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Abstract. We construct an infinite family of imaginary quadratic number

fields with 2-class groups of type (2, 2, 2) whose Hilbert 2-class fields are finite.

1. Introduction

Let k be an imaginary quadratic number field. It has been known for quite a
while that the 2-class field tower of an imaginary quadratic number field is infinite
if rankCl2(k) ≥ 5, but it is not known how far from best possible this bound is.
F. Hajir [4] has shown that the 2-class field tower is infinite if Cl(k) ⊇ (4, 4, 4), and
again we do not know if this result can be improved. In this article we will study
the 2-class field towers of a family of quadratic fields whose 2-class groups have
rank 3.

For quadratic discriminants d, let Cl2(d) and h2(d) denote the 2-class group and
the 2-class number of Q(

√
d ), respectively. The fundamental unit of Q(

√
m ) will

be denoted by εm, whether m is a discriminant or not. A factorization d = d1 ·d2 of
a discriminant d into two coprime discriminants d1, d2 is called a C4-factorization
if (d1/p2) = (d2/p1) = +1 for all primes p1 | d1, p2 | d2. A D4-factorization of d
is a factorization d = (d1 · d2) · d3 such that d1 · d2 is a C4-factorization. Finally,
d = d1·d2·d3 is called a H8-factorization if (d1d2/p3) = (d2d3/p1) = (d3d1/p2) = +1
for all primes pj | dj , j = 1, 2, 3. It is known (cf. [8]) that d admits a G-factorization
(G ∈ {C4, D4}) if and only if k = Q(

√
d ) admits an extension K/k which is

unramified outside ∞, normal over Q, and which has Galois group Gal(K/k) ' G.
Let F 1 denote the 2-class field of a number field F , and put F 2 = (F 1)1. Then

in our case genus theory shows that d = disc k = d1d2d3d4 is the product of exactly
four prime discriminants, and moreover we have kgen = Q(

√
d1,

√
d2,

√
d3,

√
d4 ).

Our aim is to prove the following

Theorem 1. Let k = Q(
√

d ) be an imaginary quadratic number field with discrim-
inant d = −4pqq′, where p ≡ 5 mod 8, q ≡ 3 mod 8 and q′ ≡ 7 mod 8 are primes
such that (q/p) = (q′/p) = −1. Then Γn = Gal(k2/k) is given by

Γn = 〈ρ, σ, τ : ρ4 = σ2n+1
= τ4 = 1, ρ2 = σ2n

τ2,
[σ, τ ] = 1, [ρ, σ] = σ2, [ρ, τ ] = σ2n

τ2〉,

where n is determined by Cl2(−qq′) = (2, 2n). Moreover, Cl2(k) ' (2, 2, 2) and
Cl2(k1) ' (2, 2n); for results about class and unit groups of subfields of k1/k see
the proof below.

We note a few relations which have proved to be useful for computing in Γn:
(ρσ)2 = ρ2, (ρστ)2 = (ρτ)2 = τ2, [ρ, τ2] = 1.

1
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2. Preliminary Results on Quadratic Fields

We will use a few results on 2-class groups of quadratic number fields which can
easily be deduced from genus theory. We put m = pqq′, where p, q, q′ satisfy the
conditions in Thm. 1, and set k = Q(

√
−m ).

Lemma 2. The ideal classes of 2 = (2, 1 +
√
−m ), p = (p,

√
−m ) and q =

(q,
√
−m ) generate Cl2(k) ' (2, 2, 2).

Proof. Since (q/p) = (q/p′) = −1 and p ≡ 5 mod 8, there are no C4-factorizations
of d, and this shows that Cl2(k) ' (2, 2, 2). The ideal classes generated by 2, p and
q are non-trivial simply because their norm is smaller than m; the same reasoning
shows that they are independent. �

Lemma 3. The quadratic number field k̃ = Q(
√
−qq′ ) has 2-class group Cl2(k̃) '

(2, 2n) for some n ≥ 1; it is generated by the prime ideals 2 = (2, 1+
√
−qq′ ) above

2 and a prime ideal p̃ above p. Moreover, the ideal classes of 2 and q = (q,
√
−qq′ )

generate a subgroup C2 of type (2, 2); we have n ≥ 2 if and only if (q′/q) = −1,
and in this case, the square class in C2 is [2q].

