ON 2-CLASS FIELD TOWERS OF SOME IMAGINARY QUADRATIC NUMBER FIELDS

FRANZ LEMMERMEYER

Abstract

We construct an infinite family of imaginary quadratic number fields with 2-class groups of type $(2,2,2)$ whose Hilbert 2-class fields are finite

1. Introduction

Let k be an imaginary quadratic number field. It has been known for quite a while that the 2 -class field tower of an imaginary quadratic number field is infinite if $\operatorname{rank} \mathrm{Cl}_{2}(k) \geq 5$, but it is not known how far from best possible this bound is. F. Hajir [4 has shown that the 2-class field tower is infinite if $\mathrm{Cl}(k) \supseteq(4,4,4)$, and again we do not know if this result can be improved. In this article we will study the 2 -class field towers of a family of quadratic fields whose 2 -class groups have rank 3.

For quadratic discriminants d, let $\mathrm{Cl}_{2}(d)$ and $h_{2}(d)$ denote the 2-class group and the 2-class number of $\mathbb{Q}(\sqrt{d})$, respectively. The fundamental unit of $\mathbb{Q}(\sqrt{m})$ will be denoted by ε_{m}, whether m is a discriminant or not. A factorization $d=d_{1} \cdot d_{2}$ of a discriminant d into two coprime discriminants d_{1}, d_{2} is called a C_{4}-factorization if $\left(d_{1} / p_{2}\right)=\left(d_{2} / p_{1}\right)=+1$ for all primes $p_{1}\left|d_{1}, p_{2}\right| d_{2}$. A D_{4}-factorization of d is a factorization $d=\left(d_{1} \cdot d_{2}\right) \cdot d_{3}$ such that $d_{1} \cdot d_{2}$ is a C_{4}-factorization. Finally, $d=d_{1} \cdot d_{2} \cdot d_{3}$ is called a H_{8}-factorization if $\left(d_{1} d_{2} / p_{3}\right)=\left(d_{2} d_{3} / p_{1}\right)=\left(d_{3} d_{1} / p_{2}\right)=+1$ for all primes $p_{j} \mid d_{j}, j=1,2,3$. It is known (cf. [8) that d admits a G-factorization $\left(G \in\left\{C_{4}, D_{4}\right\}\right)$ if and only if $k=\mathbb{Q}(\sqrt{d})$ admits an extension K / k which is unramified outside ∞, normal over \mathbb{Q}, and which has Galois group $\operatorname{Gal}(K / k) \simeq G$.

Let F^{1} denote the 2-class field of a number field F, and put $F^{2}=\left(F^{1}\right)^{1}$. Then in our case genus theory shows that $d=\operatorname{disc} k=d_{1} d_{2} d_{3} d_{4}$ is the product of exactly four prime discriminants, and moreover we have $k_{\mathrm{gen}}=\mathbb{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}, \sqrt{d_{3}}, \sqrt{d_{4}}\right)$.

Our aim is to prove the following
Theorem 1. Let $k=\mathbb{Q}(\sqrt{d})$ be an imaginary quadratic number field with discriminant $d=-4 p q q^{\prime}$, where $p \equiv 5 \bmod 8, q \equiv 3 \bmod 8$ and $q^{\prime} \equiv 7 \bmod 8$ are primes such that $(q / p)=\left(q^{\prime} / p\right)=-1$. Then $\Gamma_{n}=\operatorname{Gal}\left(k^{2} / k\right)$ is given by

$$
\begin{aligned}
\Gamma_{n}=\langle\rho, \sigma, \tau: & \rho^{4}=\sigma^{2^{n+1}}=\tau^{4}=1, \rho^{2}=\sigma^{2^{n}} \tau^{2}, \\
& {\left.[\sigma, \tau]=1,[\rho, \sigma]=\sigma^{2},[\rho, \tau]=\sigma^{2^{n}} \tau^{2}\right\rangle, }
\end{aligned}
$$

where n is determined by $\mathrm{Cl}_{2}\left(-q q^{\prime}\right)=\left(2,2^{n}\right)$. Moreover, $\mathrm{Cl}_{2}(k) \simeq(2,2,2)$ and $\mathrm{Cl}_{2}\left(k^{1}\right) \simeq\left(2,2^{n}\right)$; for results about class and unit groups of subfields of k^{1} / k see the proof below.

We note a few relations which have proved to be useful for computing in Γ_{n} : $(\rho \sigma)^{2}=\rho^{2},(\rho \sigma \tau)^{2}=(\rho \tau)^{2}=\tau^{2},\left[\rho, \tau^{2}\right]=1$.

2. Preliminary Results on Quadratic Fields

We will use a few results on 2-class groups of quadratic number fields which can easily be deduced from genus theory. We put $m=p q q^{\prime}$, where p, q, q^{\prime} satisfy the conditions in Thm. 1, and set $k=\mathbb{Q}(\sqrt{-m})$.
Lemma 2. The ideal classes of $\mathfrak{2}=(2,1+\sqrt{-m}), \mathfrak{p}=(p, \sqrt{-m})$ and $\mathfrak{q}=$ $(q, \sqrt{-m})$ generate $\mathrm{Cl}_{2}(k) \simeq(2,2,2)$.

Proof. Since $(q / p)=\left(q / p^{\prime}\right)=-1$ and $p \equiv 5 \bmod 8$, there are no C_{4}-factorizations of d, and this shows that $\mathrm{Cl}_{2}(k) \simeq(2,2,2)$. The ideal classes generated by $2, \mathfrak{p}$ and \mathfrak{q} are non-trivial simply because their norm is smaller than m; the same reasoning shows that they are independent.

