ON 2-CLASS FIELD TOWERS OF SOME IMAGINARY QUADRATIC NUMBER FIELDS

FRANZ LEMMERMEYER

ABSTRACT. We construct an infinite family of imaginary quadratic number fields with 2-class groups of type (2, 2, 2) whose Hilbert 2-class fields are finite.

1. INTRODUCTION

Let k be an imaginary quadratic number field. It has been known for quite a while that the 2-class field tower of an imaginary quadratic number field is infinite if rank $\operatorname{Cl}_2(k) \geq 5$, but it is not known how far from best possible this bound is. F. Hajir [4] has shown that the 2-class field tower is infinite if $\operatorname{Cl}(k) \supseteq (4, 4, 4)$, and again we do not know if this result can be improved. In this article we will study the 2-class field towers of a family of quadratic fields whose 2-class groups have rank 3.

For quadratic discriminants d, let $\operatorname{Cl}_2(d)$ and $h_2(d)$ denote the 2-class group and the 2-class number of $\mathbb{Q}(\sqrt{d})$, respectively. The fundamental unit of $\mathbb{Q}(\sqrt{m})$ will be denoted by ε_m , whether m is a discriminant or not. A factorization $d = d_1 \cdot d_2$ of a discriminant d into two coprime discriminants d_1 , d_2 is called a C_4 -factorization if $(d_1/p_2) = (d_2/p_1) = +1$ for all primes $p_1 \mid d_1, p_2 \mid d_2$. A D_4 -factorization of dis a factorization $d = (d_1 \cdot d_2) \cdot d_3$ such that $d_1 \cdot d_2$ is a C_4 -factorization. Finally, $d = d_1 \cdot d_2 \cdot d_3$ is called a H_8 -factorization if $(d_1 d_2/p_3) = (d_2 d_3/p_1) = (d_3 d_1/p_2) = +1$ for all primes $p_j \mid d_j, j = 1, 2, 3$. It is known (cf. [8]) that d admits a G-factorization $(G \in \{C_4, D_4\})$ if and only if $k = \mathbb{Q}(\sqrt{d})$ admits an extension K/k which is unramified outside ∞ , normal over \mathbb{Q} , and which has Galois group $\operatorname{Gal}(K/k) \simeq G$.

Let F^1 denote the 2-class field of a number field F, and put $F^2 = (F^1)^1$. Then in our case genus theory shows that $d = \operatorname{disc} k = d_1 d_2 d_3 d_4$ is the product of exactly four prime discriminants, and moreover we have $k_{\text{gen}} = \mathbb{Q}(\sqrt{d_1}, \sqrt{d_2}, \sqrt{d_3}, \sqrt{d_4})$.

Our aim is to prove the following

Theorem 1. Let $k = \mathbb{Q}(\sqrt{d})$ be an imaginary quadratic number field with discriminant d = -4pqq', where $p \equiv 5 \mod 8$, $q \equiv 3 \mod 8$ and $q' \equiv 7 \mod 8$ are primes such that (q/p) = (q'/p) = -1. Then $\Gamma_n = \text{Gal}(k^2/k)$ is given by

$$\Gamma_n = \langle \rho, \sigma, \tau : \rho^4 = \sigma^{2^{n+1}} = \tau^4 = 1, \rho^2 = \sigma^{2^n} \tau^2, \\ [\sigma, \tau] = 1, [\rho, \sigma] = \sigma^2, [\rho, \tau] = \sigma^{2^n} \tau^2 \rangle$$

where n is determined by $\operatorname{Cl}_2(-qq') = (2, 2^n)$. Moreover, $\operatorname{Cl}_2(k) \simeq (2, 2, 2)$ and $\operatorname{Cl}_2(k^1) \simeq (2, 2^n)$; for results about class and unit groups of subfields of k^1/k see the proof below.

We note a few relations which have proved to be useful for computing in Γ_n : $(\rho\sigma)^2 = \rho^2$, $(\rho\sigma\tau)^2 = (\rho\tau)^2 = \tau^2$, $[\rho, \tau^2] = 1$.

FRANZ LEMMERMEYER

2. Preliminary Results on Quadratic Fields

We will use a few results on 2-class groups of quadratic number fields which can easily be deduced from genus theory. We put m = pqq', where p, q, q' satisfy the conditions in Thm. 1, and set $k = \mathbb{Q}(\sqrt{-m})$.

Lemma 2. The ideal classes of $z = (2, 1 + \sqrt{-m})$, $\mathfrak{p} = (p, \sqrt{-m})$ and $\mathfrak{q} = (q, \sqrt{-m})$ generate $\operatorname{Cl}_2(k) \simeq (2, 2, 2)$.

Proof. Since (q/p) = (q/p') = -1 and $p \equiv 5 \mod 8$, there are no C_4 -factorizations of d, and this shows that $\operatorname{Cl}_2(k) \simeq (2, 2, 2)$. The ideal classes generated by 2, \mathfrak{p} and \mathfrak{q} are non-trivial simply because their norm is smaller than m; the same reasoning shows that they are independent.