Proof. Since q ≡ 3 mod 8, the only possible C4-factorization is d = −q′ · 4q; this is
a C4-factorization if and only if (−q′/q) = +1. In this case, exactly one of the ideal
classes [2], [q] and [2q] is a square; by genus theory, this must be [2q]. Finally, let p̃

denote a prime ideal above p. Then [ p̃ ] is no square in Cl2(k̃) because (−q/p) = −1,
[2p̃ ] is no square because (−q′/2p) = −1, [qp̃ ] is no square because (−q′/pq) = −1,
and [2qp̃ ] is no square because (−q′/2qp) = −1. This implies that [ p̃ ] has order
2n. �

Lemma 4. The real quadratic number field F = Q(
√

m ) has 2-class number 2; the
prime ideal p above p is principal, and the fundamental unit εm of OF becomes a
square in F (

√
p ).

Proof. Consider the prime ideals p, q and q′ in OF above p, q and q′, respectively;
since h2(m) = 2 (by genus theory) and Nεm = +1, there must be a relation
between their ideal classes besides pqq′ ∼ 1. Now clearly q cannot be principal,
since this would imply X2 −my2 = ±4q; writing X = qx and dividing by q gives
qx2 − pq′y2 = ±4. But this contradicts our assumption that (q/p) = −1. By
symmetry, q′ cannot be principal; since h2(F ) = 2, their product qq′ is, hence
we have p ∼ qq′ ∼ 1. The equation X2 − my2 = ±4p then leads as above to
px2 − qq′y2 = −4 (the plus sign cannot hold since it would imply that (p/q) = 1),
and it is easy to see that the unit η = 1

2 (x
√

p + y
√

qq′ ) satisfies η2 = εu
m for some

odd integer u. �

3. The 2-class field tower of k

In this section we prove that the 2-class field tower of k stops at k2, and that
Gal(k2/k) ' Γn.

3.1. Class Numbers of Quadratic Extensions. Let K/k be a quadratic un-
ramified extension. Then q(K) = 1; we define

• ζ = ζ6 if q = 3 and ζ = −1 otherwise;
• ej is the unit group of the maximal order Oj of kj ;
• Nj is the relative norm of kj/k;
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• κj is the subgroup of ideal classes in Cl(k) which capitulate in kj ;
• hj denotes the 2-class number of kj .

Then we claim that Table 1 gives the unit group, the relative norm of the unit
group, the capitulation order, the 2-class number and the relative norm of the
2-class group for the quadratic unramified extensions kj/k.

Table 1.

j kj ej Njej #κj hj Nj Cl2(kj)

1 Q(i,
√

m ) 〈i, εm〉 〈1〉 4 8 〈[2], [p]〉

2 Q(
√
−q,

√
pq′ ) 〈ζ, εpq′〉 〈1〉 4 8 〈[2p], [2q]〉 〈[2p], [q]〉

3 Q(
√
−p,

√
qq′ ) 〈−1, εqq′〉 〈1〉 4 8 〈[p], [q]〉

4 Q(
√

p,
√
−qq′ ) 〈−1, εp〉 〈−1〉 2 2n+3 〈[p], [2q]〉

5 Q(
√
−q′,

√
pq ) 〈−1, εpq〉 〈1〉 4 8 〈[2], [pq]〉 〈[2], [q]〉

6 Q(
√
−pq,

√
q′ ) 〈−1, εq′〉 〈1〉 4 8 〈[2], [q]〉 〈[2], [pq]〉

7 Q(
√
−pq′,

√
q ) 〈−1, εq〉 〈1〉 4 8 〈[2p], [q]〉 〈[2p], [2q]〉

The left hand side of the column Nj Cl2(kj) refers to case A (i.e. (q/q′) = −1),
the right hand side to case B. We will now verify the table. The unit groups are
easy to determine - we simply use the following proposition from [2]:

Proposition 5. Let k be an imaginary quadratic number field, and assume that
K/k is a quadratic unramified extension. Then K is a V4-extension, and q(K) = 1.

