ELEMENTARY NUMBER THEORY

HOMEWORK 7

(1) Let

$$
\begin{aligned}
& a=1+3 \cdot 5+4 \cdot 5^{2}+\ldots \\
& b=3+2 \cdot 5+2 \cdot 5^{2}+\ldots
\end{aligned}
$$

Compute approximations modulo 5^{2} for $a+b, a-b, a b$ and a / b.
(2) Show that $\sqrt{2} \in \mathbb{Z}_{17}$.
(a) First solve $x_{1}^{2} \equiv 2 \bmod 17$.
(b) Write $x_{2}=x_{1}+17 y$ and determine $y \bmod 17$ in such a way that $x_{2}^{2} \equiv 2 \bmod 17^{2}$.
(c) Prove by induction that you can solve $x_{k}^{2} \equiv 2 \bmod 17^{k}$ for every $k \geq 1$.
(d) Prove that the sequence x_{k} is a Cauchy sequence with respect to $|\cdot|_{17}$.
(e) Let x be the 17 -adic number defined by the Cauchy sequence x_{k}. Show that $x^{2}=2$.
(3) Show that the equation $x^{3}=2$ has no solution in \mathbb{Z}_{7}.