Lemma 3. The quadratic number field $\tilde{k} = \mathbb{Q}(\sqrt{-qq'})$ has 2-class group $\operatorname{Cl}_2(\tilde{k}) \simeq (2, 2^n)$ for some $n \ge 1$; it is generated by the prime ideals $2 = (2, 1 + \sqrt{-qq'})$ above 2 and a prime ideal $\tilde{\mathfrak{p}}$ above p. Moreover, the ideal classes of 2 and $\mathfrak{q} = (q, \sqrt{-qq'})$ generate a subgroup C_2 of type (2,2); we have $n \ge 2$ if and only if (q'/q) = -1, and in this case, the square class in C_2 is $[2\mathfrak{q}]$.

Proof. Since $q \equiv 3 \mod 8$, the only possible C_4 -factorization is $d = -q' \cdot 4q$; this is a C_4 -factorization if and only if (-q'/q) = +1. In this case, exactly one of the ideal classes [2], [**q**] and [2**q**] is a square; by genus theory, this must be [2**q**]. Finally, let $\tilde{\mathbf{p}}$ denote a prime ideal above p. Then [$\tilde{\mathbf{p}}$] is no square in $\operatorname{Cl}_2(\tilde{k})$ because (-q/p) = -1, $[2\tilde{\mathbf{p}}]$ is no square because (-q'/2p) = -1, $[\mathbf{q}\tilde{\mathbf{p}}]$ is no square because (-q'/pq) = -1, and $[2\mathbf{q}\tilde{\mathbf{p}}]$ is no square because (-q'/2qp) = -1. This implies that $[\tilde{\mathbf{p}}]$ has order 2^n .

Lemma 4. The real quadratic number field $F = \mathbb{Q}(\sqrt{m})$ has 2-class number 2; the prime ideal \mathfrak{p} above p is principal, and the fundamental unit ε_m of \mathcal{O}_F becomes a square in $F(\sqrt{p})$.

Proof. Consider the prime ideals \mathfrak{p} , \mathfrak{q} and \mathfrak{q}' in \mathcal{O}_F above p, q and q', respectively; since $h_2(m) = 2$ (by genus theory) and $N\varepsilon_m = +1$, there must be a relation between their ideal classes besides $\mathfrak{pqq}' \sim 1$. Now clearly \mathfrak{q} cannot be principal, since this would imply $X^2 - my^2 = \pm 4q$; writing X = qx and dividing by q gives $qx^2 - pq'y^2 = \pm 4$. But this contradicts our assumption that (q/p) = -1. By symmetry, \mathfrak{q}' cannot be principal; since $h_2(F) = 2$, their product \mathfrak{qq}' is, hence we have $\mathfrak{p} \sim \mathfrak{qq}' \sim 1$. The equation $X^2 - my^2 = \pm 4p$ then leads as above to $px^2 - qq'y^2 = -4$ (the plus sign cannot hold since it would imply that (p/q) = 1), and it is easy to see that the unit $\eta = \frac{1}{2}(x\sqrt{p} + y\sqrt{qq'})$ satisfies $\eta^2 = \varepsilon_m^u$ for some odd integer u.

3. The 2-class field tower of k

In this section we prove that the 2-class field tower of k stops at k^2 , and that $\operatorname{Gal}(k^2/k) \simeq \Gamma_n$.

3.1. Class Numbers of Quadratic Extensions. Let K/k be a quadratic unramified extension. Then q(K) = 1; we define

- $\zeta = \zeta_6$ if q = 3 and $\zeta = -1$ otherwise;
- e_j is the unit group of the maximal order \mathcal{O}_j of k_j ;
- N_j is the relative norm of k_j/k ;

- κ_j is the subgroup of ideal classes in Cl(k) which capitulate in k_j ;
- h_j denotes the 2-class number of k_j .

Then we claim that Table 1 gives the unit group, the relative norm of the unit group, the capitulation order, the 2-class number and the relative norm of the 2-class group for the quadratic unramified extensions k_i/k .

j	k_j	e_j	$N_j e_j$	$\#\kappa_j$	h_j	$N_j C$	$l_2(k_j)$
1	$\mathbb{Q}(i,\sqrt{m})$	$\langle i, \varepsilon_m \rangle$	$\langle 1 \rangle$	4	8	ζ[2],	$ \mathfrak{p}\rangle$
2	$\mathbb{Q}(\sqrt{-q},\sqrt{pq'})$	$\langle \zeta, \varepsilon_{pq'} \rangle$	$\langle 1 \rangle$	4	8	$\langle [2\mathfrak{p}], [2\mathfrak{q}] \rangle$	$\langle [2\mathfrak{p}], [\mathfrak{q}] \rangle$
3	$\mathbb{Q}(\sqrt{-p},\sqrt{qq'})$	$\langle -1, \varepsilon_{qq'} \rangle$	$\langle 1 \rangle$	4	8	$\langle [\mathfrak{p}], [\mathfrak{q}] \rangle$	
4	$\mathbb{Q}(\sqrt{p},\sqrt{-qq'})$	$\langle -1, \varepsilon_p \rangle$	$\langle -1 \rangle$	2	2^{n+3}	$\langle [\mathfrak{p}], [2\mathfrak{q}] angle$	
5	$\mathbb{Q}(\sqrt{-q'},\sqrt{pq})$	$\langle -1, \varepsilon_{pq} \rangle$	$\langle 1 \rangle$	4	8	$\langle [2], [\mathfrak{pq}] \rangle$	$\langle [\mathtt{2}], [\mathfrak{q}] \rangle$
6	$\mathbb{Q}(\sqrt{-pq},\sqrt{q'})$	$\langle -1, \varepsilon_{q'} \rangle$	$\langle 1 \rangle$	4	8	$\langle [\mathtt{2}], [\mathfrak{q}] \rangle$	$\langle [\mathtt{2}], [\mathfrak{pq}] \rangle$
7	$\mathbb{Q}(\sqrt{-pq'},\sqrt{q})$	$\langle -1, \varepsilon_q \rangle$	$\langle 1 \rangle$	4	8	$\langle [\mathtt{2}\mathfrak{p}], [\mathfrak{q}] \rangle$	$\langle [2\mathfrak{p}], [2\mathfrak{q}] \rangle$

TABLE	1.