Applying this to the extension K = kj we find that the unit group ej is generated
by the roots of unity in kj and the fundamental unit of the real quadratic subfield.
Since #κj = 2(Ek : NK/kEK) for unramified quadratic extensions K/k, (see [2]),
the order of the capitulation kernel is easily computed from the unit groups. Sim-
ilarly, the 2-class number of h(kj) is given by the class number formula (see [6]),
and since the unit index equals 1 in all cases, its computation is trivial.

Let us compute Nj Cl2(kj) in a few cases. Take e.g. kj = Q(
√

p,
√
−qq′ ): here

the prime ideal p is a norm because (−qq′/p) = +1, whereas 2 and q are inert, since
p ≡ 5 mod 8 and (p/q) = −1. This implies that the ideal class [2q] must be a norm,
since (Cl2(k) : Nj Cl2(kj)) = 2 by class field theory.

As another example, take kj = Q(
√
−q,

√
pq′ ) and assume that we are in case

B), i.e. that (q/q′) = 1. Then q is a norm since (pq′/q) = +1, and the ideals 2 and
p are inert; this yields Nj Cl2(kj) = 〈[q], [2p]〉.

3.2. The 2-class group of k4 is (4, 2n+1). We know N4 Cl2(k4) = 〈[p], [2q]〉 and
#κ4 = 2. Since p = (p,

√
d ) becomes principal, we have κ4 = 〈[p]〉.

Let p̃ denote a prime ideal above p in Q(
√
−qq′ ); we have shown in Lemma 3

that p̃2n−1 ∼ 2q. Since this ideal class does not capitulate in k4, we see that p̃
generates a cyclic subgroup of order 2n in Cl2(k4).

Let O denote the maximal order of k4; then pO = P2P′2. We claim that P2 ∼ p̃.
To this end, let s and t be the elements of order 2 in Gal(k4/Q) which fix F and
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k, respectively. Using the identity 2 + (1 + s + t + st) = (1 + s) + (1 + t) + (1 + st)
of the group ring Z[Gal(k4/Q)] and observing that Q and the fixed field of st have
odd class numbers we find

P2 ∼ P1+sP1+tP1+st ∼ p̃p ∼ p̃,

where the last relation (in Cl2(k4)) comes from the fact that p ∈ κ4.
Thus 〈[2], [P]〉 is a subgroup of type (2, 2n+1) (hence of index 2) in Cl2(k4).

Taking the norm to F we find NF 〈[2], [P]〉 = 〈[ p̃ ]〉; therefore there exists an ideal
A in O such that NF A ∼ 2 (equivalence in Cl(F )). We conclude that Cl2(k4) =
〈[2], [A], [P]〉. Similarly, letting N4 denote the norm in k4/k we get N4〈[2], [P]〉 =
〈[ p̃ ]〉; this shows that N4A ∼ 2q or N4A ∼ 2qp (equivalence in Cl(k); which of the
two possibilities occurs will be determined below). But since p ∼ 1 in Cl2(k4) we
can conclude that A1+t ∼ 2q. This gives A2 ∼ 2 · 2q ∼ q, and in particular [A] has
order 4 in Cl2(k4).

Finally we claim that Cl2(k4) = 〈[A], [P]〉, i.e. that [2] ∈ 〈[A], [P]〉. This is easy:
from P2 ∼ p̃ we deduce that P2n ∼ 2q, hence we get A2P2n ∼ 2.

