ELEMENTARY NUMBER THEORY

(1) Assume that $p \equiv 1 \mod 8$ is a prime, and that $p = c^2 + 2d^2$. Show that $\left(\frac{c}{p}\right) = \left(\frac{2}{c}\right)$. Also show that $\left(\frac{d}{p}\right) = 1$ (note that d is even, so you cannot simply invert without thinking!)

Hint: write $d = 2^{j}u$ for some odd integer u and compute the factors $(2/p)^j$ and (u/p) individually.

- (2) Find infinitely many solutions of the diophantine equation $x^2 + y^2 = z^3$. Hint: find Gaussian integers x + yi that are cubes.
- (3) Find infinitely many solutions of the diophantine equation $x^2 + 2y^2 = z^3$.
- (4) Find the prime factorizations of $X^3 + X + 1$ and $X^3 X + 1$ in $\mathbb{F}_3[X]$. Hint: linear factors can be detected by finding roots.
- (5) Compute $gcd(-2+3\sqrt{-2}, 1+4\sqrt{-2})$ using Euclid's algorithm, and compute the corresponding Bezout representation.
- (6) For the following equations in \mathbb{Z}_p , either explain why they do not have a solution, or find approximations modulo p and p^2 .
 - x² = 2 in Z₅;
 x² = 2 in Z₇;

 - x³ = 5 in Z₁₃;
 x² = 2 in Z₂ (attention: this one has a solution modulo 2, but not modulo 4);

 - $x^3 + x + 1 = 0$ in \mathbb{Z}_5 ; $x^3 + x + 1 = 0$ in \mathbb{Z}_{11} .
- (7) Show that $\{0, \pm 1, \pm i\}$ is a complete system of residues modulo 1 + 2i. Hint: first show that every Gaussian integer is congruent modulo 1+2i to one of 0, 1, 2, 3, 4. Then show that each of these is congruent to an element in $\{0, \pm 1, \pm i\}$. Finally show that no two of these elements are congruent modulo 1 + 2i.
- (8) Prove that $\left[\frac{i}{\pi}\right] = (-1)^{(p-1)/4}$ for $\pi \in \mathbb{Z}[i]$ with prime norm $N\pi = p$.
- (9) Find the prime factorization of $f(X) = X^4 + 3X^2 + 1$ over $\mathbb{F}_5[X]$. Hint: check for linear factors by computing f(a) for $a \in \mathbb{F}_5$; if f(a) = 0, then f(X) = (X - a)g(X).
- (10) Find the prime factorization of $f(X) = X^4 + X^2 + 1$ over $\mathbb{F}_5[X]$.
 - Solution: this has no linear factors since $f(a) \neq 0$ for all $a \in \mathbb{F}_5$. Now write $f(X) = (X^2 + aX + b)(X^2 + cX + d)$. Comparing the coefficients of X^3 shows a+c=0, hence $f(X) = (X^2+aX+b)(X^2-aX+d)$. Comparing the linear terms gives a(d-b) = 0. If a = 0, then b+d = 1 and bd = 1 in \mathbb{F}_5 ; thus $1 = bd = b(1-b) = b - b^2$: but this has no solution in \mathbb{F}_5 . Thus $a \neq 0$ and b = d, that is, $f(X) = (X^2 + aX + b)(X^2 - aX + b) = X^4 + (2b - a^2)X^2 + b^2$. This implies b = 1 and $a = \pm 1$, hence $f(X) = (X^2 + X + 1)(X^2 - X + 1)$.

This is even true over any field (not just \mathbb{F}_5), and could have been derived directly from the fact that f is a difference of squares: $f(X) = (X^2 + 1)^2 - (X^2 + 1)^2$ X^2 .

(11) Factor $X^4 - X^3 - X^2 - X + 1$ over $\mathbb{F}_3[X]$