Lemma 3. The quadratic number field $\widetilde{k}=\mathbb{Q}\left(\sqrt{-q q^{\prime}}\right)$ has 2-class group $\mathrm{Cl}_{2}(\widetilde{k}) \simeq$ $\left(2,2^{n}\right)$ for some $n \geq 1$; it is generated by the prime ideals $2=\left(2,1+\sqrt{-q q^{\prime}}\right)$ above 2 and a prime ideal $\widetilde{\mathfrak{p}}$ above p. Moreover, the ideal classes of 2 and $\mathfrak{q}=\left(q, \sqrt{-q q^{\prime}}\right)$ generate a subgroup C_{2} of type $(2,2)$; we have $n \geq 2$ if and only if $\left(q^{\prime} / q\right)=-1$, and in this case, the square class in C_{2} is [2q].

Proof. Since $q \equiv 3 \bmod 8$, the only possible C_{4}-factorization is $d=-q^{\prime} \cdot 4 q$; this is a C_{4}-factorization if and only if $\left(-q^{\prime} / q\right)=+1$. In this case, exactly one of the ideal classes $[2],[\mathfrak{q}]$ and $[2 \mathfrak{q}]$ is a square; by genus theory, this must be $[2 \mathfrak{q}]$. Finally, let $\widetilde{\mathfrak{p}}$ denote a prime ideal above p. Then $[\widetilde{p}]$ is no square in $\mathrm{Cl}_{2}(\widetilde{k})$ because $(-q / p)=-1$, $[2 \widetilde{\mathfrak{p}}]$ is no square because $\left(-q^{\prime} / 2 p\right)=-1,[\mathfrak{q} \widetilde{p}]$ is no square because $\left(-q^{\prime} / p q\right)=-1$, and $[2 \mathfrak{q} \widetilde{\mathfrak{p}}]$ is no square because $\left(-q^{\prime} / 2 q p\right)=-1$. This implies that $[\widetilde{\mathfrak{p}}]$ has order 2^{n}.

Lemma 4. The real quadratic number field $F=\mathbb{Q}(\sqrt{m})$ has 2 -class number 2 ; the prime ideal \mathfrak{p} above p is principal, and the fundamental unit ε_{m} of \mathcal{O}_{F} becomes a square in $F(\sqrt{p})$.

Proof. Consider the prime ideals $\mathfrak{p}, \mathfrak{q}$ and \mathfrak{q}^{\prime} in \mathcal{O}_{F} above p, q and q^{\prime}, respectively; since $h_{2}(m)=2$ (by genus theory) and $N \varepsilon_{m}=+1$, there must be a relation between their ideal classes besides $\mathfrak{p q q}{ }^{\prime} \sim 1$. Now clearly \mathfrak{q} cannot be principal, since this would imply $X^{2}-m y^{2}= \pm 4 q$; writing $X=q x$ and dividing by q gives $q x^{2}-p q^{\prime} y^{2}= \pm 4$. But this contradicts our assumption that $(q / p)=-1$. By symmetry, \mathfrak{q}^{\prime} cannot be principal; since $h_{2}(F)=2$, their product $\mathfrak{q} \mathfrak{q}^{\prime}$ is, hence we have $\mathfrak{p} \sim \mathfrak{q q}^{\prime} \sim 1$. The equation $X^{2}-m y^{2}= \pm 4 p$ then leads as above to $p x^{2}-q q^{\prime} y^{2}=-4$ (the plus sign cannot hold since it would imply that $(p / q)=1$), and it is easy to see that the unit $\eta=\frac{1}{2}\left(x \sqrt{p}+y \sqrt{q q^{\prime}}\right)$ satisfies $\eta^{2}=\varepsilon_{m}^{u}$ for some odd integer u.

3. The 2-CLASS FIELD TOWER OF k

In this section we prove that the 2 -class field tower of k stops at k^{2}, and that $\operatorname{Gal}\left(k^{2} / k\right) \simeq \Gamma_{n}$.
3.1. Class Numbers of Quadratic Extensions. Let K / k be a quadratic unramified extension. Then $q(K)=1$; we define

- $\zeta=\zeta_{6}$ if $q=3$ and $\zeta=-1$ otherwise;
- e_{j} is the unit group of the maximal order \mathcal{O}_{j} of k_{j};
- N_{j} is the relative norm of k_{j} / k;
- κ_{j} is the subgroup of ideal classes in $\mathrm{Cl}(k)$ which capitulate in k_{j};
- h_{j} denotes the 2 -class number of k_{j}.

Then we claim that Table 1 gives the unit group, the relative norm of the unit group, the capitulation order, the 2-class number and the relative norm of the 2-class group for the quadratic unramified extensions k_{j} / k.

Table 1.

j	k_{j}	e_{j}	$N_{j} e_{j}$	$\# \kappa_{j}$	h_{j}	$N_{j} \mathrm{Cl}_{2}\left(k_{j}\right)$	
1	$\mathbb{Q}(i, \sqrt{m})$	$\left\langle i, \varepsilon_{m}\right\rangle$	$\langle 1\rangle$	4	8	$\langle[2],[\mathfrak{p}]\rangle$	
2	$\mathbb{Q}\left(\sqrt{-q}, \sqrt{p q^{\prime}}\right)$	$\left\langle\zeta, \varepsilon_{p q^{\prime}}\right\rangle$	$\langle 1\rangle$	4	8	$\langle[2 \mathfrak{p}],[2 \mathfrak{q}]\rangle$	$\langle[2 \mathfrak{p}],[\mathfrak{q}]\rangle$
3	$\mathbb{Q}\left(\sqrt{-p}, \sqrt{q q^{\prime}}\right)$	$\left\langle-1, \varepsilon_{q q^{\prime}}\right\rangle$	$\langle 1\rangle$	4	8	$\langle[\mathfrak{p}],[\mathfrak{q}]\rangle$	
4	$\mathbb{Q}\left(\sqrt{p}, \sqrt{-q q^{\prime}}\right)$	$\left\langle-1, \varepsilon_{p}\right\rangle$	$\langle-1\rangle$	2	2^{n+3}	$\langle[\mathfrak{p}],[2 \mathfrak{q}]\rangle$	
5	$\mathbb{Q}\left(\sqrt{-q^{\prime}}, \sqrt{p q}\right)$	$\left\langle-1, \varepsilon_{p q}\right\rangle$	$\langle 1\rangle$	4	8	$\langle[2],[\mathfrak{p q}]\rangle$	$\langle[2],[\mathfrak{q}]\rangle$
6	$\mathbb{Q}\left(\sqrt{-p q}, \sqrt{q^{\prime}}\right)$	$\left\langle-1, \varepsilon_{q^{\prime}}\right\rangle$	$\langle 1\rangle$	4	8	$\langle[2],[\mathfrak{q}]\rangle$	$\langle[2],[\mathfrak{p q}]\rangle$
7	$\mathbb{Q}\left(\sqrt{-p q^{\prime}}, \sqrt{q}\right)$	$\left\langle-1, \varepsilon_{q}\right\rangle$	$\langle 1\rangle$	4	8	$\langle[2 \mathfrak{p}],[\mathfrak{q}]\rangle$	$\langle[2 \mathfrak{p}],[2 \mathfrak{q}]\rangle$