3.3. Proof that k2 = k3. Since Cl2(k4) ' (4, 2n+1), we can apply Prop. 4 of [1],
which says that k4 has abelian 2-class field tower if and only if it has a quadratic
unramified extension K/k4 such that h2(K) = 1

2h2(k4).
Put M = Q(i,

√
p,
√

qq′ ), and consider its subfield M+ = Q(
√

p,
√

qq′ ). M+

is the Hilbert 2-class field of F = Q(
√

m ), hence h2(M+) = 1, and the class
number formula gives q(M+) = 2. In fact it follows from Lemma 4 that EM+ =
〈−1, εp, εqq′ ,

√
εm 〉.

According to Thm. 1.ii).1. of [7], Hasse’s unit index Q(M) equals 1 if wM ≡
4 mod 8 (wM denotes the number of roots of unity in M ; in our case wM = 4 or
wM = 12) and if the ideal generated by 2 is not a square in M+ (this is the case
here since 2 - disc M+). Thus Q(M) = 1 and EM = 〈ξ, εp, εqq′ ,

√
εm 〉, where ξ is a

primitive 4th (q 6= 3) or 12th (q = 3) root of unity. This shows that the unit index
of the extension M/Q(i) equals 2, and the class number formula finally gives

h2(M) = 1
4 · 2 · 1 · 2

n · 8 = 2n+2 = 1
2h2(k4).

3.4. Computation of Gal(k2/k). Put L = k2 and K = k4; clearly σ =
(L/K

P

)
and

τ =
(L/K

A

)
generate the abelian subgroup Gal(L/K) ' (2n+1, 4) of Γn = Gal(L/k).

If we put ρ =
(L/k

2

)
then ρ restricts to the nontrivial automorphism of K/k (since

[2] is not a norm from k4/k), which shows that Γn = 〈ρ, σ, τ〉. The relations are
easily computed: ρ2 =

(L/K
2

)
= σ2n

τ2, since 2 ∼ A2P2n

, ρ−1σρ =
(L/K

Pρ

)
= σ−1,

since PPρ = p ∼ 1, and τρ−1τρ =
( L/K

A1+ρ

)
=

(L/K
2q

)
= σ2n

. Thus

Γn = 〈ρ, σ, τ : ρ4 = σ2n+1
= τ4 = 1, ρ2 = σ2n

τ2,

[σ, τ ] = 1, [ρ, σ] = σ2, [τ, ρ] = σ2n−1
τ2〉

as claimed. We refer the reader to Hasse’s report [5] for the used properties of Artin
symbols.

3.5. Additional Information on Units and Class Groups. Using the presen-
tation of Γn it is easy to compute the abelianization of its subgroups of index 2;
this shows at once that Cl2(kj) ' (2, 4) for all j 6= 4 in case A and in for all j 6= 5, 7
in case B. More results are contained in Table 2.
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Table 2.

j kj Cl2(kj) κj Gal(k2/kj)

1 Q(i,
√

m ) (2, 4) 〈[2], [p]〉 〈ρ, σ, τ2〉

2 Q(
√
−q,

√
pq′ ) (2, 4) 〈[q], [2p]〉 〈ρσ, ρτ, σ2, τ2〉

3 Q(
√
−p,

√
qq′ ) (2, 4) 〈[p], [q]〉 〈ρτ, σ, τ2〉

4 Q(
√

p,
√
−qq′ ) (4, 2n+1) 〈[p]〉 〈σ, τ〉

5 Q(
√
−q′,

√
pq ) (2, 4) (2, 2, 2) 〈[pq], [2p]〉 〈ρ, σ2, τ〉

6 Q(
√
−pq,

√
q′ ) (2, 4) 〈[pq], [2]〉 〈ρ, στ, σ2〉

7 Q(
√
−pq′,

√
q ) (2, 4) (2, 2, 2) 〈[2], [q]〉 〈ρσ, τ, σ2〉

The computation of the capitulation kernels κj is no problem at all: take k1,
for example. We have seen that p is principal in Q(

√
m ), hence it is principal in

k1. Moreover, 2 = (1 + i) is clearly principal, and since we know from Table 1 that
#κ1 = 4 we conclude that κ1 = 〈[p], [2]〉.