The left hand side of the column $N_j \operatorname{Cl}_2(k_j)$ refers to case A (i.e. (q/q') = -1), the right hand side to case B. We will now verify the table. The unit groups are easy to determine - we simply use the following proposition from [2]:

Proposition 5. Let k be an imaginary quadratic number field, and assume that K/k is a quadratic unramified extension. Then K is a V₄-extension, and q(K) = 1.

Applying this to the extension $K = k_j$ we find that the unit group e_j is generated by the roots of unity in k_j and the fundamental unit of the real quadratic subfield. Since $\#\kappa_j = 2(E_k : N_{K/k}E_K)$ for unramified quadratic extensions K/k, (see [2]), the order of the capitulation kernel is easily computed from the unit groups. Similarly, the 2-class number of $h(k_j)$ is given by the class number formula (see [6]), and since the unit index equals 1 in all cases, its computation is trivial.

Let us compute $N_j \operatorname{Cl}_2(k_j)$ in a few cases. Take e.g. $k_j = \mathbb{Q}(\sqrt{p}, \sqrt{-qq'})$: here the prime ideal \mathfrak{p} is a norm because (-qq'/p) = +1, whereas 2 and \mathfrak{q} are inert, since $p \equiv 5 \mod 8$ and (p/q) = -1. This implies that the ideal class $[2\mathfrak{q}]$ must be a norm, since $(\operatorname{Cl}_2(k) : N_j \operatorname{Cl}_2(k_j)) = 2$ by class field theory.

As another example, take $k_j = \mathbb{Q}(\sqrt{-q}, \sqrt{pq'})$ and assume that we are in case B), i.e. that (q/q') = 1. Then \mathfrak{q} is a norm since (pq'/q) = +1, and the ideals 2 and \mathfrak{p} are inert; this yields $N_j \operatorname{Cl}_2(k_j) = \langle [\mathfrak{q}], [2\mathfrak{p}] \rangle$.

3.2. The 2-class group of k_4 is $(4, 2^{n+1})$. We know $N_4 \operatorname{Cl}_2(k_4) = \langle [\mathfrak{p}], [\mathfrak{2q}] \rangle$ and $\#\kappa_4 = 2$. Since $\mathfrak{p} = (p, \sqrt{d})$ becomes principal, we have $\kappa_4 = \langle [\mathfrak{p}] \rangle$.

Let $\tilde{\mathfrak{p}}$ denote a prime ideal above p in $\mathbb{Q}(\sqrt{-qq'})$; we have shown in Lemma 3 that $\tilde{\mathfrak{p}}^{2^{n-1}} \sim 2\mathfrak{q}$. Since this ideal class does not capitulate in k_4 , we see that $\tilde{\mathfrak{p}}$ generates a cyclic subgroup of order 2^n in $\mathrm{Cl}_2(k_4)$.

Let \mathcal{O} denote the maximal order of k_4 ; then $p\mathcal{O} = \mathfrak{P}^2 \mathfrak{P}'^2$. We claim that $\mathfrak{P}^2 \sim \tilde{\mathfrak{p}}$. To this end, let s and t be the elements of order 2 in $\operatorname{Gal}(k_4/\mathbb{Q})$ which fix F and k, respectively. Using the identity 2 + (1 + s + t + st) = (1 + s) + (1 + t) + (1 + st)of the group ring $\mathbb{Z}[\operatorname{Gal}(k_4/\mathbb{Q})]$ and observing that \mathbb{Q} and the fixed field of st have odd class numbers we find

$$\mathfrak{P}^2 \sim \mathfrak{P}^{1+s}\mathfrak{P}^{1+t}\mathfrak{P}^{1+st} \sim \widetilde{\mathfrak{p}}\mathfrak{p} \sim \widetilde{\mathfrak{p}},$$

where the last relation (in $Cl_2(k_4)$) comes from the fact that $\mathfrak{p} \in \kappa_4$.

Thus $\langle [\mathbf{2}], [\mathfrak{P}] \rangle$ is a subgroup of type $(2, 2^{n+1})$ (hence of index 2) in $\operatorname{Cl}_2(k_4)$. Taking the norm to F we find $N_F \langle [\mathbf{2}], [\mathfrak{P}] \rangle = \langle [\tilde{\mathfrak{p}}] \rangle$; therefore there exists an ideal \mathfrak{A} in \mathcal{O} such that $N_F \mathfrak{A} \sim 2$ (equivalence in $\operatorname{Cl}(F)$). We conclude that $\operatorname{Cl}_2(k_4) = \langle [\mathbf{2}], [\mathfrak{A}], [\mathfrak{P}] \rangle$. Similarly, letting N_4 denote the norm in k_4/k we get $N_4 \langle [\mathbf{2}], [\mathfrak{P}] \rangle = \langle [\tilde{\mathfrak{p}}] \rangle$; this shows that $N_4 \mathfrak{A} \sim 2\mathfrak{q}$ or $N_4 \mathfrak{A} \sim 2\mathfrak{q}\mathfrak{p}$ (equivalence in $\operatorname{Cl}(k)$; which of the two possibilities occurs will be determined below). But since $\mathfrak{p} \sim 1$ in $\operatorname{Cl}_2(k_4)$ we can conclude that $\mathfrak{A}^{1+t} \sim 2\mathfrak{q}$. This gives $\mathfrak{A}^2 \sim 2 \cdot 2\mathfrak{q} \sim \mathfrak{q}$, and in particular [\mathfrak{A}] has order 4 in $\operatorname{Cl}_2(k_4)$.

