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1. Introduction

The first counterexamples to the Hasse principle for curves of genus 1 were con-
structed independently by Lind [8] and Reichardt [9]. In his survey [2, p. 206],
Cassels proves Reichardt’s result using a technique that “was suggested by unpub-
lished work of Mordell”.

Cassels starts with Reichardt’s equation

(1) X4 − 17Y 4 = 2Z2,

which is easily seen to have nontrivial solutions in every completion Qp of Q, in-
cluding Q∞ = R (see [1] for a proof using only elementary number theory).

Now assume that (1) has a nontrivial solution in rational numbers. Clearing
denominators we may assume that X, Y, Z are nonzero integers with gcd(X, Y ) =
gcd(X, Z) = gcd(Y, Z) = 1. Now we write (1) in the form

(2) (5X2 + 17Y 2)2 − (4Z)2 = 17(X2 + 5Y 2)2.

Since the left hand side is a difference of squares, it can be factored, and it is easily
checked that gcd(5X2 +17Y 2−4Z, 5X2 +17Y 2 +4Z) is a square or twice a square.
Thus there exist nonzero integers U, V such that

5X2 + 17Y 2 ± 4Z = 17U2,

5X2 + 17Y 2 ∓ 4Z = V 2,

X2 + 5Y 2 = UV,

or

5X2 + 17Y 2 ± 4Z = 34U2,

5X2 + 17Y 2 ∓ 4Z = 2V 2,

X2 + 5Y 2 = 2UV.

Eliminating Z from the first two equations gives the systems

10X2 + 34Y 2 = 17U2 + V 2,

X2 + 5Y 2 = UV,

or

5X2 + 17Y 2 = 17U2 + V 2,

X2 + 5Y 2 = 2UV.

But since (5/17) = (10/17) = −1, none of these two systems of equations has a
nonzero integral solution.
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In modern language, quartics of genus 1 like (1) that have nontrivial points
in every completion Qp but not in Q represent elements of order 2 in the Tate-
Shafarevich group of their Jacobian.

In his book [10, p. 317], Silverman uses this idea to study the curve Z2 +4Y 4 =
pX4 for primes p = a2 + b2 ≡ 1 mod 8 and says that it is “a simple matter to verify
the identity”

(3) (pX2 + 2bY 2)2 − a2Z2 = p(bX2 + 2Y 2)2.

Where do these factorizations come from? And for which type of equations do
they exist? Cassels [2] mentions that Mordell considered equations f(x2, y2, z),
where f(X, Y, Z) is a quadratic form representing 0, but does not give more details.

In this article we will present a method for factoring quartics of the form aX4 +
bY 4 = cZ2 with local solutions everywhere; its main idea can be traced back to
Euler, and probably is very close to Mordell’s unpublished work. We will show that
Euler’s trick can be used to construct counterexamples to the Hasse principle using
only elementary number theory; in previous articles (see e.g. [5, 6, 7]), techniques
from algebraic number theory were used.

We also remark that this method could very well have been used by Pépin,
although there is no evidence that he did.

2. Euler’s Trick

A simple way of deriving formulas giving Pythagorean triples is the following:
write x2 + y2 = z2 in the form y2 = z2 − x2 = (z + x)(z − x) and then use
unique factorization. This method does not seem to work for simple equations like
x2 +y2 = 2z2; Euler [3], however, saw that in this case multiplication by 2 saves the
day because (2z)2 = 2x2 +2y2 = (x+y)2 +(x−y)2, hence (2z−x−y)(2z+x+y) =
(x− y)2, and now the solution proceeds exactly as for Pythagorean triples.

Remarks in his Algebra [4, art. 181] show that Euler was aware that this trick
always works for conics aX2 + bY 2 = cZ2 with a nontrivial rational point:

So oft es aber möglich ist, [die Form ax2 + cy2 zu einem Quadrat
zu machen,] kann diese Form in eine andere verwandelt werden,
in welcher a = 1 ist. Es kann z.B. die Form 2p2 − q2 zu einem
Quadrat werden, sie läßt sich aber auch in solcher Art darstellen:
(2p + q)2 − 2(p + q)2.