Before we determine the Galois groups corresponding to the extensions kj/k we
examine whether N4A ∼ 2q or N4A ∼ 2pq (equivalence in Cl2(k)). We do this as
follows: first we choose a prime ideal R in O such that [A] = [R] (this is always
possible by Chebotarev’s theorem). Then its norms r̃ in OF and r in Ok are prime
ideals, and we have 2̃r ∼ 1 in Cl2(F ). This implies that 2r = x2 + 2qq′y2, from
which we deduce that (2r/q) = +1. If we had 2qr ∼ 1 in Cl2(k), this would
imply 2qr = U2 + mv2; writing U = qu this gives 2r = qu2 + pq′v2. This in turn
shows (2r/q) = (pq′/q) = (−q′/q), which is a contradiction if (q/q′) = −1. Thus
N4A ∼ 2pq in case A). Similarly one shows that N4A ∼ 2q in case B).

Now consider the automorphism τ =
(L/K

A

)
; we have just shown that τ =

(L/K
R

)
.

Let M be a quadratic extension of K in L; then the restriction of τ ∈ Gal(L/K)
to M is τ |M =

(M/K
R

)
, and this is the identity if and only if the prime ideals in

the ideal class [R] split in M/K. But from 2r = x2 + 2qq′y2 we get r ≡ 3 mod 4,
(2r/q) = +1, hence (q/r) = 1 since q ≡ 3 mod 8. This shows that R splits in K5 =
K(
√

q ) = Q(
√

p,
√

q,
√
−q′ ), thus τ fixes K5, and we find Gal(L/K5) = 〈τ, σ2〉.

Next P splits in K1 = K(
√
−1 ), hence σ fixes K1, and we have Gal(L/K1) =

〈σ, τ2〉. Finally, ρ fixes those extensions kj/k in which [2] splits, i.e. k1, k5 and k6.
In particular, ρ fixes their compositum K3, and we find Gal(L/K3) = 〈ρ, σ2, τ2〉.

Using elementary properties of Galois theory we can fill in the entries in the last
column of Tables 2 and 3.

The 2-class group structure for the subfields Kj of k1/k of relative degree 4, the
relative norms of their 2-class groups and their Galois groups are given in Table 3.
The structure of Cl2(Kj) is easily determined from Cl2(Kj) ' Gal(k2/Kj)ab. Note
that in every extension Kj/k the whole 2-class group of k is capitulating.

It is also possible to determine the unit groups Ej of the fields Kj (see Table
4). In fact, applying the class number formula to the V4-extensions Kj/k we can
determine the unit index q(Kj/k) since we already know the class numbers. Thus
all we have to do is check that the square roots of certain units lie in the field Kj .
This is done as follows: consider the quadratic number field M = Q(

√
q ). Since
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Table 3.

j Kj Cl2(Kj) Nj Cl2(Kj) Gal(k2/Kj)

1 Q(
√
−1,

√
p,
√

qq′ ) (2, 2n+1) 〈[p]〉 〈σ, τ2〉

2 Q(
√
−1,

√
−q,

√
−pq′ ) (2, 4) 〈[2p]〉 〈ρσ, σ2〉

3 Q(
√
−1,

√
−q′,

√
−pq ) (2, 4) 〈[2]〉 〈ρ, σ2〉

4 Q(
√

p,
√
−q,

√
q′ ) (2, 2n+1) 〈[2q]〉 〈[2pq]〉 〈στ, σ2〉

5 Q(
√

p,
√
−q′,

√
q ) (4, 2n) 〈[2pq]〉 〈[2q]〉 〈τ, σ2〉

6 Q(
√
−q,

√
−p,

√
−q′ ) (2, 4) 〈[pq]〉 〈[q]〉 〈ρτ, σ2〉

7 Q(
√

q′,
√
−p,

√
q ) (2, 4) 〈[q]〉 〈[pq]〉 〈ρστ, σ2〉

Table 4.