Finally we claim that $\operatorname{Cl}_2(k_4) = \langle [\mathfrak{A}], [\mathfrak{P}] \rangle$, i.e. that $[\mathfrak{z}] \in \langle [\mathfrak{A}], [\mathfrak{P}] \rangle$. This is easy: from $\mathfrak{P}^2 \sim \widetilde{\mathfrak{p}}$ we deduce that $\mathfrak{P}^{2^n} \sim \mathfrak{2q}$, hence we get $\mathfrak{A}^2 \mathfrak{P}^{2^n} \sim \mathfrak{2}$.

3.3. **Proof that** $k^2 = k^3$. Since $\operatorname{Cl}_2(k_4) \simeq (4, 2^{n+1})$, we can apply Prop. 4 of [1], which says that k_4 has abelian 2-class field tower if and only if it has a quadratic unramified extension K/k_4 such that $h_2(K) = \frac{1}{2}h_2(k_4)$.

Put $M = \mathbb{Q}(i, \sqrt{p}, \sqrt{qq'})$, and consider its subfield $M^+ = \mathbb{Q}(\sqrt{p}, \sqrt{qq'})$. M^+ is the Hilbert 2-class field of $F = \mathbb{Q}(\sqrt{m})$, hence $h_2(M^+) = 1$, and the class number formula gives $q(M^+) = 2$. In fact it follows from Lemma 4 that $E_{M^+} = \langle -1, \varepsilon_p, \varepsilon_{qq'}, \sqrt{\varepsilon_m} \rangle$.

According to Thm. 1.ii).1. of [7], Hasse's unit index Q(M) equals 1 if $w_M \equiv 4 \mod 8$ (w_M denotes the number of roots of unity in M; in our case $w_M = 4$ or $w_M = 12$) and if the ideal generated by 2 is not a square in M^+ (this is the case here since $2 \nmid \operatorname{disc} M^+$). Thus Q(M) = 1 and $E_M = \langle \xi, \varepsilon_p, \varepsilon_{qq'}, \sqrt{\varepsilon_m} \rangle$, where ξ is a primitive 4^{th} ($q \neq 3$) or 12^{th} (q = 3) root of unity. This shows that the unit index of the extension $M/\mathbb{Q}(i)$ equals 2, and the class number formula finally gives

$$h_2(M) = \frac{1}{4} \cdot 2 \cdot 1 \cdot 2^n \cdot 8 = 2^{n+2} = \frac{1}{2}h_2(k_4).$$

3.4. Computation of $\operatorname{Gal}(k^2/k)$. Put $L = k^2$ and $K = k_4$; clearly $\sigma = \left(\frac{L/K}{\mathfrak{P}}\right)$ and $\tau = \left(\frac{L/K}{\mathfrak{A}}\right)$ generate the abelian subgroup $\operatorname{Gal}(L/K) \simeq (2^{n+1}, 4)$ of $\Gamma_n = \operatorname{Gal}(L/k)$. If we put $\rho = \left(\frac{L/k}{2}\right)$ then ρ restricts to the nontrivial automorphism of K/k (since [2] is not a norm from k_4/k), which shows that $\Gamma_n = \langle \rho, \sigma, \tau \rangle$. The relations are easily computed: $\rho^2 = \left(\frac{L/K}{2}\right) = \sigma^{2^n} \tau^2$, since $2 \sim \mathfrak{A}^2 \mathfrak{P}^{2^n}$, $\rho^{-1} \sigma \rho = \left(\frac{L/K}{\mathfrak{P}^\rho}\right) = \sigma^{-1}$, since $\mathfrak{P}\mathfrak{P}^{\rho} = \mathfrak{p} \sim 1$, and $\tau \rho^{-1} \tau \rho = \left(\frac{L/K}{\mathfrak{A}^{1+\rho}}\right) = \left(\frac{L/K}{2\mathfrak{q}}\right) = \sigma^{2^n}$. Thus

$$\Gamma_{n} = \langle \rho, \sigma, \tau : \rho^{4} = \sigma^{2^{n+1}} = \tau^{4} = 1, \rho^{2} = \sigma^{2^{n}} \tau^{2}, \\ [\sigma, \tau] = 1, [\rho, \sigma] = \sigma^{2}, [\tau, \rho] = \sigma^{2^{n-1}} \tau^{2} \rangle$$

as claimed. We refer the reader to Hasse's report [5] for the used properties of Artin symbols.

