ELEMENTARY NUMBER THEORY

(1) Assume that $p \equiv 1 \bmod 8$ is a prime, and that $p=c^{2}+2 d^{2}$. Show that $\left(\frac{c}{p}\right)=\left(\frac{2}{c}\right)$. Also show that $\left(\frac{d}{p}\right)=1$ (note that d is even, so you cannot simply invert without thinking!)

Hint: write $d=2^{j} u$ for some odd integer u and compute the factors $(2 / p)^{j}$ and (u / p) individually.
(2) Find infinitely many solutions of the diophantine equation $x^{2}+y^{2}=z^{3}$.

Hint: find Gaussian integers $x+y i$ that are cubes.
(3) Find infinitely many solutions of the diophantine equation $x^{2}+2 y^{2}=z^{3}$.
(4) Find the prime factorizations of $X^{3}+X+1$ and $X^{3}-X+1$ in $\mathbb{F}_{3}[X]$. Hint: linear factors can be detected by finding roots.
(5) Compute $\operatorname{gcd}(-2+3 \sqrt{-2}, 1+4 \sqrt{-2})$ using Euclid's algorithm, and compute the corresponding Bezout representation.
(6) For the following equations in \mathbb{Z}_{p}, either explain why they do not have a solution, or find approximations modulo p and p^{2}.

- $x^{2}=2$ in \mathbb{Z}_{5};
- $x^{2}=2$ in \mathbb{Z}_{7};
- $x^{3}=5$ in \mathbb{Z}_{13};
- $x^{2}=2$ in \mathbb{Z}_{2} (attention: this one has a solution modulo 2 , but not modulo 4);
- $x^{3}+x+1=0$ in \mathbb{Z}_{5};
- $x^{3}+x+1=0$ in \mathbb{Z}_{11}.
(7) Show that $\{0, \pm 1, \pm i\}$ is a complete system of residues modulo $1+2 i$.

Hint: first show that every Gaussian integer is congruent modulo $1+2 i$ to one of $0,1,2,3,4$. Then show that each of these is congruent to an element in $\{0, \pm 1, \pm i\}$. Finally show that no two of these elements are congruent modulo $1+2 i$.
(8) Prove that $\left[\frac{i}{\pi}\right]=(-1)^{(p-1) / 4}$ for $\pi \in \mathbb{Z}[i]$ with prime norm $N \pi=p$.
(9) Find the prime factorization of $f(X)=X^{4}+3 X^{2}+1$ over $\mathbb{F}_{5}[X]$. Hint: check for linear factors by computing $f(a)$ for $a \in \mathbb{F}_{5}$; if $f(a)=0$, then $f(X)=(X-a) g(X)$.
(10) Find the prime factorization of $f(X)=X^{4}+X^{2}+1$ over $\mathbb{F}_{5}[X]$.

Solution: this has no linear factors since $f(a) \neq 0$ for all $a \in \mathbb{F}_{5}$. Now write $f(X)=\left(X^{2}+a X+b\right)\left(X^{2}+c X+d\right)$. Comparing the coefficients of X^{3} shows $a+c=0$, hence $f(X)=\left(X^{2}+a X+b\right)\left(X^{2}-a X+d\right)$. Comparing the linear terms gives $a(d-b)=0$. If $a=0$, then $b+d=1$ and $b d=1$ in \mathbb{F}_{5}; thus $1=b d=b(1-b)=b-b^{2}$: but this has no solution in \mathbb{F}_{5}. Thus $a \neq 0$ and $b=d$, that is, $f(X)=\left(X^{2}+a X+b\right)\left(X^{2}-a X+b\right)=X^{4}+\left(2 b-a^{2}\right) X^{2}+b^{2}$. This implies $b=1$ and $a= \pm 1$, hence $f(X)=\left(X^{2}+X+1\right)\left(X^{2}-X+1\right)$.

This is even true over any field (not just \mathbb{F}_{5}), and could have been derived directly from the fact that f is a difference of squares: $f(X)=\left(X^{2}+1\right)^{2}-$ X^{2}.
(11) Factor $X^{4}-X^{3}-X^{2}-X+1$ over $\mathbb{F}_{3}[X]$.