j Ej q(Kj/k)

1 〈i, εp, εqq′ ,
√

εmεpq′ 〉 2

2 〈ζ,
√

iεq, εpq′ ,
√

εmεpq′ 〉 4

3 〈i,
√

iεq′ , εpq,
√

εmεpq 〉 4

4 〈−1, εp, εq′ ,
√

εq′εpq′ 〉 2

5 〈−1, εp, εq,
√

εqεpq 〉 2

6 〈−1, εpq,
√

εpqεpq′ ,
√

εqq′ 〉 4

7 〈−1, εq,
√

εqεq′ ,
√

εqq′ 〉 4

it has odd class number and since 2 is ramified in M we conclude that there exist
integers x, y ∈ Z such that x2 − qy2 = ±2; from q ≡ 3 mod 8 we deduce that, in
fact, x2 − qy2 = −2. Put ηq = (x + y

√
q )/(1 + i); then η2

q = −εu
q for some odd

integer u shows that iεq becomes a square in M(i). Doing the same for the prime q′

we also see that ηqη
−1
q′ ∈ Q(

√
q,
√

q′ ), and this implies that √εqεq′ ∈ Q(
√

q,
√

q′ ).
The other entries in Table 4 are proved similarly.

Using the same methods we can actually show that

E = 〈ζ, εp,
√

iεq,
√

iεq′ ,
√

εqq′ ,
√

iεpq,
√

iεpq′ ,
√

εm 〉

has index 2 in the full unit group of kgen.

4. The Field with Discriminant d = −420

The smallest example in our family of quadratic number fields is given by d =
−420 = −4 · 3 · 5 · 7. Poitou [10] noticed that the class field tower of k = Q(

√
d )

must be finite, and Martinet [9] observed (without proof) that its class field tower
terminates at the second step with k2, and that (k2 : k) = 32. In this section, we
will give a complete proof (this will be used in [13]).
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The unit group of the genus class field kgen is

E = 〈ζ12, ε5,
√

iε3,
√

iε7,
√

iε15,
√

iε35,
√

ε21, η〉,

where η =
√

ε−1
7 ε5

√
ε3ε7ε15ε35ε105 = 1

2 (1 + 2
√

5 +
√

7 +
√

15 +
√

21 ). Since kgen

has class number 4, the second Hilbert class field is just its 2-class field, which can
be constructed explicitly: k2 = k1(

√
µ,
√

ν ), where µ = (4i −
√

5 )(2 +
√

5 ) and
ν = (2

√
−5 +

√
7 )(8 + 3

√
7 ).

We claim that k2 has class number 1. Odlyzko’s unconditional bounds show that
h(k2) ≤ 10, and since we know that it has odd class number, it suffices to prove
that no odd prime ≤ 10 divides h(k2). For p = 5 and p = 7 we can use the following
result which goes back to Grün [3]:

Proposition 6. Let L/k be a normal extension of number fields, and let K denote
the maximal subfield of L which is abelian over k.

i) If Cl(L/K) is cyclic, then h(L/K) | (L : K);
ii) If Cl(L) is cyclic, then h(L) | (L : K)e, where e denotes the exponent of

NL/K Cl(L). Observe that e | h(K), and that e = 1 if L contains the Hilbert
class field K1 of K.

Similar results hold for the p-Sylow subgroups.