In fact, consider the conic AX2 +BY 2 = CZ2 and assume that it has a rational
solution. First, multiplying through by A shows that it is sufficient to consider
equations X2 + aY 2 = bZ2. Assume that (x, y, z) is a solution of this equation.
Then

(bzZ)2 = bz2X2 + abz2Y 2

= (x2 + ay2)X2 + (ax2 + a2y2)Y 2

= (xX + ayY )2 + a(xY − yX)2;

Similarly,

(ayY )2 = aby2Z2 − ay2X2

= b(bz2 − x2)Z2 − (bz2 − x2)X2

= (xX + bzZ)2 − b(xZ + zX)2,
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or even

(xX)2 = bx2Z2 − ax2Y 2

= b(bz2 − ay2)Z2 − a(bz2 − ay2)Y 2

= (bzZ + ayY )2 − ab(yZ + zY )2.

Euler’s trick provides us with three different factorizations of the form AB =
mC2; we have collected them in the following table:

A B C m
I bzZ + ayY + xX bzZ − ayY − xX xY − yX a
II bzZ + ayY + xX bzZ − ayY + xX xZ + zX b
III bzZ + ayY + xX bzZ + ayY − xX yZ + zY ab

Table 1. Factorizations AB = mC2 derived from Euler’s Trick

In Euler’s example y2 + z2 = 2x2 we have (x, zy, z, a, b) = (1, 1, 1, 1, 2), and the
third factorization gives z2 = (2x + y)2 − 2(x + y)2.

3. Bounding the GCD

For applying unique factorization we have to determine the greatest common
divisor of the factors A and B in Table 2. First observe that we may assume that
a and b are squarefree since we can subsume squares into Y 2 or Z2.

Lemma 1. Assume that a and b are squarefree. If C : X2 + aY 2 = bZ2 has a
nontrivial solution (x, y, z), then it has an integral point (X, Y, Z) with gcd(X, Y ) =
gcd(X, Z) = gcd(Y, Z) = 1.

Proof. Multiplying through by the square of the gcd’s of a nontrivial solution we
may clearly assume that there is an integral solution. Put d = gcd(X, Y ). Then
d2 | bZ2, and since b is squarefree, we easily conclude that d | Z. �

For bounding d = gcd(A,B) we need to make several assumptions: we will
assume that gcd(Y, Z) = 1, which we are allowed to do by Lemma 1; we will call
a solution (X, Y, Z) primitive if gcd(X, Y ) = gcd(Y, Z) = gcd(Z,X) = 1. By the
same reason we may assume that (x, y, z) is primitive. The gcd of the two factors
is then described by the following

Theorem 2. Assume that (x, y, z) is a primitive solution of C : X2 + aY 2 = bZ2,
where a and b are coprime and squarefree integers. Then for any primitive solution
(X, Y, Z) of C, we have gcd(A,B) = δu2, where δ and u are integers satisfy the
following conditions:

I δ | 2b u | gcd(z, Z)
II δ | 2a u | gcd(y, Y )
III δ | 2 u | gcd(x, X)

Proof. The proofs for the three cases are completely analogous; thus it will be
sufficient to give the proof only for case I.
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In this case we clearly have

d | (A + B) = 2bzZ,

d | (A−B) = 2(ayY + xX),

d2 | AB = a(yX − xY )2.

Since a is squarefree, the last relation shows that d2 | (yX − xY )2, hence d |
(yX−xY ). Now d | 2x(ayY +xX) and d | 2ay(yX−xY ) implies d | 2(x2+ay2)X =
2bz2X. Together with d | 2bzZ this implies d | 2 gcd(bz2X, bzZ) = 2bz gcd(z, Z) |
2bz2.

From bZ2 = X2 +aY 2 we get bx2Z2 = x2X2 +ax2Y 2 = (bz2−ay2)X2 +ax2Y 2,
hence

(4) b(x2Z2 − z2X2) = a(xY − yX)(xY + yX).

Multiplying through by 2 we see that d | 2bx2Z2. Thus d | gcd(2bz2, 2bx2Z2) =
2b gcd(z2, x2Z2) = 2b(z, Z)2.

We now claim that d is a divisor of 2b times a square. We know that d |
2b gcd(z, Z)2. Now write gcd(d, z, Z) = 2jβu, where u is the maximal odd divisor
of d coprime to b. From u2 | z2, u2 | Z2 and (4) we get u2 | a(xY − yX)(xY + yX).

Next observe that gcd(z, Z) is coprime to a: in fact, if q is a prime divid-
ing gcd(a, z), then q | x2, hence q | z, and this contradicts the assumption that
gcd(x, z) = 1. Thus we have u2 | (xY − yX)(xY + yX).