3.5. Additional Information on Units and Class Groups. Using the presentation of Γ_n it is easy to compute the abelianization of its subgroups of index 2; this shows at once that $\operatorname{Cl}_2(k_j) \simeq (2,4)$ for all $j \neq 4$ in case A and in for all $j \neq 5,7$ in case B. More results are contained in Table 2.

j	k_j	$\operatorname{Cl}_2(k_j)$	κ_j	$\operatorname{Gal}(k^2/k_j)$
1	$\mathbb{Q}(i,\sqrt{m})$	(2, 4)	$\langle [2], [\mathfrak{p}] \rangle$	$\langle \rho, \sigma, \tau^2 \rangle$
2	$\mathbb{Q}(\sqrt{-q},\sqrt{pq'})$	(2, 4)	$\langle [\mathfrak{q}], [2\mathfrak{p}] \rangle$	$\left<\rho\sigma,\rho\tau,\sigma^2,\tau^2\right>$
3	$\mathbb{Q}(\sqrt{-p},\sqrt{qq'})$	(2, 4)	$\langle [\mathfrak{p}], [\mathfrak{q}] \rangle$	$\left<\rho\tau,\sigma,\tau^2\right>$
4	$\mathbb{Q}(\sqrt{p},\sqrt{-qq'})$	$(4, 2^{n+1})$	$\langle [\mathfrak{p}] angle$	$\langle \sigma, \tau \rangle$
5	$\mathbb{Q}(\sqrt{-q'},\sqrt{pq})$	(2,4) $(2,2,2)$	$\langle [\mathfrak{pq}], [\mathfrak{2p}] \rangle$	$\langle \rho, \sigma^2, \tau \rangle$
6	$\mathbb{Q}(\sqrt{-pq},\sqrt{q'})$	(2, 4)	$\langle [\mathfrak{pq}], [2] angle$	$\langle \rho, \sigma\tau, \sigma^2 \rangle$
7	$\mathbb{Q}(\sqrt{-pq'},\sqrt{q})$	(2,4) $(2,2,2)$	$\langle [\mathtt{2}], [\mathfrak{q}] \rangle$	$\left<\rho\sigma,\tau,\sigma^2\right>$

TABLE 2.

The computation of the capitulation kernels κ_j is no problem at all: take k_1 , for example. We have seen that \mathfrak{p} is principal in $\mathbb{Q}(\sqrt{m})$, hence it is principal in k_1 . Moreover, $\mathfrak{2} = (1+i)$ is clearly principal, and since we know from Table 1 that $\#\kappa_1 = 4$ we conclude that $\kappa_1 = \langle [\mathfrak{p}], [\mathfrak{2}] \rangle$.

Before we determine the Galois groups corresponding to the extensions k_j/k we examine whether $N_4\mathfrak{A} \sim 2\mathfrak{q}$ or $N_4\mathfrak{A} \sim 2\mathfrak{p}\mathfrak{q}$ (equivalence in $\operatorname{Cl}_2(k)$). We do this as follows: first we choose a prime ideal \mathfrak{R} in \mathcal{O} such that $[\mathfrak{A}] = [\mathfrak{R}]$ (this is always possible by Chebotarev's theorem). Then its norms $\tilde{\mathfrak{r}}$ in \mathcal{O}_F and \mathfrak{r} in \mathcal{O}_k are prime ideals, and we have $2\tilde{\mathfrak{r}} \sim 1$ in $\operatorname{Cl}_2(F)$. This implies that $2r = x^2 + 2qq'y^2$, from which we deduce that (2r/q) = +1. If we had $2\mathfrak{q}\mathfrak{r} \sim 1$ in $\operatorname{Cl}_2(k)$, this would imply $2qr = U^2 + mv^2$; writing U = qu this gives $2r = qu^2 + pq'v^2$. This in turn shows (2r/q) = (pq'/q) = (-q'/q), which is a contradiction if (q/q') = -1. Thus $N_4\mathfrak{A} \sim 2\mathfrak{p}\mathfrak{q}$ in case A). Similarly one shows that $N_4\mathfrak{A} \sim 2\mathfrak{q}$ in case B).

Now consider the automorphism $\tau = \left(\frac{L/K}{\Re}\right)$; we have just shown that $\tau = \left(\frac{L/K}{\Re}\right)$. Let M be a quadratic extension of K in L; then the restriction of $\tau \in \operatorname{Gal}(L/K)$ to M is $\tau|_M = \left(\frac{M/K}{\Re}\right)$, and this is the identity if and only if the prime ideals in the ideal class $[\Re]$ split in M/K. But from $2r = x^2 + 2qq'y^2$ we get $r \equiv 3 \mod 4$, (2r/q) = +1, hence (q/r) = 1 since $q \equiv 3 \mod 8$. This shows that \Re splits in $K_5 = K(\sqrt{q}) = \mathbb{Q}(\sqrt{p}, \sqrt{q}, \sqrt{-q'})$, thus τ fixes K_5 , and we find $\operatorname{Gal}(L/K_5) = \langle \tau, \sigma^2 \rangle$.

Next \mathfrak{P} splits in $K_1 = K(\sqrt{-1})$, hence σ fixes K_1 , and we have $\operatorname{Gal}(L/K_1) = \langle \sigma, \tau^2 \rangle$. Finally, ρ fixes those extensions k_j/k in which [2] splits, i.e. k_1, k_5 and k_6 . In particular, ρ fixes their compositum K_3 , and we find $\operatorname{Gal}(L/K_3) = \langle \rho, \sigma^2, \tau^2 \rangle$.