Proof. Let C be a cyclic group of order h on which Γ = Gal(L/k) acts. This is
equivalent to the existence of a homomorphism Φ : Γ −→ Aut(C) ' Z/(h − 1)Z.
Since im Φ is abelian, Γ′ ⊆ ker Φ, hence Γ′ acts trivially on C. Now Γ′ corresponds
to the field K via Galois theory, and we find NL/Kc = c(L:K). Putting C = Cl(L/K),
we see at once that (L : K) annihilates Cl(L/K); if we denote the exponent of
NL/K Cl(L) by e and put C = Cl(L), then we find in a similar way that (L : K)e
annihilates Cl(L). �

This shows at once that h(k2) is not divisible by 5 or 7. For p = 3, the proof is
more complicated. First we use an observation due to R. Schoof:

Proposition 7. Let L/k be a normal extension with Galois group Γ, and suppose
that 3 - #Γ. Let K be the maximal abelian extension of k contained in L. If Γ does
not have a quotient of type SD16, if Cl3(L) ' (3, 3), and if 3 - h(k), then there
exists a subfield E of L/k such that Cl3(E) ' (3, 3) and Gal(E/k) ' D4 or H8.

Proof. Put A = Cl3(L); then Γ acts on A, i.e. there is a homomorphism Φ : Γ −→
Aut(A) ' GL(2, 3). From # GL(2, 3) = 48 and 3 - Γ we conclude that im Φ is
contained in the 2-Sylow subgroup of GL(2, 3), which is ' SD16.

We claim that im Φ is not abelian. In fact, assume that it is. Then im Φ '
Γ/ ker Φ shows that Γ′ ⊆ ker Φ; hence Γ′ acts trivially on A. The fixed field of
Γ′ is K, and now Cl3(K) ⊇ NL/K Cl3(L) = A(L:K) ' A shows that 3 | h(K)
contradicting our assumptions.

Thus im Φ is a nonabelian 2-group, and we conclude that # im Φ ≥ 8. On
the other hand, Γ does not have SD16 as a quotient, hence # im Φ = 8, and we
have im Φ ' D4 or H8, since these are the only nonabelian groups of order 8. Let
E be the fixed field of kerΦ. Since kerΦ acts trivially on A, we see Cl3(E) ⊇
NL/E Cl3(L) = A(L:E) ' A (note that (L : E) | Γ is not divisible by 3). The other
assertions are clear. �
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Applying the proposition to the extension k2/k (we have to check that Gal(k2/Q)
does not have SD16 as a quotient. But Gal(k2/Q) is a group extension

1 −→ Gal(k2/k1) −→ Gal(k2/Q) −→ Gal(k1/Q) −→ 1

of an elementary abelian group Gal(k1/Q) ' (2, 2, 2, 2) by another elementary
abelian group Gal(k2/k1) ' (2, 2), from which we deduce that Gal(k2/Q) has
exponent 4. Now observe that SD16 has exponent 8) we find that 3 - h(k2) unless
k2 contains a normal extension E/Q with 3-class group of type (3, 3) and Galois
group isomorphic to D4 or H8. Let E0 be the maximal abelian subfield of E; this
is a V4-extension of Q with quadratic subfields k0, k1 and k2. Let k0 denote a
quadratic subfield over which E is cyclic. If a prime ideal p ramifies in E0/k0, then
it must ramify completely in E/k0; but since all prime ideals have ramification
index ≤ 2 in E (since E ⊂ k2), this is a contradiction.

Thus E/k0 is unramified. If we put dj = disc kj , then this happens if and
only if d0 = d1d2 and (d1, d2) = 1. For quaternion extensions, this is already
a contradiction, since we conclude by symmetry that d1 = d0d2 and d2 = d0d1.
Assume therefore that Gal(E/Q) ' D4. From a result of Richter [11] we know that
E0 can only be embedded into a dihedral extension if (d1/p2) = (d2/p1) = +1 for
all p1 | d1 and all p2 | d2. But E0 is an abelian extension contained in k2, hence it
is contained in kgen, and we see that d is a product of the prime discriminants −3,
−4, 5, and −7. Since no combination of these factors satisfies Richter’s conditions,
E0 cannot be embedded into a D4-extension E/Q. This contradiction concludes
our proof that 3 - h(k2).
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