Now we claim that no prime q | u divides the first factor. Otherwise q would
divide both factors, hence xY and yX. Since q | z we have q - xy, hence q | X and
q | Y : contradiction. This implies that u2 | (zY + yZ).

But then u2 | d | 2 gcd(d, x, X)2 = 2j+1βu2. This implies the claim. �

The bounds for the gcd’s given at the end of Theorem 2 are best possible: they
are attained for (X, Y, Z) = (x, y,−z).

4. Unique Factorization

Consider the first factorization AB = mC2, where A = bzZ + ayY + xX, B =
bzZ−ayY −xX, C = xY − yX, and m = a; then gcd(A,B) = βu2 for some β | 2b.
Unique Factorization then gives the system of equations

bzZ + ayY + xX = αβr2,

bzZ − ayY − xX = α′βs2,

xY − yX = βrs,

where αα′ = a.
Let us now consider Pépin’s examples. His quartics all have the form pX4 −

mY 4 = Z2; the rational solution (α, b, α2a+βb) of the underlying conic x2 +my2 =
pz2 gives rise to the Euler factorizations

=

Eliminating Z gives

2(ayY + xX) = β(αr2 − α′s2),
xY − yX = βrs,
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Eliminating X finally gives the equation

2bz2Y = β(αr2 − α′s2 − 2xrs)

5. Silverman’s example

We have X2+4Y 4 = pZ4. The conic underlying Silverman’s example is ξ2+η2 =
pζ2, where we have set ξ = X, η = 2Y 2 and ζ = Z2. Here a = 1, b = p, and with
p = c2 + d2 we get the solution (x, y, z) = (c, d, 1). Euler’s factorizations are given
by

(pζ + cξ + dη)(pζ − cξ − dη) = (dξ − cη)2,

(cξ + pζ + dη)(cξ + pζ − dη) = p(cζ + ξ)2,

(pζ + dη + cξ)(pζ + dη − cξ) = p(dζ + η)2.

Introducing the original variables again, the third factorization gives

p(dZ2 + 2Y 2)2 = (pZ2 + 2dY 2 + cX)(pZ2 + 2dY 2 − cX).

Assuming that (X, Y, Z) is primitive, Theorem 2 tells us that gcd(pZ2 + 2dY 2 +
cX, pZ2+2dY 2−cX) = 2je2 for some odd integer e (note that z = 1 here). Unique
factorization then implies (replacing Z by −Z if necessary)

pZ2 + 2dY 2 + cX = δpu2,

pZ2 + 2dY 2 − cX = δv2,

dZ2 + 2Y 2 = δuv,

where δ ∈ {1, 2}. Eliminating X yields the pair of equations

2pZ2 + 4dY 2 = δ(v2 + pu2),

dZ2 + 2Y 2 = δuv.

Now we distinguish two cases:
(1) δ = 1: reducing the equations modulo 8 and using 4 | d we find 2Z2 ≡

u2 + v2 mod 8. This implies u ≡ v mod 2, and the second equation shows
that uv is even. Thus both u and v are even, and then the first equation
shows that 2 | Z, the second that 2 | Y : contradiction.

(2) δ = 2: then we find Z2 ≡ u2 + v2 mod 8. If Z is even, then both u and
v must be even, and then the second equation implies that Y is also even,
which again contradicts (Y, Z) = 1. Thus Z is odd, hence one of u, v is odd
and the other is divisible by 4 (because of v2 ≡ X2 − u2 ≡ 0 mod 8). But
then Y must be even, and the second equation gives d ≡ 0 mod 8.

We have proved:

Theorem 3. If the diophantine equation X2 + 4Y 4 = pZ4, where p = c2 + d2 ≡
1 mod 8 is a prime, has a nontrivial solution, then d ≡ 0 mod 8.

6. Pépin’s Results

In [5], the theorem below was proved (under the additional assumption that α
be prime) using genus theory; here we will show how Euler’s trick can be used to
give an elementary proof.
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Theorem 4. Let a, b, α, β, γ be integers such that p = α2a2 + 2βab + γb2 is an odd
prime. Then the conic X2 + mY 2 = pZ2, where m = α2γ − β2, has the integral
point (α2a + βb, b, α).