The left hand side of the column $N_{j} \mathrm{Cl}_{2}\left(k_{j}\right)$ refers to case A (i.e. $\left(q / q^{\prime}\right)=-1$), the right hand side to case B. We will now verify the table. The unit groups are easy to determine - we simply use the following proposition from [2]:
Proposition 5. Let k be an imaginary quadratic number field, and assume that K / k is a quadratic unramified extension. Then K is a V_{4}-extension, and $q(K)=1$.

Applying this to the extension $K=k_{j}$ we find that the unit group e_{j} is generated by the roots of unity in k_{j} and the fundamental unit of the real quadratic subfield. Since $\# \kappa_{j}=2\left(E_{k}: N_{K / k} E_{K}\right)$ for unramified quadratic extensions K / k, (see [2]), the order of the capitulation kernel is easily computed from the unit groups. Similarly, the 2-class number of $h\left(k_{j}\right)$ is given by the class number formula (see [6]), and since the unit index equals 1 in all cases, its computation is trivial.

Let us compute $N_{j} \mathrm{Cl}_{2}\left(k_{j}\right)$ in a few cases. Take e.g. $k_{j}=\mathbb{Q}\left(\sqrt{p}, \sqrt{-q q^{\prime}}\right)$: here the prime ideal \mathfrak{p} is a norm because $\left(-q q^{\prime} / p\right)=+1$, whereas 2 and \mathfrak{q} are inert, since $p \equiv 5 \bmod 8$ and $(p / q)=-1$. This implies that the ideal class [2q] must be a norm, since $\left(\mathrm{Cl}_{2}(k): N_{j} \mathrm{Cl}_{2}\left(k_{j}\right)\right)=2$ by class field theory.

As another example, take $k_{j}=\mathbb{Q}\left(\sqrt{-q}, \sqrt{p q^{\prime}}\right)$ and assume that we are in case B), i.e. that $\left(q / q^{\prime}\right)=1$. Then \mathfrak{q} is a norm since $\left(p q^{\prime} / q\right)=+1$, and the ideals 2 and \mathfrak{p} are inert; this yields $N_{j} \mathrm{Cl}_{2}\left(k_{j}\right)=\langle[\mathfrak{q}],[2 \mathfrak{p}]\rangle$.
3.2. The 2-class group of k_{4} is $\left(4,2^{n+1}\right)$. We know $N_{4} \mathrm{Cl}_{2}\left(k_{4}\right)=\langle[\mathfrak{p}],[2 \mathfrak{q}]\rangle$ and $\# \kappa_{4}=2$. Since $\mathfrak{p}=(p, \sqrt{d})$ becomes principal, we have $\kappa_{4}=\langle[\mathfrak{p}]\rangle$.

Let $\widetilde{\mathfrak{p}}$ denote a prime ideal above p in $\mathbb{Q}\left(\sqrt{-q q^{\prime}}\right)$; we have shown in Lemma 3 that $\widetilde{\mathfrak{p}}^{2^{n-1}} \sim 2 \mathfrak{q}$. Since this ideal class does not capitulate in k_{4}, we see that $\widetilde{\mathfrak{p}}$ generates a cyclic subgroup of order 2^{n} in $\mathrm{Cl}_{2}\left(k_{4}\right)$.

Let \mathcal{O} denote the maximal order of k_{4}; then $p \mathcal{O}=\mathfrak{P}^{2} \mathfrak{P}^{\prime 2}$. We claim that $\mathfrak{P}^{2} \sim \tilde{\mathfrak{p}}$. To this end, let s and t be the elements of order 2 in $\operatorname{Gal}\left(k_{4} / \mathbb{Q}\right)$ which fix F and
k, respectively. Using the identity $2+(1+s+t+s t)=(1+s)+(1+t)+(1+s t)$ of the group ring $\mathbb{Z}\left[\operatorname{Gal}\left(k_{4} / \mathbb{Q}\right)\right]$ and observing that \mathbb{Q} and the fixed field of st have odd class numbers we find

$$
\mathfrak{P}^{2} \sim \mathfrak{P}^{1+s} \mathfrak{P}^{1+t} \mathfrak{P}^{1+s t} \sim \tilde{p} \mathfrak{p} \sim \tilde{\mathfrak{p}}
$$