Using elementary properties of Galois theory we can fill in the entries in the last column of Tables 2 and 3.

The 2-class group structure for the subfields K_j of k^1/k of relative degree 4, the relative norms of their 2-class groups and their Galois groups are given in Table 3. The structure of $\operatorname{Cl}_2(K_j)$ is easily determined from $\operatorname{Cl}_2(K_j) \simeq \operatorname{Gal}(k^2/K_j)^{\mathrm{ab}}$. Note that in every extension K_j/k the whole 2-class group of k is capitulating.

It is also possible to determine the unit groups E_j of the fields K_j (see Table 4). In fact, applying the class number formula to the V_4 -extensions K_j/k we can determine the unit index $q(K_j/k)$ since we already know the class numbers. Thus all we have to do is check that the square roots of certain units lie in the field K_j . This is done as follows: consider the quadratic number field $M = \mathbb{Q}(\sqrt{q})$. Since

FRANZ LEMMERMEYER

TABLE	3
TADLE	υ

j	K_j	$\operatorname{Cl}_2(K_j)$	$N_j \operatorname{Cl}$	$_2(K_j)$	$\operatorname{Gal}(k^2/K_j)$
1	$\mathbb{Q}(\sqrt{-1},\sqrt{p},\sqrt{qq'})$	$(2, 2^{n+1})$	$\langle [\mathfrak{p}] angle$		$\langle \sigma, \tau^2 \rangle$
2	$\mathbb{Q}(\sqrt{-1},\sqrt{-q},\sqrt{-pq'})$	(2, 4)	$\langle [2\mathfrak{p}] \rangle$		$\langle \rho\sigma,\sigma^2\rangle$
3	$\mathbb{Q}(\sqrt{-1},\sqrt{-q'},\sqrt{-pq})$	(2, 4)	$\langle [2] \rangle$		$\langle \rho, \sigma^2 \rangle$
4	$\mathbb{Q}(\sqrt{p},\sqrt{-q},\sqrt{q'})$	$(2, 2^{n+1})$	$\langle [2\mathfrak{q}] \rangle$	$\langle [\mathtt{2pq}] \rangle$	$\langle \sigma\tau,\sigma^2\rangle$
5	$\mathbb{Q}(\sqrt{p},\sqrt{-q'},\sqrt{q})$	$(4, 2^n)$	$\langle [2\mathfrak{pq}] \rangle$	$\langle [2\mathfrak{q}]\rangle$	$\langle \tau, \sigma^2 \rangle$
6	$\mathbb{Q}(\sqrt{-q},\sqrt{-p},\sqrt{-q'})$	(2, 4)	$\langle [\mathfrak{pq}] angle$	$\langle [\mathfrak{q}] angle$	$\langle \rho\tau,\sigma^2\rangle$
7	$\mathbb{Q}(\sqrt{q'},\sqrt{-p},\sqrt{q})$	(2, 4)	$\langle [\mathfrak{q}] \rangle$	$\langle [\mathfrak{pq}] \rangle$	$\langle \rho \sigma \tau, \sigma^2 \rangle$

TABLE 4.

j	E_j	$q(K_j/k)$
1	$\langle i, \varepsilon_p, \varepsilon_{qq'}, \sqrt{\varepsilon_m \varepsilon_{pq'}} \rangle$	2
2	$\langle \zeta, \sqrt{i\varepsilon_q}, \varepsilon_{pq'}, \sqrt{\varepsilon_m \varepsilon_{pq'}} \rangle$	4
3	$\langle i, \sqrt{i\varepsilon_{q'}}, \varepsilon_{pq}, \sqrt{\varepsilon_m \varepsilon_{pq}} \rangle$	4
4	$\langle -1, \varepsilon_p, \varepsilon_{q'}, \sqrt{\varepsilon_{q'} \varepsilon_{pq'}} \rangle$	2
5	$\langle -1, \varepsilon_p, \varepsilon_q, \sqrt{\varepsilon_q \varepsilon_{pq}} \rangle$	2
6	$\langle -1, \varepsilon_{pq}, \sqrt{\varepsilon_{pq}\varepsilon_{pq'}}, \sqrt{\varepsilon_{qq'}} \rangle$	4
7	$\langle -1, \varepsilon_q, \sqrt{\varepsilon_q \varepsilon_{q'}}, \sqrt{\varepsilon_{qq'}} \rangle$	4

it has odd class number and since 2 is ramified in M we conclude that there exist integers $x, y \in \mathbb{Z}$ such that $x^2 - qy^2 = \pm 2$; from $q \equiv 3 \mod 8$ we deduce that, in fact, $x^2 - qy^2 = -2$. Put $\eta_q = (x + y\sqrt{q})/(1 + i)$; then $\eta_q^2 = -\varepsilon_q^u$ for some odd integer u shows that $i\varepsilon_q$ becomes a square in M(i). Doing the same for the prime q'we also see that $\eta_q \eta_{q'}^{-1} \in \mathbb{Q}(\sqrt{q}, \sqrt{q'})$, and this implies that $\sqrt{\varepsilon_q \varepsilon_{q'}} \in \mathbb{Q}(\sqrt{q}, \sqrt{q'})$. The other entries in Table 4 are proved similarly.