If, in addition, m ≡ 1 mod 8 is a prime and α ≡ 3 mod 4, then the equation

(5) px4 −my2 = z2

does not have any nontrivial rational solutions.

6.1. Preliminaries. We now prove a few simple properties that we will use later
on:

If we put z = X, y = Y and x2 = Z, then (5) becomes

(6) X2 + mY 2 = pZ2.

Lemma 5. If m ≡ 1 mod 4, then any nontrivial solution of (6) with gcd(X, Y ) =
1satisfies Z ≡ 1 mod 2, and we have p ≡ 1 mod 4.

Proof. If 2 | Z, then X ≡ Y mod 2, and since gcd(X, Y ) = 1 both X and Y are
both odd. But then we find the contradiction 0 ≡ pZ2 ≡ X2 + mY 2 ≡ 2 mod 4.

Now px4 ≡ my2 + z2 ≡ y2 + z2 mod 4 implies p ≡ 1 mod 4. �

6.2. Euler’s Trick. We start with the factorization

(7) m((α2a + βb)Y − bX)2 = (pα2Z)2 − ((α2a + βb)X + mbY )2.

Now we put

A = pαZ −X(α2a + βb)−mbY,

B = pαZ + X(α2a + βb) + mbY,

C = (α2a + βb)Y − bX

and get AB = mC2.

6.3. Unique Factorization. Since a = m and b = p, Theorem 2 shows gcd(A,B) =
δu2 for some integer δ | 2p.

Since AB = mC2 for a prime m and gcd(A,B) = δu2, there exist r, s ∈ Z such
that A = δr2, B = δms2 or A = δmr2 and B = δs2. Since changing the signs of X
and Y corresponds to switching A and B, we may assume that we have A = δr2

and B = δms2.
Note that since A + B = 2pαZ > 0 (since Z is a square) and AB = mC2 > 0,

we must have A,B > 0. Now consider the following cases:

(1) δ ≡ 1 mod 4, i.e., δ ∈ {1, p}. Here 2pαZ = A+B = δ(r2+ms2). Now r and
s must have the same parity; if they are both even, then Z is divisible by 4;
therefore we may divide the equation 2pαZ = A+B = δ(r2+ms2) through
by powers of 2 until both r and s are odd. But then pαZ ≡ 1 mod 4, hence
Z ≡ 3 mod 4, hence Z cannot be a square.

(2) δ ≡ 2 mod 4, i.e., δ ∈ {2, 2p}. Here pαZ = 1
2 (A + B) = δ′(r2 + ms2) with

δ′ ∈ {1, p}. As above we get Z ≡ 3 mod 4, and again Z cannot be a square.

The only place where we have used the primality of m was in the last subsection.
If m ≡ 1 mod 8 is a product of primes ≡ 1 mod 4, then we get the equations
A = δµr2, B = δνs2 with µν = m. Again we have to consider the following cases:
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(1) δ ≡ 1 mod 4, i.e., δ ∈ {1, p}. Then 2pαZ = A + B = δ(µr2 + νs2); now r
and s must have the same parity, and since we know that their gcd is odd,
we must have r ≡ s ≡ 1 mod 2. This implies pαZ ≡ 1

2µ + ν ≡ 1 mod 4
(note that µ, ν ≡ 1 mod 4 and µν ≡ 1 mod 8 imply that µ + ν ≡ 2 mod 8),
hence Z ≡ 3 mod 4, and Z cannot be a square.

(2) δ ≡ 2 mod 4, i.e., δ ∈ {2, 2p}. Here pαZ = 1
2 (A + B) = δ′(µr2 + νs2) with

δ′ ∈ {1, p}. As above we get Z ≡ 3 mod 4, and again Z cannot be a square.
The following examples were claims made by Pépin:

α β γ m p
3 1 2 17 9a2 + 2ab + 2b2

3 2 5 41 9a2 + 4ab + 5b2

3 5 10 65 9a2 + 10ab + 10b2

3 7 14 77 9a2 + 14ab + 14b2

7 1 2 97 49a2 + 2ab + 2b2

The example m = 77 is not covered by Theorem 4. We leave it to the reader to
prove the following result:

Proposition 6. Assume that m = pq ≡ 1 mod 8 for primes p ≡ 7 mod 8 and
q ≡ 3 mod 8 such that (α/p) = −1. Then the equation does not have a nontrivial
rational solution.
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