where the last relation (in $\mathrm{Cl}_{2}\left(k_{4}\right)$) comes from the fact that $\mathfrak{p} \in \kappa_{4}$.
Thus $\langle[2],[\mathfrak{P}]\rangle$ is a subgroup of type $\left(2,2^{n+1}\right)$ (hence of index 2) in $\mathrm{Cl}_{2}\left(k_{4}\right)$. Taking the norm to F we find $N_{F}\langle[2],[\mathfrak{P}]\rangle=\langle[\widetilde{p}]\rangle$; therefore there exists an ideal \mathfrak{A} in \mathcal{O} such that $N_{F} \mathfrak{A} \sim 2$ (equivalence in $\left.\mathrm{Cl}(F)\right)$. We conclude that $\mathrm{Cl}_{2}\left(k_{4}\right)=$ $\langle[2],[\mathfrak{A}],[\mathfrak{P}]\rangle$. Similarly, letting N_{4} denote the norm in k_{4} / k we get $N_{4}\langle[2],[\mathfrak{P}]\rangle=$ $\langle[\widetilde{\mathfrak{p}}]\rangle$; this shows that $N_{4} \mathfrak{A} \sim 2 \mathfrak{q}$ or $N_{4} \mathfrak{A} \sim 2 \mathfrak{q p}$ (equivalence in $\mathrm{Cl}(k)$; which of the two possibilities occurs will be determined below). But since $\mathfrak{p} \sim 1$ in $\mathrm{Cl}_{2}\left(k_{4}\right)$ we can conclude that $\mathfrak{A}^{1+t} \sim 2 \mathfrak{q}$. This gives $\mathfrak{A}^{2} \sim 2 \cdot 2 \mathfrak{q} \sim \mathfrak{q}$, and in particular [$\left.\mathfrak{A}\right]$ has order 4 in $\mathrm{Cl}_{2}\left(k_{4}\right)$.

Finally we claim that $\mathrm{Cl}_{2}\left(k_{4}\right)=\langle[\mathfrak{A}],[\mathfrak{P}]\rangle$, i.e. that $[2] \in\langle[\mathfrak{A}],[\mathfrak{P}]\rangle$. This is easy: from $\mathfrak{P}^{2} \sim \tilde{\mathfrak{p}}$ we deduce that $\mathfrak{P}^{2^{n}} \sim 2 \mathfrak{q}$, hence we get $\mathfrak{A}^{2} \mathfrak{P}^{2^{n}} \sim 2$.
3.3. Proof that $k^{2}=k^{3}$. Since $\mathrm{Cl}_{2}\left(k_{4}\right) \simeq\left(4,2^{n+1}\right)$, we can apply Prop. 4 of [1], which says that k_{4} has abelian 2-class field tower if and only if it has a quadratic unramified extension K / k_{4} such that $h_{2}(K)=\frac{1}{2} h_{2}\left(k_{4}\right)$.

Put $M=\mathbb{Q}\left(i, \sqrt{p}, \sqrt{q q^{\prime}}\right)$, and consider its subfield $M^{+}=\mathbb{Q}\left(\sqrt{p}, \sqrt{q q^{\prime}}\right) . M^{+}$ is the Hilbert 2-class field of $F=\mathbb{Q}(\sqrt{m})$, hence $h_{2}\left(M^{+}\right)=1$, and the class number formula gives $q\left(M^{+}\right)=2$. In fact it follows from Lemma 4 that $E_{M^{+}}=$ $\left\langle-1, \varepsilon_{p}, \varepsilon_{q q^{\prime}}, \sqrt{\varepsilon_{m}}\right\rangle$.

According to Thm. 1.ii).1. of [7], Hasse's unit index $Q(M)$ equals 1 if $w_{M} \equiv$ $4 \bmod 8\left(w_{M}\right.$ denotes the number of roots of unity in M; in our case $w_{M}=4$ or $w_{M}=12$) and if the ideal generated by 2 is not a square in M^{+}(this is the case here since $2 \nmid \operatorname{disc} M^{+}$). Thus $Q(M)=1$ and $E_{M}=\left\langle\xi, \varepsilon_{p}, \varepsilon_{q q^{\prime}}, \sqrt{\varepsilon_{m}}\right\rangle$, where ξ is a primitive $4^{t h}(q \neq 3)$ or $12^{t h}(q=3)$ root of unity. This shows that the unit index of the extension $M / \mathbb{Q}(i)$ equals 2 , and the class number formula finally gives

$$
h_{2}(M)=\frac{1}{4} \cdot 2 \cdot 1 \cdot 2^{n} \cdot 8=2^{n+2}=\frac{1}{2} h_{2}\left(k_{4}\right) .
$$

3.4. Computation of $\operatorname{Gal}\left(k^{2} / k\right)$. Put $L=k^{2}$ and $K=k_{4}$; clearly $\sigma=\left(\frac{L / K}{\mathfrak{P}}\right)$ and $\tau=\left(\frac{L / K}{\mathfrak{A}}\right)$ generate the abelian subgroup $\operatorname{Gal}(L / K) \simeq\left(2^{n+1}, 4\right)$ of $\Gamma_{n}=\operatorname{Gal}(L / k)$. If we put $\rho=\left(\frac{L / k}{2}\right)$ then ρ restricts to the nontrivial automorphism of K / k (since [2] is not a norm from k_{4} / k, which shows that $\Gamma_{n}=\langle\rho, \sigma, \tau\rangle$. The relations are easily computed: $\rho^{2}=\left(\frac{L / K}{2}\right)=\sigma^{2^{n}} \tau^{2}$, since $2 \sim \mathfrak{A}^{2} \mathfrak{P}^{2^{n}}, \rho^{-1} \sigma \rho=\left(\frac{L / K}{\mathfrak{P}^{\rho}}\right)=\sigma^{-1}$, since $\mathfrak{P P}^{\rho}=\mathfrak{p} \sim 1$, and $\tau \rho^{-1} \tau \rho=\left(\frac{L / K}{\mathfrak{A}^{1+\rho}}\right)=\left(\frac{L / K}{2 \mathfrak{q}}\right)=\sigma^{2^{n}}$. Thus

$$
\begin{aligned}
\Gamma_{n}=\langle\rho, \sigma, \tau: & \rho^{4}=\sigma^{2^{n+1}}=\tau^{4}=1, \rho^{2}=\sigma^{2^{n}} \tau^{2}, \\
& {\left.[\sigma, \tau]=1,[\rho, \sigma]=\sigma^{2},[\tau, \rho]=\sigma^{2^{n-1}} \tau^{2}\right\rangle }
\end{aligned}
$$

as claimed. We refer the reader to Hasse's report [5] for the used properties of Artin symbols.
3.5. Additional Information on Units and Class Groups. Using the presentation of Γ_{n} it is easy to compute the abelianization of its subgroups of index 2 ; this shows at once that $\mathrm{Cl}_{2}\left(k_{j}\right) \simeq(2,4)$ for all $j \neq 4$ in case A and in for all $j \neq 5,7$ in case B. More results are contained in Table 2.

