_{4}\left(\frac{d}{q}\right)\left(\frac{a d+b c}{q}\right) \bmod q,
\end{aligned}
$$

which is Burde's reciprocity law since $\left(\frac{2 d}{q}\right)=+1$.
A more explicit form of Burde's reciprocity law for composite values of p and q has been given by L. Rédei [8] letting $n=p q=A^{2}+B^{2}$ in [8, (17)], we find $A=a c-b d, B=a d+b c$, and his reciprocity formula [8, (23)] gives (7).

Yet another version of Burde's law is due to A. Fröhlich 4]; he showed

$$
\begin{equation*}
\left(\frac{p}{q}\right)_{4}\left(\frac{q}{p}\right)_{4}=\left(\frac{a+b j}{q}\right)=\left(\frac{c+d i}{p}\right) \tag{9}
\end{equation*}
$$

where i and j denote rational numbers such that $i^{2} \equiv-1 \bmod p$ and $j^{2} \equiv-1 \bmod q$. Letting $i=a / b$ and $j=c / d$ and observing that $\left(\frac{a}{p}\right)=\left(\frac{c}{q}\right)=+1$, we find that (9) is equivalent to (7).

The reciprocity theorem of Lehmer [6, 7] is even older; it can be found in Dirichlet's paper [2] as Théorème I and II; Dirichlet's ideas are reproduced in the charming book of Venkow [10 and may be used to give proofs for other rational reciprocity laws using nothing beyond quadratic reciprocity.

Remark. The author has recently generalized Scholz's reciprocity law to all number fields with odd class number in the strict sense.

References

[1] K. Burde, Ein rationales biquadratisches Reziprozitätsgesetz, J. Reine Angew. Math. 235 (1969), 175-184 2
[2] L. Dirichlet Recherche sur les diviseurs premiers d'une classe de formule du quatri'eme degré, J. Reine Angew. Math. 3 (1828), 63-98 3
[3] R. Evans, Residuacity of primes, Rocky Mountain J. Math. 19 (1989), 1069-1081 1
[4] A. Fröhlich, The restricted biquadratic residue symbol, Proc. London Math. Soc. (3) 9 (1959), 189-207 3
[5] T. Gosset, On the law of quartic reciprocity, Mess. Math. (2) 41 (1911), 65-90 3
[6] E. Lehmer, Criteria for cubic and quartic residuacity, Mathematika 5 (1958), 20-29 2 , 3
[7] E. Lehmer, Rational reciprocity laws, Amer. Math. Monthly 85 (1978), 467-472 1, 2/ 3
[8] L. Rédei, Über die Grundeinheit und die durch 8 teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper, J. Reine Angew. Math. 171 (1934), 131-148 3
[9] A. Scholz, Über die Lösbarkeit der Gleichung $t^{2}-D u^{2}=-4$, Math. Z. 39 (1934), 95-111 2
[10] B. A. Venkov, Elementary Number Theory (Russian), Moscow 1937; Engl Transl. Groningen 1970 3
[11] K. S. Williams, K. Hardy, C. Friesen, On the evaluation of the Legendre symbol $\left(\frac{A+B \sqrt{m}}{p}\right)$ Acta Arith. 45 (1985), 255-272 1, 2, 3

Bilkent University, Dept. Mathematics, 06800 Bilkent, Ankara
E-mail address: hb3@ix.urz.uni-heidelberg.de, franz@fen.bilkent.edu.tr