Using the same methods we can actually show that

$$E = \langle \zeta, \varepsilon_p, \sqrt{i\varepsilon_q}, \sqrt{i\varepsilon_{q'}}, \sqrt{\varepsilon_{qq'}}, \sqrt{i\varepsilon_{pq}}, \sqrt{i\varepsilon_{pq'}}, \sqrt{\varepsilon_m} \rangle$$

has index 2 in the full unit group of k_{gen} .

4. The Field with Discriminant d = -420

The smallest example in our family of quadratic number fields is given by $d = -420 = -4 \cdot 3 \cdot 5 \cdot 7$. Poitou [10] noticed that the class field tower of $k = \mathbb{Q}(\sqrt{d})$ must be finite, and Martinet [9] observed (without proof) that its class field tower terminates at the second step with k^2 , and that $(k^2 : k) = 32$. In this section, we will give a complete proof (this will be used in [13]).

The unit group of the genus class field k_{gen} is

$$E = \langle \zeta_{12}, \varepsilon_5, \sqrt{i\varepsilon_3}, \sqrt{i\varepsilon_7}, \sqrt{i\varepsilon_{15}}, \sqrt{i\varepsilon_{35}}, \sqrt{\varepsilon_{21}}, \eta \rangle,$$

where $\eta = \sqrt{\varepsilon_7^{-1}\varepsilon_5\sqrt{\varepsilon_3\varepsilon_7\varepsilon_{15}\varepsilon_{35}\varepsilon_{105}}} = \frac{1}{2}(1+2\sqrt{5}+\sqrt{7}+\sqrt{15}+\sqrt{21})$. Since k_{gen} has class number 4, the second Hilbert class field is just its 2-class field, which can be constructed explicitly: $k^2 = k^1(\sqrt{\mu},\sqrt{\nu})$, where $\mu = (4i-\sqrt{5})(2+\sqrt{5})$ and $\nu = (2\sqrt{-5}+\sqrt{7})(8+3\sqrt{7})$.

We claim that k^2 has class number 1. Odlyzko's unconditional bounds show that $h(k^2) \leq 10$, and since we know that it has odd class number, it suffices to prove that no odd prime ≤ 10 divides $h(k^2)$. For p = 5 and p = 7 we can use the following result which goes back to Grün [3]:

Proposition 6. Let L/k be a normal extension of number fields, and let K denote the maximal subfield of L which is abelian over k.

- i) If $\operatorname{Cl}(L/K)$ is cyclic, then $h(L/K) \mid (L:K)$;
- ii) If Cl(L) is cyclic, then h(L) | (L : K)e, where e denotes the exponent of N_{L/K} Cl(L). Observe that e | h(K), and that e = 1 if L contains the Hilbert class field K¹ of K.

Similar results hold for the p-Sylow subgroups.

Proof. Let C be a cyclic group of order h on which $\Gamma = \operatorname{Gal}(L/k)$ acts. This is equivalent to the existence of a homomorphism $\Phi : \Gamma \longrightarrow \operatorname{Aut}(C) \simeq \mathbb{Z}/(h-1)\mathbb{Z}$. Since im Φ is abelian, $\Gamma' \subseteq \ker \Phi$, hence Γ' acts trivially on C. Now Γ' corresponds to the field K via Galois theory, and we find $N_{L/K}c = c^{(L:K)}$. Putting $C = \operatorname{Cl}(L/K)$, we see at once that (L:K) annihilates $\operatorname{Cl}(L/K)$; if we denote the exponent of $N_{L/K}\operatorname{Cl}(L)$ by e and put $C = \operatorname{Cl}(L)$, then we find in a similar way that (L:K)eannihilates $\operatorname{Cl}(L)$.

This shows at once that $h(k^2)$ is not divisible by 5 or 7. For p = 3, the proof is more complicated. First we use an observation due to R. Schoof:

Proposition 7. Let L/k be a normal extension with Galois group Γ , and suppose that $3 \nmid \#\Gamma$. Let K be the maximal abelian extension of k contained in L. If Γ does not have a quotient of type SD_{16} , if $Cl_3(L) \simeq (3,3)$, and if $3 \nmid h(k)$, then there exists a subfield E of L/k such that $Cl_3(E) \simeq (3,3)$ and $Gal(E/k) \simeq D_4$ or H_8 .

Proof. Put $A = \operatorname{Cl}_3(L)$; then Γ acts on A, i.e. there is a homomorphism $\Phi : \Gamma \longrightarrow \operatorname{Aut}(A) \simeq \operatorname{GL}(2,3)$. From $\# \operatorname{GL}(2,3) = 48$ and $3 \nmid \Gamma$ we conclude that im Φ is contained in the 2-Sylow subgroup of $\operatorname{GL}(2,3)$, which is $\simeq SD_{16}$.

We claim that im Φ is not abelian. In fact, assume that it is. Then im $\Phi \simeq \Gamma/\ker \Phi$ shows that $\Gamma' \subseteq \ker \Phi$; hence Γ' acts trivially on A. The fixed field of Γ' is K, and now $\operatorname{Cl}_3(K) \supseteq N_{L/K} \operatorname{Cl}_3(L) = A^{(L:K)} \simeq A$ shows that $3 \mid h(K)$ contradicting our assumptions.