Table 2.

j	k_{j}	$\mathrm{Cl}_{2}\left(k_{j}\right)$	κ_{j}	$\operatorname{Gal}\left(k^{2} / k_{j}\right)$
1	$\mathbb{Q}(i, \sqrt{m})$	$(2,4)$	$\langle[2],[\mathfrak{p}]\rangle$	$\left\langle\rho, \sigma, \tau^{2}\right\rangle$
2	$\mathbb{Q}\left(\sqrt{-q}, \sqrt{p q^{\prime}}\right)$	$(2,4)$	$\langle[\mathfrak{q}],[2 \mathfrak{p}]\rangle$	$\left\langle\rho \sigma, \rho \tau, \sigma^{2}, \tau^{2}\right\rangle$
3	$\mathbb{Q}\left(\sqrt{-p}, \sqrt{q q^{\prime}}\right)$	$(2,4)$	$\langle[\mathfrak{p}],[\mathfrak{q}]\rangle$	$\left\langle\rho \tau, \sigma, \tau^{2}\right\rangle$
4	$\mathbb{Q}\left(\sqrt{p}, \sqrt{-q q^{\prime}}\right)$	$\left(4,2^{n+1}\right)$	$\langle[\mathfrak{p}]\rangle$	$\langle\sigma, \tau\rangle$
5	$\mathbb{Q}\left(\sqrt{-q^{\prime}}, \sqrt{p q}\right)$	$(2,4) \quad(2,2,2)$	$\langle[\mathfrak{p q}],[2 \mathfrak{p}]\rangle$	$\left\langle\rho, \sigma^{2}, \tau\right\rangle$
6	$\mathbb{Q}\left(\sqrt{-p q}, \sqrt{q^{\prime}}\right)$	$(2,4)$	$\langle[\mathfrak{p q}],[2]\rangle$	$\left\langle\rho, \sigma \tau, \sigma^{2}\right\rangle$
7	$\mathbb{Q}\left(\sqrt{-p q^{\prime}}, \sqrt{q}\right)$	$(2,4) \quad(2,2,2)$	$\langle[2],[\mathfrak{q}]\rangle$	$\left\langle\rho \sigma, \tau, \sigma^{2}\right\rangle$

The computation of the capitulation kernels κ_{j} is no problem at all: take k_{1}, for example. We have seen that \mathfrak{p} is principal in $\mathbb{Q}(\sqrt{m})$, hence it is principal in k_{1}. Moreover, $2=(1+i)$ is clearly principal, and since we know from Table 1 that $\# \kappa_{1}=4$ we conclude that $\kappa_{1}=\langle[\mathfrak{p}],[2]\rangle$.

Before we determine the Galois groups corresponding to the extensions k_{j} / k we examine whether $N_{4} \mathfrak{A} \sim 2 \mathfrak{q}$ or $N_{4} \mathfrak{A} \sim 2 \mathfrak{p q}$ (equivalence in $\mathrm{Cl}_{2}(k)$). We do this as follows: first we choose a prime ideal \mathfrak{R} in \mathcal{O} such that $[\mathfrak{A}]=[\mathfrak{R}]$ (this is always possible by Chebotarev's theorem). Then its norms $\widetilde{\mathfrak{r}}$ in \mathcal{O}_{F} and \mathfrak{r} in \mathcal{O}_{k} are prime ideals, and we have $2 \widetilde{\mathfrak{r}} \sim 1$ in $\mathrm{Cl}_{2}(F)$. This implies that $2 r=x^{2}+2 q q^{\prime} y^{2}$, from which we deduce that $(2 r / q)=+1$. If we had $2 \mathfrak{q r} \sim 1$ in $\mathrm{Cl}_{2}(k)$, this would imply $2 q r=U^{2}+m v^{2}$; writing $U=q u$ this gives $2 r=q u^{2}+p q^{\prime} v^{2}$. This in turn shows $(2 r / q)=\left(p q^{\prime} / q\right)=\left(-q^{\prime} / q\right)$, which is a contradiction if $\left(q / q^{\prime}\right)=-1$. Thus $N_{4} \mathfrak{A} \sim 2 \mathfrak{p q}$ in case A). Similarly one shows that $N_{4} \mathfrak{A} \sim 2 \mathfrak{q}$ in case B).

Now consider the automorphism $\tau=\left(\frac{L / K}{\mathfrak{Q}}\right)$; we have just shown that $\tau=\left(\frac{L / K}{\mathfrak{R}}\right)$. Let M be a quadratic extension of K in L; then the restriction of $\tau \in \operatorname{Gal}(L / K)$ to M is $\left.\tau\right|_{M}=\left(\frac{M / K}{\Re}\right)$, and this is the identity if and only if the prime ideals in the ideal class $[\mathfrak{R}]$ split in M / K. But from $2 r=x^{2}+2 q q^{\prime} y^{2}$ we get $r \equiv 3 \bmod 4$, $(2 r / q)=+1$, hence $(q / r)=1$ since $q \equiv 3 \bmod 8$. This shows that \mathfrak{R} splits in $K_{5}=$ $K(\sqrt{q})=\mathbb{Q}\left(\sqrt{p}, \sqrt{q}, \sqrt{-q^{\prime}}\right)$, thus τ fixes K_{5}, and we find $\operatorname{Gal}\left(L / K_{5}\right)=\left\langle\tau, \sigma^{2}\right\rangle$.

Next \mathfrak{P} splits in $K_{1}=K(\sqrt{-1})$, hence σ fixes K_{1}, and we have $\operatorname{Gal}\left(L / K_{1}\right)=$ $\left\langle\sigma, \tau^{2}\right\rangle$. Finally, ρ fixes those extensions k_{j} / k in which [2] splits, i.e. k_{1}, k_{5} and k_{6}. In particular, ρ fixes their compositum K_{3}, and we find $\operatorname{Gal}\left(L / K_{3}\right)=\left\langle\rho, \sigma^{2}, \tau^{2}\right\rangle$.

Using elementary properties of Galois theory we can fill in the entries in the last column of Tables 2 and 3

The 2-class group structure for the subfields K_{j} of k^{1} / k of relative degree 4 , the relative norms of their 2-class groups and their Galois groups are given in Table 3 . The structure of $\mathrm{Cl}_{2}\left(K_{j}\right)$ is easily determined from $\mathrm{Cl}_{2}\left(K_{j}\right) \simeq \operatorname{Gal}\left(k^{2} / K_{j}\right)^{\text {ab }}$. Note that in every extension K_{j} / k the whole 2-class group of k is capitulating.

It is also possible to determine the unit groups E_{j} of the fields K_{j} (see Table 4). In fact, applying the class number formula to the V_{4}-extensions K_{j} / k we can determine the unit index $q\left(K_{j} / k\right)$ since we already know the class numbers. Thus all we have to do is check that the square roots of certain units lie in the field K_{j}. This is done as follows: consider the quadratic number field $M=\mathbb{Q}(\sqrt{q})$. Since

Table 3.

j	K_{j}	$\mathrm{Cl}_{2}\left(K_{j}\right)$	$N_{j} \mathrm{Cl}_{2}\left(K_{j}\right)$	$\operatorname{Gal}\left(k^{2} / K_{j}\right)$
1	$\mathbb{Q}\left(\sqrt{-1}, \sqrt{p}, \sqrt{q q^{\prime}}\right)$	$\left(2,2^{n+1}\right)$	$\langle[\mathfrak{p}]\rangle$	$\left\langle\sigma, \tau^{2}\right\rangle$
2	$\mathbb{Q}\left(\sqrt{-1}, \sqrt{-q}, \sqrt{-p q^{\prime}}\right)$	$(2,4)$	$\langle[2 \mathfrak{p}]\rangle$	$\left\langle\rho \sigma, \sigma^{2}\right\rangle$
3	$\mathbb{Q}\left(\sqrt{-1}, \sqrt{-q^{\prime}}, \sqrt{-p q}\right)$	$(2,4)$	$\langle[2]\rangle$	$\left\langle\rho, \sigma^{2}\right\rangle$
4	$\mathbb{Q}\left(\sqrt{p}, \sqrt{-q}, \sqrt{q^{\prime}}\right)$	$\left(2,2^{n+1}\right)$	$\langle[2 \mathfrak{q}]\rangle$	$\langle[2 \mathfrak{p q q}]\rangle$
5	$\mathbb{Q}\left(\sqrt{p}, \sqrt{-q^{\prime}}, \sqrt{q}\right)$	$\left(4,2^{n}\right)$	$\langle[2 \mathfrak{p q q}]\rangle$	$\langle[2 \mathfrak{q}]\rangle$
6	$\mathbb{Q}(\sqrt{-q}, \sqrt{-p}\rangle$			
7	$\mathbb{Q}\left(\sqrt{q^{\prime}}, \sqrt{-p}, \sqrt{-q^{\prime}}\right)$	$(2,4)$	$\langle[\mathfrak{p q}]\rangle$	$\langle[\mathfrak{q}]\rangle$

Table 4.

j	E_{j}	$q\left(K_{j} / k\right)$
1	$\left\langle i, \varepsilon_{p}, \varepsilon_{q q^{\prime}}, \sqrt{\varepsilon_{m} \varepsilon_{p q^{\prime}}}\right\rangle$	2
2	$\left\langle\zeta, \sqrt{i \varepsilon_{q}}, \varepsilon_{p q^{\prime}}, \sqrt{\varepsilon_{m} \varepsilon_{p q^{\prime}}}\right\rangle$	4
3	$\left\langle i, \sqrt{i \varepsilon_{q^{\prime}}}, \varepsilon_{p q}, \sqrt{\varepsilon_{m} \varepsilon_{p q}}\right\rangle$	4
4	$\left\langle-1, \varepsilon_{p}, \varepsilon_{q^{\prime}}, \sqrt{\varepsilon_{q^{\prime}} \varepsilon_{p q^{\prime}}}\right\rangle$	2
5	$\left\langle-1, \varepsilon_{p}, \varepsilon_{q}, \sqrt{\varepsilon_{q} \varepsilon_{p q}}\right\rangle$	2
6	$\left\langle-1, \varepsilon_{p q}, \sqrt{\varepsilon_{p q} \varepsilon_{p q^{\prime}}}, \sqrt{\varepsilon_{q q^{\prime}}}\right\rangle$	4
7	$\left\langle-1, \varepsilon_{q}, \sqrt{\varepsilon_{q} \varepsilon_{q^{\prime}}}, \sqrt{\varepsilon_{q q^{\prime}}}\right\rangle$	4

it has odd class number and since 2 is ramified in M we conclude that there exist integers $x, y \in \mathbb{Z}$ such that $x^{2}-q y^{2}= \pm 2$; from $q \equiv 3 \bmod 8$ we deduce that, in fact, $x^{2}-q y^{2}=-2$. Put $\eta_{q}=(x+y \sqrt{q}) /(1+i)$; then $\eta_{q}^{2}=-\varepsilon_{q}^{u}$ for some odd integer u shows that $i \varepsilon_{q}$ becomes a square in $M(i)$. Doing the same for the prime q^{\prime} we also see that $\eta_{q} \eta_{q^{\prime}}^{-1} \in \mathbb{Q}\left(\sqrt{q}, \sqrt{q^{\prime}}\right)$, and this implies that $\sqrt{\varepsilon_{q} \varepsilon_{q^{\prime}}} \in \mathbb{Q}\left(\sqrt{q}, \sqrt{q^{\prime}}\right)$. The other entries in Table 4 are proved similarly.