Thus im Φ is a nonabelian 2-group, and we conclude that $\# \text{ im } \Phi \geq 8$. On the other hand, Γ does not have SD_{16} as a quotient, hence $\# \text{ im } \Phi = 8$, and we have im $\Phi \simeq D_4$ or H_8 , since these are the only nonabelian groups of order 8. Let E be the fixed field of ker Φ . Since ker Φ acts trivially on A, we see $\operatorname{Cl}_3(E) \supseteq N_{L/E} \operatorname{Cl}_3(L) = A^{(L:E)} \simeq A$ (note that $(L:E) \mid \Gamma$ is not divisible by 3). The other assertions are clear. \Box

FRANZ LEMMERMEYER

Applying the proposition to the extension k^2/k (we have to check that $\operatorname{Gal}(k^2/\mathbb{Q})$ does not have SD_{16} as a quotient. But $\operatorname{Gal}(k^2/\mathbb{Q})$ is a group extension

$$1 \longrightarrow \operatorname{Gal}(k^2/k^1) \longrightarrow \operatorname{Gal}(k^2/\mathbb{Q}) \longrightarrow \operatorname{Gal}(k^1/\mathbb{Q}) \longrightarrow 1$$

of an elementary abelian group $\operatorname{Gal}(k^1/\mathbb{Q}) \simeq (2,2,2,2)$ by another elementary abelian group $\operatorname{Gal}(k^2/k^1) \simeq (2,2)$, from which we deduce that $\operatorname{Gal}(k^2/\mathbb{Q})$ has exponent 4. Now observe that SD_{16} has exponent 8) we find that $3 \nmid h(k^2)$ unless k^2 contains a normal extension E/\mathbb{Q} with 3-class group of type (3,3) and Galois group isomorphic to D_4 or H_8 . Let E_0 be the maximal abelian subfield of E; this is a V_4 -extension of \mathbb{Q} with quadratic subfields k_0 , k_1 and k_2 . Let k_0 denote a quadratic subfield over which E is cyclic. If a prime ideal \mathfrak{p} ramifies in E_0/k_0 , then it must ramify completely in E/k_0 ; but since all prime ideals have ramification index ≤ 2 in E (since $E \subset k^2$), this is a contradiction.

Thus E/k_0 is unramified. If we put $d_j = \operatorname{disc} k_j$, then this happens if and only if $d_0 = d_1 d_2$ and $(d_1, d_2) = 1$. For quaternion extensions, this is already a contradiction, since we conclude by symmetry that $d_1 = d_0 d_2$ and $d_2 = d_0 d_1$. Assume therefore that $\operatorname{Gal}(E/\mathbb{Q}) \simeq D_4$. From a result of Richter [11] we know that E_0 can only be embedded into a dihedral extension if $(d_1/p_2) = (d_2/p_1) = +1$ for all $p_1 \mid d_1$ and all $p_2 \mid d_2$. But E_0 is an abelian extension contained in k^2 , hence it is contained in k_{gen} , and we see that d is a product of the prime discriminants -3, -4, 5, and -7. Since no combination of these factors satisfies Richter's conditions, E_0 cannot be embedded into a D_4 -extension E/\mathbb{Q} . This contradiction concludes our proof that $3 \nmid h(k_2)$.

Acknowledgement

Much of Section 4, in particular Proposition 7, is due to R. Schoof [12], whom I would like to thank for his help. I also thank C. Snyder for correcting an error in Table 2.

References

- E. Benjamin, F. Lemmermeyer, C. Snyder, Real Quadratic Fields with Abelian 2-Class Field Tower, submitted 4
- [2] E. Benjamin, F. Sanborn, C. Snyder, Capitulation in Unramified Quadratic Extensions of Real Quadratic Number Fields, Glasgow Math. J. 36 (1994), 385–392 3
- [3] O. Grün, Aufgabe 153; Lösungen von L. Holzer und A. Scholz, Jahresber. DMV 45 (1934), 74–75 (kursiv)
- [4] F. Hajir, On a theorem of Koch, Pac. J. Math. 176 (1996), 15-18 7 1
- [5] H. Hasse, Zahlbericht. Teil II, Würzburg-Wien 1970 4
- [6] F. Lemmermeyer, Kuroda's Class Number Formula, Acta Arith. 66.3 (1994), 245-260. 3
- [7] F. Lemmermeyer, Ideal class groups of cyclotomic number fields I, Acta Arith. 72 (1995), 347–359 4
- [8] F. Lemmermeyer, Unramified quaternion extensions of quadratic number fields, J. Théor. Nombres Bordeaux 9 (1997), 51–68
- [9] J. Martinet, Petits discriminants des corps de nombres, Journées Arithmétiques 1980 (J. V. Armitage, ed.), Cambridge Univ. Press 1982, 151–193, 6
- [10] G. Poitou, Minorations de discriminants, Sém. Bourbaki (1975/76) 479 (1977), 136-153 6

- [11] H. Richter, Über die Lösbarkeit einiger nicht-Abelscher Einbettungsprobleme, Math. Annalen 112 (1936), 69–84
- [12] R. Schoof, Letter from Nov. 13, 1992 8
- [13] K. Yamamura, Maximal unramified extensions of imaginary quadratic number fields of small conductors, preprint 1996 6

BILKENT UNIVERSITY, DEPT. MATHEMATICS, 06533 BILKENT, ANKARA *E-mail address*: hb3@ix.urz.uni-heidelberg.de, franz@fen.bilkent.edu.tr