Using the same methods we can actually show that

$$
E=\left\langle\zeta, \varepsilon_{p}, \sqrt{i \varepsilon_{q}}, \sqrt{i \varepsilon_{q^{\prime}}}, \sqrt{\varepsilon_{q q^{\prime}}}, \sqrt{i \varepsilon_{p q}}, \sqrt{i \varepsilon_{p q^{\prime}}}, \sqrt{\varepsilon_{m}}\right\rangle
$$

has index 2 in the full unit group of $k_{\text {gen }}$.

4. The Field with Discriminant $d=-420$

The smallest example in our family of quadratic number fields is given by $d=$ $-420=-4 \cdot 3 \cdot 5 \cdot 7$. Poitou [10] noticed that the class field tower of $k=\mathbb{Q}(\sqrt{d})$ must be finite, and Martinet [9] observed (without proof) that its class field tower terminates at the second step with k^{2}, and that $\left(k^{2}: k\right)=32$. In this section, we will give a complete proof (this will be used in [13]).

The unit group of the genus class field $k_{\text {gen }}$ is

$$
E=\left\langle\zeta_{12}, \varepsilon_{5}, \sqrt{i \varepsilon_{3}}, \sqrt{i \varepsilon_{7}}, \sqrt{i \varepsilon_{15}}, \sqrt{i \varepsilon_{35}}, \sqrt{\varepsilon_{21}}, \eta\right\rangle
$$

where $\eta=\sqrt{\varepsilon_{7}^{-1} \varepsilon_{5} \sqrt{\varepsilon_{3} \varepsilon_{7} \varepsilon_{15} \varepsilon_{35} \varepsilon_{105}}}=\frac{1}{2}(1+2 \sqrt{5}+\sqrt{7}+\sqrt{15}+\sqrt{21})$. Since $k_{\text {gen }}$ has class number 4 , the second Hilbert class field is just its 2-class field, which can be constructed explicitly: $k^{2}=k^{1}(\sqrt{\mu}, \sqrt{\nu})$, where $\mu=(4 i-\sqrt{5})(2+\sqrt{5})$ and $\nu=(2 \sqrt{-5}+\sqrt{7})(8+3 \sqrt{7})$.

We claim that k^{2} has class number 1. Odlyzko's unconditional bounds show that $h\left(k^{2}\right) \leq 10$, and since we know that it has odd class number, it suffices to prove that no odd prime ≤ 10 divides $h\left(k^{2}\right)$. For $p=5$ and $p=7$ we can use the following result which goes back to Grün [3]:

Proposition 6. Let L / k be a normal extension of number fields, and let K denote the maximal subfield of L which is abelian over k.
i) If $\mathrm{Cl}(L / K)$ is cyclic, then $h(L / K) \mid(L: K)$;
ii) If $\mathrm{Cl}(L)$ is cyclic, then $h(L) \mid(L: K) e$, where e denotes the exponent of $N_{L / K} \mathrm{Cl}(L)$. Observe that $e \mid h(K)$, and that $e=1$ if L contains the Hilbert class field K^{1} of K.
Similar results hold for the p-Sylow subgroups.
Proof. Let C be a cyclic group of order h on which $\Gamma=\operatorname{Gal}(L / k)$ acts. This is equivalent to the existence of a homomorphism $\Phi: \Gamma \longrightarrow \operatorname{Aut}(C) \simeq \mathbb{Z} /(h-1) \mathbb{Z}$. Since im Φ is abelian, $\Gamma^{\prime} \subseteq \operatorname{ker} \Phi$, hence Γ^{\prime} acts trivially on C. Now Γ^{\prime} corresponds to the field K via Galois theory, and we find $N_{L / K} c=c^{(L: K)}$. Putting $C=\mathrm{Cl}(L / K)$, we see at once that $(L: K)$ annihilates $\mathrm{Cl}(L / K)$; if we denote the exponent of $N_{L / K} \mathrm{Cl}(L)$ by e and put $C=\mathrm{Cl}(L)$, then we find in a similar way that $(L: K) e$ annihilates $\mathrm{Cl}(L)$.

This shows at once that $h\left(k^{2}\right)$ is not divisible by 5 or 7 . For $p=3$, the proof is more complicated. First we use an observation due to R. Schoof:

Proposition 7. Let L / k be a normal extension with Galois group Γ, and suppose that $3 \nmid \# \Gamma$. Let K be the maximal abelian extension of k contained in L. If Γ does not have a quotient of type $S D_{16}$, if $\mathrm{Cl}_{3}(L) \simeq(3,3)$, and if $3 \nmid h(k)$, then there exists a subfield E of L / k such that $\mathrm{Cl}_{3}(E) \simeq(3,3)$ and $\operatorname{Gal}(E / k) \simeq D_{4}$ or H_{8}.

Proof. Put $A=\mathrm{Cl}_{3}(L)$; then Γ acts on A, i.e. there is a homomorphism $\Phi: \Gamma \longrightarrow$ $\operatorname{Aut}(A) \simeq \operatorname{GL}(2,3)$. From $\# \mathrm{GL}(2,3)=48$ and $3 \nmid \Gamma$ we conclude that im Φ is contained in the 2-Sylow subgroup of GL $(2,3)$, which is $\simeq S D_{16}$.

We claim that $\operatorname{im} \Phi$ is not abelian. In fact, assume that it is. Then im $\Phi \simeq$ $\Gamma / \operatorname{ker} \Phi$ shows that $\Gamma^{\prime} \subseteq \operatorname{ker} \Phi$; hence Γ^{\prime} acts trivially on A. The fixed field of Γ^{\prime} is K, and now $\mathrm{Cl}_{3}(K) \supseteq N_{L / K} \mathrm{Cl}_{3}(L)=A^{(L: K)} \simeq A$ shows that $3 \mid h(K)$ contradicting our assumptions.

Thus $\operatorname{im} \Phi$ is a nonabelian 2-group, and we conclude that $\# \operatorname{im} \Phi \geq 8$. On the other hand, Γ does not have $S D_{16}$ as a quotient, hence $\# \operatorname{im} \Phi=8$, and we have im $\Phi \simeq D_{4}$ or H_{8}, since these are the only nonabelian groups of order 8 . Let E be the fixed field of $\operatorname{ker} \Phi$. Since $\operatorname{ker} \Phi$ acts trivially on A, we see $\mathrm{Cl}_{3}(E) \supseteq$ $N_{L / E} \mathrm{Cl}_{3}(L)=A^{(L: E)} \simeq A$ (note that $(L: E) \mid \Gamma$ is not divisible by 3). The other assertions are clear.

Applying the proposition to the extension k^{2} / k (we have to check that $\operatorname{Gal}\left(k^{2} / \mathbb{Q}\right)$ does not have $S D_{16}$ as a quotient. But $\operatorname{Gal}\left(k^{2} / \mathbb{Q}\right)$ is a group extension

$$
1 \longrightarrow \operatorname{Gal}\left(k^{2} / k^{1}\right) \longrightarrow \operatorname{Gal}\left(k^{2} / \mathbb{Q}\right) \longrightarrow \operatorname{Gal}\left(k^{1} / \mathbb{Q}\right) \longrightarrow 1
$$

of an elementary abelian $\operatorname{group} \operatorname{Gal}\left(k^{1} / \mathbb{Q}\right) \simeq(2,2,2,2)$ by another elementary abelian group $\operatorname{Gal}\left(k^{2} / k^{1}\right) \simeq(2,2)$, from which we deduce that $\operatorname{Gal}\left(k^{2} / \mathbb{Q}\right)$ has exponent 4. Now observe that $S D_{16}$ has exponent 8) we find that $3 \nmid h\left(k^{2}\right)$ unless k^{2} contains a normal extension E / \mathbb{Q} with 3-class group of type $(3,3)$ and Galois group isomorphic to D_{4} or H_{8}. Let E_{0} be the maximal abelian subfield of E; this is a V_{4}-extension of \mathbb{Q} with quadratic subfields k_{0}, k_{1} and k_{2}. Let k_{0} denote a quadratic subfield over which E is cyclic. If a prime ideal \mathfrak{p} ramifies in E_{0} / k_{0}, then it must ramify completely in E / k_{0}; but since all prime ideals have ramification index ≤ 2 in E (since $E \subset k^{2}$), this is a contradiction.

Thus E / k_{0} is unramified. If we put $d_{j}=\operatorname{disc} k_{j}$, then this happens if and only if $d_{0}=d_{1} d_{2}$ and $\left(d_{1}, d_{2}\right)=1$. For quaternion extensions, this is already a contradiction, since we conclude by symmetry that $d_{1}=d_{0} d_{2}$ and $d_{2}=d_{0} d_{1}$. Assume therefore that $\operatorname{Gal}(E / \mathbb{Q}) \simeq D_{4}$. From a result of Richter 11 we know that E_{0} can only be embedded into a dihedral extension if $\left(d_{1} / p_{2}\right)=\left(d_{2} / p_{1}\right)=+1$ for all $p_{1} \mid d_{1}$ and all $p_{2} \mid d_{2}$. But E_{0} is an abelian extension contained in k^{2}, hence it is contained in $k_{\text {gen }}$, and we see that d is a product of the prime discriminants -3 , $-4,5$, and -7 . Since no combination of these factors satisfies Richter's conditions, E_{0} cannot be embedded into a D_{4}-extension E / \mathbb{Q}. This contradiction concludes our proof that $3 \nmid h\left(k_{2}\right)$.

Acknowledgement

Much of Section 4, in particular Proposition 7, is due to R. Schoof [12], whom I would like to thank for his help. I also thank C. Snyder for correcting an error in Table 2.

References

[1] E. Benjamin, F. Lemmermeyer, C. Snyder, Real Quadratic Fields with Abelian 2-Class Field Tower, submitted 4
[2] E. Benjamin, F. Sanborn, C. Snyder, Capitulation in Unramified Quadratic Extensions of Real Quadratic Number Fields, Glasgow Math. J. 36 (1994), 385-392 3
[3] O. Grün, Aufgabe 153; Lösungen von L. Holzer und A. Scholz, Jahresber. DMV 45 (1934), 74-75 (kursiv)
[4] F. Hajir, On a theorem of Koch, Pac. J. Math. 176 (1996), 15-18 71
[5] H. Hasse, Zahlbericht. Teil II, Würzburg-Wien 19704
[6] F. Lemmermeyer, Kuroda's Class Number Formula, Acta Arith. 66.3 (1994), 245-260. 3
[7] F. Lemmermeyer, Ideal class groups of cyclotomic number fields I, Acta Arith. 72 (1995), 347-359 4
[8] F. Lemmermeyer, Unramified quaternion extensions of quadratic number fields, J. Théor. Nombres Bordeaux 9 (1997), 51-68 1
[9] J. Martinet, Petits discriminants des corps de nombres, Journées Arithmétiques 1980 (J. V. Armitage, ed.), Cambridge Univ. Press 1982, 151-193, 6
[10] G. Poitou, Minorations de discriminants, Sém. Bourbaki (1975/76) 479 (1977), 136-153 6
[11] H. Richter, Über die Lösbarkeit einiger nicht-Abelscher Einbettungsprobleme, Math. Annalen 112 (1936), 69-84 8
[12] R. Schoof, Letter from Nov. 13, 19928
[13] K. Yamamura, Maximal unramified extensions of imaginary quadratic number fields of small conductors, preprint 1996 6

Bilkent University, Dept. Mathematics, 06533 Bilkent, Ankara
E-mail address: hb3@ix.urz.uni-heidelberg.de, franz@fen.bilkent.edu.tr

